JPH0432783B2 - - Google Patents

Info

Publication number
JPH0432783B2
JPH0432783B2 JP18885687A JP18885687A JPH0432783B2 JP H0432783 B2 JPH0432783 B2 JP H0432783B2 JP 18885687 A JP18885687 A JP 18885687A JP 18885687 A JP18885687 A JP 18885687A JP H0432783 B2 JPH0432783 B2 JP H0432783B2
Authority
JP
Japan
Prior art keywords
parts
oxide
temperature
producing
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18885687A
Other languages
Japanese (ja)
Other versions
JPS6433032A (en
Inventor
Motoshige Iwamatsu
Saneji Kaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferrotec Material Technologies Corp
Original Assignee
Sumikin Photon Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Photon Ceramics Co Ltd filed Critical Sumikin Photon Ceramics Co Ltd
Priority to JP18885687A priority Critical patent/JPS6433032A/en
Priority to FR878712628A priority patent/FR2603883B1/en
Priority to DE3730637A priority patent/DE3730637C2/en
Priority to US07/095,458 priority patent/US4859634A/en
Publication of JPS6433032A publication Critical patent/JPS6433032A/en
Publication of JPH0432783B2 publication Critical patent/JPH0432783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 産業上の利用分野 本発明は、機器部品等を製作するに適する、機
械加工可能なガラス質セラミツクスの製造法に関
する。 従来の技術 電気機器の部品などに使用されるセラミツクス
材料として機械加工可能な結晶化ガラス質のセラ
ミツクスなどが用いられることが多い。かかるガ
ラス質セラミツクスには、たとえば特公昭54−
34775号に開示された、フツ素金雲母固溶体の結
晶を少くも50容量%分散含有しているガラス−セ
ラミツクス物品が知られている。このガラス−セ
ラミツクスは、原料配合物を溶融してガラス化し
たのちフツ素金雲母の結晶を析出させたもので、
微細な結晶を無秩序に含んでおり、気密性が高
く、切削等の機械加工が容易であるが、特にガラ
ス体を製造する工程でのクラツクの発生が多く収
率が低いという問題があつた。 また、特開昭61−72654号には、陶石を主原料
とするフツ素含有混合物を溶融して得たガラス化
成形物と、気化しやすいフツ素化合物とを密閉容
器中で1100〜1360℃で加熱し、ガラス成形物にフ
ツ素雲母を結晶化する方法が開示されている。こ
の方法によれば、短時間で結晶化ガラスセラミツ
クスが得られるが、ガラス体製造工程でのクラツ
ク発生および製品の強度はあまり改良されなかつ
た。 解決しようとする問題点 前述のような従来技術におけるフツ素金雲母含
有ガラス質セラミツクスは、切削加工が可能であ
り適当な機械的強度を有するものであつた。そし
て小型の製品を製造する際にはそれほど問題はな
いが、大型の製品(たとえば15cm×15cm×3cm以
上または同等形状以上のサイズのもの。)を製造
しようとするとガラス化成形物(以下ガラス体と
いう。)にクラツクが発生し易く、収率が低いと
いう問題があつた。さらに、強度も大きいものが
望まれるが、強度が大となるような原料配合比と
製造条件を選択すると切削性が低下するという問
題があつた。 そこで本発明は、従来技術における上述のよう
な問題点を克服して、切削加工性が良好であつて
且つ充分な機械的強度を有する大型のガラス質セ
ラミツクスを高収率で製造する方法を提供しよう
とするものである。 〔発明の構成〕 問題点を解決するための手段 前述のような本発明の目的は、陶石、フツ化マ
グネシウム、酸化マグネシウムを生成し得る化合
物、酸化カリウムを生成し得る化合物、および酸
化ホウ素を生成し得る化合物に、アルカリ金属、
アルカリ土類金属、および鉛から選ばれた少くと
も1種の金属の酸化物と二酸化ジルコニウムとの
複合酸化物を配合して、強熱減量分を除いた合計
の重量100部中に含まれる元素の含量が、それぞ
れ、ケイ素:16〜25部、アルミニウム:6〜9
部、カリウム:5.5〜12部、マグネシウム:4.7〜
15部、ジルコニウム:0.7〜5.0部、ホウ素:0.7〜
3.2部、フツ素:3.0〜9.3部、これらの元素以外の
金属元素:7.0部以下、および酸素のバランス量、
の範囲内にある配合物を得る工程と、該配合物を
加熱溶融する工程と、前記溶融工程で得られた溶
融液を生成するガラス体の転移温度より少なくと
も50℃高い温度から該温度より少なくとも70℃低
い温度までの間を100℃/hr以下の冷却速度で除
冷してガラス体を得る工程と、蓋付容器中で該ガ
ラス体を1100℃を超え1360℃までの温度で熱処理
する工程とからなるガラス質セラミツクスの製造
方法によつて達成される。 すなわち、本発明によつて得られるガラス質セ
ラミツクスは、原料成分として陶石、フツ化マグ
ネシウム、酸化マグネシウム、酸化カリウム、お
よび酸化ホウ素をそれぞれ生成し得る適宜の化合
物、ならびにアルカリ金属、アルカリ土類金属、
および鉛から選ばれた少くとも1種の金属の酸化
の二酸化ジルコニウムとの複合酸化物を配合して
製造するものである。 陶石はシリカ、アルミナおよび酸化カリウムか
らなる複合酸化物を主成分とする鉱物であるが、
できるだけ高純度のもので夾雑物を含まