JPH04328215A - Manufacture of bi-series oxide type superconductive wire - Google Patents
Manufacture of bi-series oxide type superconductive wireInfo
- Publication number
- JPH04328215A JPH04328215A JP3122624A JP12262491A JPH04328215A JP H04328215 A JPH04328215 A JP H04328215A JP 3122624 A JP3122624 A JP 3122624A JP 12262491 A JP12262491 A JP 12262491A JP H04328215 A JPH04328215 A JP H04328215A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- based oxide
- superconductor
- heat treatment
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000002887 superconductor Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 238000011282 treatment Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 238000007596 consolidation process Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 239000012768 molten material Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 27
- 239000012535 impurity Substances 0.000 abstract description 4
- 239000013067 intermediate product Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 238000005491 wire drawing Methods 0.000 description 8
- 238000003825 pressing Methods 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 5
- 229910000018 strontium carbonate Inorganic materials 0.000 description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910016315 BiPb Inorganic materials 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000004857 zone melting Methods 0.000 description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は結晶配向性に優れた臨界
電流密度の高いBi系酸化物超電導線材を製造する方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based oxide superconducting wire with excellent crystal orientation and high critical current density.
【0002】0002
【従来の技術】従来、銀からなるシース材の内部にBi
系の酸化物超電導体を設けてなる酸化物超電導線材が知
られている。この種の超電導線材において、2223相
として知られる(BiPb)2Sr2Ca2Cu3Ox
なる組成の酸化物超電導体を備えたものを製造する方法
の一例として図3ないし図7を基に以下に説明する方法
が知られている。[Prior Art] Conventionally, a sheath material made of silver contained Bi.
Oxide superconducting wires comprising oxide superconductors of this type are known. In this type of superconducting wire, (BiPb)2Sr2Ca2Cu3Ox known as 2223 phase
As an example of a method for manufacturing an oxide superconductor having the following composition, the method described below with reference to FIGS. 3 to 7 is known.
【0003】この製造方法では、まず、Bi2O3、P
bO、SrCO3、CaCO3、CuOの各粉末をBi
:Pb:Sr:Ca:Cu=1.6:0.4:2:2:
3の比率で混合して図3に示す混合粉末1を作成し、加
熱炉2の内部において、750〜870℃の温度で8〜
200時間程度仮焼きして焼結体を得る。次にこの焼結
体を粉砕して得た粉砕物4を図4に示すように銀製のパ
イプ3に充填し、次いで図5に示すようにスエージング
伸線加工により縮径し、更に図6に示すように圧延およ
びプレス加工機5によって圧密し、次いで図7で示すよ
うに加熱炉6で熱処理を施すことにより銀シース内部に
2223相の酸化物超電導体を生成させて超電導線材7
を得ている。[0003] In this manufacturing method, first, Bi2O3, P
Each powder of bO, SrCO3, CaCO3, and CuO was
:Pb:Sr:Ca:Cu=1.6:0.4:2:2:
3 to create the mixed powder 1 shown in FIG.
A sintered body is obtained by calcining for about 200 hours. Next, the crushed product 4 obtained by crushing this sintered body is filled into a silver pipe 3 as shown in FIG. 4, and then the diameter is reduced by swaging wire drawing as shown in FIG. As shown in FIG. 7, the 2223-phase oxide superconductor is formed inside the silver sheath by compacting it using a rolling and pressing machine 5, and then heat-treating it in a heating furnace 6 as shown in FIG.
I am getting .
【0004】このように得られた超電導線材7は、液体
窒素温度において、104A/cm2(外部磁場0T)
台の高い臨界電流密度を発揮するものである。[0004] The superconducting wire 7 obtained in this way has a magnetic field of 104 A/cm2 (external magnetic field 0 T) at liquid nitrogen temperature.
It exhibits a high critical current density.
【0005】[0005]
【発明が解決しようとする課題】しかしながら前記の製
造方法で得られた超電導線材7にあっては、線材の長手
方向に臨界電流密度のバラツキが生じる問題があった。
即ち、得られた超電導線材の長手方向の種々の位置にお
ける臨界電流密度を測定したところ、図8に示すように
部分的に臨界電流密度が大幅に低下する部分があり、臨
界電流密度にかなりのばらつきがあることが判明した。However, the superconducting wire 7 obtained by the above manufacturing method has a problem in that the critical current density varies in the longitudinal direction of the wire. That is, when we measured the critical current density at various positions in the longitudinal direction of the obtained superconducting wire, we found that there were some parts where the critical current density decreased significantly, as shown in Figure 8. It turned out that there was some variation.
【0006】この問題の原因として種々のことが考えら
れるが、その1つとして、超電導相の生成割合が低いと
いう問題がある。即ち、熱処理により導体断面積の10
0%が超電導相に変換すれば問題がないが、実際は非超
電導相や不純物元素および未反応相といった部分が色々
な割合で含まれることが知られている。従ってなるべく
均一な反応状態でしかも100%に近い超電導相の反応
を確保することが高臨界電流密度の超電導線材を得る有
効な方法の1つであると考えられる。[0006] There are various possible causes of this problem, one of which is the low rate of superconducting phase formation. That is, heat treatment reduces the conductor's cross-sectional area by 10
There is no problem if 0% is converted into a superconducting phase, but it is known that in reality, various proportions of non-superconducting phases, impurity elements, and unreacted phases are included. Therefore, it is considered that one effective method for obtaining a superconducting wire with a high critical current density is to ensure a reaction of the superconducting phase as uniform as possible and close to 100%.
【0007】[0007]
【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、Bi系の酸化物超電導体を構
成する元素を含む混合原料に圧密処理と熱処理とを施し
てBi系の酸化物超電導体を形成し、この酸化物超電導
体を溶融するとともに、この溶融体に種材を接触させた
後に引き上げ処理を行なって種材に方向性溶融凝固体を
付着生成させ、次いでこの方向性溶融凝固体を粉砕し、
金属シースの内部に充填した後にスウェージング加工、
伸線加工、圧延加工またはプレス加工等により圧密し、
その後に熱処理して金属シース内部にBi系酸化物超電
導体を生成させるものである。[Means for Solving the Problems] In order to solve the above-mentioned problems, the invention according to claim 1 provides a method for producing a Bi-based oxide superconductor by subjecting a mixed raw material containing elements constituting a Bi-based oxide superconductor to consolidation treatment and heat treatment. This oxide superconductor is melted, a seed material is brought into contact with this melt, and a pulling treatment is performed to adhere and generate a directional melted solidified material on the seed material. Crushing the directional melt solidified body,
Swaging process after filling inside the metal sheath,
Consolidate by wire drawing, rolling or press processing,
Thereafter, heat treatment is performed to generate a Bi-based oxide superconductor inside the metal sheath.
【0008】請求項2記載の発明は前記課題を解決する
ために、Bi系の酸化物超電導体を構成する元素を含む
混合原料に圧密処理と熱処理とを施してBi系の酸化物
超電導体を形成し、この酸化物超電導体を部分溶融する
とともに、この部分溶融帯を移動させて酸化物超電導体
の全体を1回以上部分溶融して酸化物超電導体を帯溶融
材とするとともに、次にこの帯溶融材を粉砕し、金属シ
ースの内部に充填した後にスウェージング加工、伸線加
工、圧延加工またはプレス加工等により圧密し、その後
に熱処理して金属シース内部にBi系酸化物超電導体を
生成させるものである。[0008] In order to solve the above-mentioned problem, the invention according to claim 2 subjects a mixed raw material containing elements constituting the Bi-based oxide superconductor to consolidation treatment and heat treatment to produce a Bi-based oxide superconductor. forming the oxide superconductor, partially melting the oxide superconductor, and moving the partially melted zone to partially melt the entire oxide superconductor one or more times to turn the oxide superconductor into a melted band material, and then This molten material is crushed and filled inside the metal sheath, and then consolidated by swaging, wire drawing, rolling, or pressing, and then heat-treated to form a Bi-based oxide superconductor inside the metal sheath. It is something that generates.
【作用】種材晶を用いた方向性凝固体あるいは帯溶融に
よる部分溶融を行なった帯溶融材は結晶方位がある程度
揃った特にc軸配向性の高い結晶体であるので、これら
のものは、粉砕物にしてもBi系超電導体に特有のフレ
ーク状結晶形を維持したまま粉砕物となっている。よっ
てこの粉砕物を金属シースに充填し、スウェージング加
工、伸線加工、圧延加工またはプレス加工等により圧密
し、熱処理するならば、線材の長手方向に並んだフレー
ク状結晶を更に熱処理することによって長手方向により
配向度を高めることになる。よってこの線材は、未反応
部分の少ない、不純物の少ない結晶配向性の良好な酸化
物超電導体が得られる。また、Bi系のフレーク状の超
電導体の結晶が再度配向するので、酸化物超電導体の結
晶の粒界が磁束のピンニングセンタとなって臨界電流密
度の磁界特性の向上に寄与する可能性がある。[Function] Directional solidification using seed material crystals or band melting material that has been partially melted by band melting is a crystalline body with a certain degree of crystal orientation and particularly high c-axis orientation. Even when it is a pulverized product, it is a pulverized product that maintains the flaky crystal shape characteristic of Bi-based superconductors. Therefore, if this pulverized material is filled into a metal sheath, consolidated by swaging, wire drawing, rolling or pressing, and then heat treated, the flaky crystals arranged in the longitudinal direction of the wire can be further heat treated. The degree of orientation is increased in the longitudinal direction. Therefore, from this wire, an oxide superconductor with a small amount of unreacted portions, a small amount of impurities, and a good crystal orientation can be obtained. In addition, since the crystals of the Bi-based flaky superconductor are oriented again, the grain boundaries of the oxide superconductor crystals may become pinning centers for magnetic flux, contributing to the improvement of the magnetic field characteristics of critical current density. .
【0009】以下に本発明について更に詳しく説明する
。本発明方法を実施するには、まず、Bi系酸化物超電
導体の出発材料を用意する。出発材料として、Bi化合
物、Pb化合物、Sr化合物、Ca化合物、Cu化合物
あるいはこれらの複合酸化物を用いる。化合物としては
、各元素の酸化物、硫化物、炭酸塩、フッ化物などのい
ずれでも良い。この例で具体的に用いるのは、BiCO
3、Bi2O3、SrCO3、CaCO3、PbO、C
uOなどの粉末あるいは粒体などである。The present invention will be explained in more detail below. To carry out the method of the present invention, first, a starting material for a Bi-based oxide superconductor is prepared. As a starting material, a Bi compound, a Pb compound, a Sr compound, a Ca compound, a Cu compound, or a composite oxide thereof is used. The compound may be any of oxides, sulfides, carbonates, fluorides, etc. of each element. Specifically used in this example is BiCO
3, Bi2O3, SrCO3, CaCO3, PbO, C
It is powder or granules such as uO.
【0010】前記の各粉末を用意したならば、Bi:S
r:Ca:Cu:O=2:2:2:3、2:2:3:4
または2:2:1:2などの割合になるように、あるい
は、(BiPb)2Sr2Ca2Cu3Oxなどの組成
になるように混合して混合原料を得る。次に前記混合原
料を大気中において780〜850℃で数時間〜100
時間程度加熱し、不要成分を除去する仮焼を行なう。次
にこの仮焼物をプレス加工して圧粉体を形成する。ここ
で次に種材を用いた方向性凝固処理あるいは加熱ヒータ
を用いた帯溶融処理のいずれかを施す。[0010] Once each of the above powders has been prepared, Bi:S
r:Ca:Cu:O=2:2:2:3, 2:2:3:4
Alternatively, a mixed raw material is obtained by mixing in a ratio such as 2:2:1:2 or a composition such as (BiPb)2Sr2Ca2Cu3Ox. Next, the mixed raw materials were placed in the atmosphere at 780 to 850°C for several hours to 100°C.
Calcination is performed by heating for about an hour to remove unnecessary components. Next, this calcined product is pressed to form a green compact. Next, either a directional solidification process using a seed material or a band melting process using a heater is performed.
【0011】方向性凝固処理は、前記圧粉体を溶融させ
た溶融体に種材を浸積し、種材を一定速度で引き上げる
ことで種材に方向性溶融凝固体を付着させるものである
。ここで用いる種材は、融点が溶融体温度よりも高い金
属材料(例えばPt)や酸化物超電導体の結晶構造に類
似した結晶構造を有するMgO、SrTiO3などの小
片状の結晶体を用いても良い。帯溶融処理は、圧粉熱処
理体を加熱装置で帯状に溶融させ、帯状の帯溶融部分を
圧粉体の端部まで移動させて圧粉体の全体を一度、ある
いは複数回溶融させる処理である。[0011] In the directional solidification process, a seed material is immersed in a molten body obtained by melting the green compact, and the directional molten solidified body is attached to the seed material by pulling up the seed material at a constant speed. . The seed material used here is a metal material (for example, Pt) whose melting point is higher than the melt temperature, or a small piece-shaped crystal such as MgO or SrTiO3, which has a crystal structure similar to that of an oxide superconductor. Also good. Band melting treatment is a process in which a heat-treated powder compact is melted in a band shape using a heating device, and the melted band portion is moved to the end of the compact to melt the entire compact once or multiple times. .
【0012】次に前記方向性凝固処理あるいは帯溶融処
理を施した凝固体あるいは帯溶融体に熱処理を施す。こ
の熱処理は、820〜840℃で数時間〜100時間程
度加熱する処理である。この処理により、凝固体あるい
は帯溶融体はBi系酸化物超電導体となる。この酸化物
超電導体にあっては、Bi系酸化物超電導体に特有のフ
レーク状の結晶組織が生成し、超電導性を示すが、臨界
電流密度の面ではまだ不足がある。Next, the solidified body or band melted body subjected to the directional solidification treatment or band melting treatment is subjected to heat treatment. This heat treatment is a treatment of heating at 820 to 840° C. for several hours to about 100 hours. Through this treatment, the solidified body or the molten band becomes a Bi-based oxide superconductor. This oxide superconductor produces a flaky crystal structure unique to Bi-based oxide superconductors and exhibits superconductivity, but is still lacking in terms of critical current density.
【0013】次に前記超電導体を粉砕して圧粉して棒状
などの形状に成形した後に、この成形体を銀製などの金
属パイプに挿入し、これに伸線加工と圧延加工とプレス
加工などを適宜施して縮径し、テープ状あるいは断面円
形の線状の線材を得、次いでこれを820〜840℃で
数時間〜100時間程度加熱処理することで金属シース
の内部に酸化物超電導体が生成されたテープ状あるいは
線状の超電導線材を得ることができる。Next, the superconductor is pulverized and compacted into a rod-like shape, and then this molded body is inserted into a metal pipe made of silver or the like, and subjected to wire drawing, rolling, pressing, etc. The oxide superconductor is formed inside the metal sheath by appropriately reducing the diameter to obtain a tape-shaped or circular cross-sectional wire, and then heat-treating this at 820-840°C for several hours to 100 hours. A tape-shaped or linear superconducting wire can be obtained.
【0014】図1は前述の工程により製造されたテープ
状のBi系酸化物超電導線材の一構造例を示すものであ
る。この超電導線材10にあっては、銀製の中空のテー
プ状のシース材11の内部に酸化物超電導体からなる帯
状の導体部12が形成されている。FIG. 1 shows an example of the structure of a tape-shaped Bi-based oxide superconducting wire produced by the process described above. In this superconducting wire 10, a band-shaped conductor portion 12 made of an oxide superconductor is formed inside a hollow tape-shaped sheath material 11 made of silver.
【0015】この超電導線材10にあっては、途中の工
程において製造した超電導体のフレーク状の組織の粉砕
物を更に金属パイプに充填して加工によって圧密し、そ
れを更に熱処理して超電導体とするので、超電導体の生
成率の高い、未反応部分の少ない均一な組成の酸化物超
電導体を備えた導体部12を得ることができる。また、
方向性凝固法や帯溶融法によって結晶配向性を一度整え
た後の粉砕物をもう一度圧密して熱処理するので、金属
パイプに単に出発材料を充填した後に熱処理して得られ
る酸化物超電導線材に比較すると、より配向性の良好な
より細かい結晶の酸化物超電導体の導体部12を得るこ
とができる。更に、フレーク状の結晶が線材の長手方向
に並ぶので、超電導体の結晶粒界が磁束のピンニングセ
ンタとして作用し臨界電流密度の磁界特性が若干向上す
る。In this superconducting wire 10, the crushed flake-like structure of the superconductor produced in an intermediate step is further filled into a metal pipe, consolidated by processing, and then further heat-treated to form a superconductor. Therefore, it is possible to obtain a conductor section 12 that includes an oxide superconductor having a uniform composition with a high superconductor production rate and a small amount of unreacted portions. Also,
The pulverized material is consolidated and heat-treated once the crystal orientation has been adjusted by the directional solidification method or zone melting method, so it is compared to oxide superconducting wire obtained by simply filling a metal pipe with the starting material and then heat-treating it. Then, the conductor portion 12 of the oxide superconductor with finer crystals and better orientation can be obtained. Furthermore, since the flaky crystals are arranged in the longitudinal direction of the wire, the crystal grain boundaries of the superconductor act as pinning centers for magnetic flux, and the magnetic field characteristics of the critical current density are slightly improved.
【0016】[0016]
【実施例】(実施例1)BiCO3とSrCO3とCa
CO3とCuOの各粉末をBi2Sr2Ca2Cu3O
xの組成となるように混合し、780℃で5時間仮焼し
、粉砕した。粉砕物をラバープレスによって直径1.5
mmの棒状に圧密した。この棒状体を930℃に加熱し
て部分的溶融状態とし、この溶融体に種材を浸積して一
定速度で引き上げ、種結晶に付着一体化して凝固させた
直径0.3mmのファイバ状のBi系超電導素線を得た
。この超電導素線を780℃で100時間熱処理して臨
界温度83K、臨界電流密度4000A/cm2の超電
導体に仕上げた。その後、この超電導体をボールミルや
乳鉢によって粉砕し、細いフレーク状の粉砕物とした。[Example] (Example 1) BiCO3, SrCO3 and Ca
Each powder of CO3 and CuO is converted into Bi2Sr2Ca2Cu3O.
The mixture was mixed to have the composition x, calcined at 780°C for 5 hours, and pulverized. The crushed material was crushed into diameter 1.5 with a rubber press.
It was compacted into a mm rod shape. This rod-shaped body is heated to 930°C to partially melt it, and a seed material is immersed in this melted body and pulled up at a constant speed to form a fiber-like material with a diameter of 0.3 mm that is attached to the seed crystal and solidified. A Bi-based superconducting wire was obtained. This superconducting strand was heat-treated at 780° C. for 100 hours to produce a superconductor having a critical temperature of 83 K and a critical current density of 4000 A/cm 2 . Thereafter, this superconductor was ground into thin flakes using a ball mill or mortar.
【0017】次にこの粉砕物を直径3mmの棒状体に圧
縮成形した後、外径6mm、内径4mmの銀製パイプに
挿入し、スエージング加工と伸線加工を繰り返し施して
直径2mmの線材を得た。その後、この線材に圧延加工
とプレス加工を施した後、大気中において840℃に1
00時間加熱する熱処理を施し、厚さ0.2mm、幅2
.5mmの銀シース付きテープ状のBi系超電導線材を
得た。この超電導線材の臨界温度は83K、臨界電流密
度は8000A/cm2(77K、磁場0T)に向上し
た。Next, this pulverized product was compression-molded into a rod-shaped body with a diameter of 3 mm, and then inserted into a silver pipe with an outer diameter of 6 mm and an inner diameter of 4 mm, and swaging and wire drawing were repeatedly performed to obtain a wire rod with a diameter of 2 mm. Ta. After that, this wire rod was subjected to rolling and pressing, and then heated to 840℃ in the atmosphere.
Heat treated for 00 hours, thickness 0.2mm, width 2
.. A tape-shaped Bi-based superconducting wire with a 5 mm silver sheath was obtained. The critical temperature of this superconducting wire was improved to 83K and the critical current density to 8000A/cm2 (77K, magnetic field 0T).
【0018】また、前記超電導線材の臨界電流密度と磁
場の関係を図2に示す。図2においては比較例として、
BiCO3とSrCO3とCaCO3とCuOの各粉末
をBi2Sr2Ca2Cu3Oxの組成となるように混
合し、780℃で5時間仮焼し、粉砕した物を前記と同
等の寸法の銀製のパイプに充填した後に前記と同様に圧
密して得られたBi系の超電導線材の臨界電流密度も併
せて示した。FIG. 2 shows the relationship between the critical current density of the superconducting wire and the magnetic field. In Figure 2, as a comparative example,
BiCO3, SrCO3, CaCO3, and CuO powders were mixed to have a composition of Bi2Sr2Ca2Cu3Ox, calcined at 780°C for 5 hours, and the pulverized product was filled into a silver pipe of the same size as above, and the same as above. The critical current density of the Bi-based superconducting wire obtained by consolidation is also shown.
【0019】図2から、本発明方法によるBi系酸化物
超電導線材が比較例の超電導線材に対し高磁場において
臨界電流密度の低下割合が少ないことが判明した。なお
、比較例のBi系超電導線材は0.1Tの磁場中におい
ては、1/10程度に低下し、1Tの磁場中においては
1/100以下に低下してしまうが、本発明例の超電導
線材においては0.1Tで1/3に、1Tにおいて1/
10程度の低下に抑えることができた。得られた超電導
線材を走査電子顕微鏡(SME)により観察したところ
、比較例の超電導線材の内部のBi系超電導体部分は、
大きなフレーク状の結晶が積層された形状であったが、
本発明のものは、より小さなフレーク状の結晶がより密
に積層された形を呈していた。From FIG. 2, it has been found that the Bi-based oxide superconducting wire produced by the method of the present invention exhibits a smaller rate of decrease in critical current density in a high magnetic field than the superconducting wire of the comparative example. In addition, the Bi-based superconducting wire of the comparative example decreases to about 1/10 in a 0.1 T magnetic field, and decreases to 1/100 or less in a 1 T magnetic field, but the superconducting wire of the present invention example At 0.1T it becomes 1/3, and at 1T it becomes 1/3.
We were able to suppress the decrease to about 10%. When the obtained superconducting wire was observed using a scanning electron microscope (SME), the Bi-based superconductor portion inside the superconducting wire of the comparative example was as follows.
It was shaped like a stack of large flake-like crystals,
The one of the present invention had a shape in which smaller flake-like crystals were more densely stacked.
【0020】(実施例2)Bi2O3とSrCO3とC
aCO3とCuOとPbOの各粉末をBi2Bi1.9
Ca2.2Cu4Pb0.5Oxの組成となるように混
合して混合原料を得、これを780℃で10時間仮焼し
、粉砕した。粉砕物をラバープレスによって直径約3m
mの円柱状に圧密し、840〜870℃に10〜100
時間大気中で熱処理した。その圧密体にCO2レーザビ
ームを当てて部分溶融させ、部分的溶融状態とし、レー
ザビームを移動させながら方向性凝固体を作成した。得
られたBi系超電導体は、臨界温度84K、臨界電流密
度5000A/cm2(77K、0T)の値を示した。(Example 2) Bi2O3, SrCO3 and C
aCO3, CuO, and PbO powders in Bi2Bi1.9
A mixed raw material was obtained by mixing to have a composition of Ca2.2Cu4Pb0.5Ox, which was calcined at 780° C. for 10 hours and pulverized. The crushed material is pressed into a diameter of approximately 3m using a rubber press.
Consolidate into a cylindrical shape of m and heat at 840-870℃ for 10-100℃.
Heat treated in air for hours. The compacted body was partially melted by applying a CO2 laser beam to the solidified body, and a directional solidified body was created while moving the laser beam. The obtained Bi-based superconductor exhibited a critical temperature of 84K and a critical current density of 5000A/cm2 (77K, 0T).
【0021】その後、この超電導体をボールミルや乳鉢
によって粉砕し、ラバープレスで直径3mmの圧粉体と
した。次にこの圧粉体を外径8mm、内径4mmの銀製
パイプに挿入し、スエージング加工と伸線加工と圧延加
工とプレス加工を繰り返し施し、途中において適宜中間
熱処理(810℃、5時間)を施し、厚さ0.15mm
、幅4mmの銀テープ線材を得た。その後、このテープ
線材に、大気中において820〜840℃に10〜10
0時間加熱する熱処理を施して銀シース付きBi系テー
プ状超電導線材を得た。この超電導線材の臨界温度は8
3.5K、臨界電流密度は7500A/cm2(77K
、磁場0T)に向上した。また、この線材の0.5T(
77K)における臨界電流密度は500A/cm2とな
り、1.5倍に向上した。[0021] Thereafter, this superconductor was pulverized using a ball mill or mortar, and a green compact having a diameter of 3 mm was obtained using a rubber press. Next, this compact was inserted into a silver pipe with an outer diameter of 8 mm and an inner diameter of 4 mm, and was repeatedly subjected to swaging, wire drawing, rolling, and pressing, and was appropriately subjected to intermediate heat treatment (810°C, 5 hours). Finished, thickness 0.15mm
A silver tape wire with a width of 4 mm was obtained. Thereafter, this tape wire was heated to 820 to 840°C for 10 to 10 minutes in the atmosphere.
A Bi-based tape-shaped superconducting wire with a silver sheath was obtained by heat treatment of heating for 0 hours. The critical temperature of this superconducting wire is 8
3.5K, critical current density is 7500A/cm2 (77K
, magnetic field 0T). Also, the 0.5T (
The critical current density at 77K) was 500A/cm2, an improvement of 1.5 times.
【0022】(実施例3)Bi系の2212相用に配合
した粉末混合原料を仮焼し、約1μm程度の粉末に粉砕
した後、粒径約1〜2μmの銀粉末を重量比で5〜10
%混合した。この混合粉末をプレス成形と粉砕と熱処理
(840〜860℃、1〜100時間)を繰り返して直
径約5mmの棒状試料を得た。この棒状試料を帯溶融法
により部分溶融させ、溶融帯を移動させながら直径約3
mmの凝固ロッドを得た。熱処理を経た凝固ロッドの臨
界温度は90K、臨界電流密度は3500A/cm2(
77K、0T)を示した。(Example 3) After calcining the powder mixture raw material blended for the Bi-based 2212 phase and pulverizing it into a powder of about 1 μm, silver powder with a particle size of about 1 to 2 μm was added in a weight ratio of 5 to 2 μm. 10
% mixed. This mixed powder was repeatedly press-molded, pulverized, and heat treated (840-860°C, 1-100 hours) to obtain a rod-shaped sample with a diameter of about 5 mm. This rod-shaped sample is partially melted by the zone melting method, and while the melted zone is moved, the diameter of approximately 3
A solidified rod of mm was obtained. The critical temperature of the solidified rod after heat treatment is 90K, and the critical current density is 3500A/cm2 (
77K, 0T).
【0023】この凝固ロッドを細かく粉砕し、棒状に圧
粉した後、外径10mm、内径5mmの銀製のパイプに
挿入し、スエージング加工と伸線加工と圧延加工とプレ
ス加工を施して最終的に厚さ0.2mm、幅5mmの銀
テープ線材を得た。この線材を820〜840℃で50
時間熱処理したところ、臨界温度90K、臨界電流密度
5600A/cm2に向上したBi系超電導線材が得ら
れた。[0023] After finely pulverizing this solidified rod and compacting it into a bar shape, it is inserted into a silver pipe with an outer diameter of 10 mm and an inner diameter of 5 mm, and is subjected to swaging, wire drawing, rolling, and pressing to form the final product. A silver tape wire with a thickness of 0.2 mm and a width of 5 mm was obtained. This wire was heated to 820 to 840℃ for 50
When heat treated for a period of time, a Bi-based superconducting wire with improved critical temperature of 90 K and critical current density of 5600 A/cm2 was obtained.
【発明の効果】以上説明したように本発明によれば、種
材を用いた方向性凝固体あるいは帯溶融による部分溶融
を行なった帯溶融体を用い、結晶方位がある程度揃った
結晶体を用いるので、この結晶体の粉砕物はBi系超電
導体に特有のフレーク状結晶形を維持したまま粉砕物と
なっている。よってこの粉砕物を金属シースに充填して
圧密し熱処理するならば、圧密熱処理後もフレーク状の
結晶が線材の長手方向に容易に配向する。よってこの線
材を熱処理するならば、未反応部分の少ない、不純物の
少ない結晶配向性の良好な酸化物超電導線材が得られる
。また、Bi系のフレーク状の超電導体の結晶が配向す
るので、酸化物超電導体の結晶の粒界は磁束のピンニン
グセンタとなって臨界電流密度の磁界特性向上に寄与し
ているものと考えられる。[Effects of the Invention] As explained above, according to the present invention, a directional solidified body using a seed material or a band melted body partially melted by band melting is used, and a crystal body whose crystal orientation is uniform to some extent is used. Therefore, the pulverized product of this crystal remains a pulverized product while maintaining the flaky crystal shape characteristic of Bi-based superconductors. Therefore, if this pulverized material is filled into a metal sheath, compacted, and heat treated, the flaky crystals will be easily oriented in the longitudinal direction of the wire even after the compaction heat treatment. Therefore, if this wire is heat-treated, an oxide superconducting wire with less unreacted portions, less impurities, and good crystal orientation can be obtained. In addition, since the crystals of the Bi-based flake-like superconductor are oriented, the grain boundaries of the oxide superconductor crystals are considered to serve as pinning centers for magnetic flux, contributing to the improvement of the magnetic field characteristics of the critical current density. .
【図1】図1は本発明の一実施例の酸化物超電導線材の
断面図。FIG. 1 is a cross-sectional view of an oxide superconducting wire according to an embodiment of the present invention.
【図2】図2は実施例で得られた酸化物超電導線材の磁
場と臨界電流密度の関係を測定した結果を示すグラフで
ある。FIG. 2 is a graph showing the results of measuring the relationship between the magnetic field and critical current density of the oxide superconducting wire obtained in the example.
【図3】図3は従来方法において混合粉末を仮焼してい
る状態を示す説明図。FIG. 3 is an explanatory diagram showing a state in which mixed powder is calcined in a conventional method.
【図4】図4は従来方法において金属パイプに仮焼粉末
を充填する状態を示す説明図。FIG. 4 is an explanatory diagram showing a state in which a metal pipe is filled with calcined powder in a conventional method.
【図5】図5は従来方法において伸線している状態を示
す説明図。FIG. 5 is an explanatory diagram showing a state in which wire is drawn in a conventional method.
【図6】図6は従来方法においてロールで圧延している
状態を示す説明図。FIG. 6 is an explanatory diagram showing a state of rolling with rolls in a conventional method.
【図7】図7は従来方法において最終熱処理状態を示す
説明図。FIG. 7 is an explanatory diagram showing a final heat treatment state in a conventional method.
【図8】図8は従来の酸化物超電導線の距離ごとの臨界
電流密度の測定結果を示すグラフである。FIG. 8 is a graph showing measurement results of critical current density for each distance of a conventional oxide superconducting wire.
10・・・超電導線材、11・・・シース材、12・・
・超電導部10...Superconducting wire, 11...Sheath material, 12...
・Superconducting part
Claims (2)
含む混合原料に圧密処理と熱処理とを施してBi系の酸
化物超電導体を形成し、この酸化物超電導体を溶融する
とともに、この溶融体に種材を接触させた後に引き上げ
処理を行なって種材に方向性溶融凝固体を付着生成させ
、次いでこの方向性溶融凝固体を粉砕し、金属シースの
内部に充填した後に加工によって圧密し、その後に熱処
理して金属シース内部にBi系酸化物超電導体を生成さ
せることを特徴とするBi系酸化物超電導線材の製造方
法。Claim 1: Forming a Bi-based oxide superconductor by subjecting a mixed raw material containing elements constituting the Bi-based oxide superconductor to consolidation treatment and heat treatment, and melting the oxide superconductor; After bringing the seed material into contact with this molten material, a pulling process is performed to form a directional molten solidified material that adheres to the seed material, and then this directional molten solidified material is crushed and filled into the inside of a metal sheath, after which it is processed. A method for manufacturing a Bi-based oxide superconducting wire, which comprises compacting and then heat-treating to produce a Bi-based oxide superconductor inside a metal sheath.
含む混合原料に圧密処理と熱処理とを施してBi系の酸
化物超電導体を形成し、この酸化物超電導体を部分溶融
するとともに、この部分溶融帯体を移動させて酸化物超
電導体の全体を1回以上溶融して帯溶融材を形成し、次
にこれを粉砕し、金属シースの内部に充填した後に加工
によって圧密し、その後に熱処理して金属シース内部に
Bi系酸化物超電導体を生成させることを特徴とするB
i系酸化物超電導線材の製造方法。2. Forming a Bi-based oxide superconductor by subjecting a raw material mixture containing elements constituting the Bi-based oxide superconductor to consolidation treatment and heat treatment, and partially melting the oxide superconductor. , move this partially melted band body to melt the entire oxide superconductor one or more times to form a band melted material, which is then crushed, filled inside a metal sheath, and then consolidated by processing, B, characterized in that a Bi-based oxide superconductor is generated inside the metal sheath by subsequent heat treatment.
A method for producing an i-based oxide superconducting wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3122624A JP3048404B2 (en) | 1991-04-25 | 1991-04-25 | Method for producing Bi-based oxide superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3122624A JP3048404B2 (en) | 1991-04-25 | 1991-04-25 | Method for producing Bi-based oxide superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04328215A true JPH04328215A (en) | 1992-11-17 |
JP3048404B2 JP3048404B2 (en) | 2000-06-05 |
Family
ID=14840573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3122624A Expired - Fee Related JP3048404B2 (en) | 1991-04-25 | 1991-04-25 | Method for producing Bi-based oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3048404B2 (en) |
-
1991
- 1991-04-25 JP JP3122624A patent/JP3048404B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3048404B2 (en) | 2000-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3074753B2 (en) | Method for producing bismuth-based oxide superconductor | |
KR910007385B1 (en) | Flaky oxide superconductor and its manufacturing method | |
JP3008453B2 (en) | Method for manufacturing bismuth-based superconductor | |
EP0799166A1 (en) | Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process | |
EP0397943B1 (en) | Method of producing a superconductive oxide cable and wire | |
DE3852971T2 (en) | Superconducting material and process for its manufacture. | |
DE3855230T2 (en) | Method of manufacturing a superconducting article | |
JP3048404B2 (en) | Method for producing Bi-based oxide superconducting wire | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JP2622123B2 (en) | Method for producing flake-like oxide superconductor | |
EP0659704B1 (en) | Method of manufacturing oxide superconductor | |
JP3721392B2 (en) | Manufacturing method of high-temperature superconducting wire | |
JP2966442B2 (en) | Bi-based oxide superconductor and method for producing wire thereof | |
JP3287028B2 (en) | Tl, Pb-based oxide superconducting material and method for producing the same | |
JP2590157B2 (en) | Manufacturing method of superconductor wire | |
JP3086237B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH01241713A (en) | Manufacture of oxide superconductor wire | |
JPH06223650A (en) | Manufacture of bi oxide superconducting wire | |
JP3450488B2 (en) | Boron-containing metal oxide superconducting wire | |
JP2583288B2 (en) | Method for producing flake-like oxide superconductor | |
DE3856529T2 (en) | Process for producing a superconducting elongated body made of oxide composite material | |
JP2004296253A (en) | Manufacturing method of bismuth based oxide superconducting wire rod | |
JPH04292814A (en) | Manufacture of bismuth-based oxide superconductive wire | |
DE3804601A1 (en) | Process for producing an elongated body using an oxide ceramic superconductor material | |
JPH01128317A (en) | Manufacture of superconductive wire material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000222 |
|
LAPS | Cancellation because of no payment of annual fees |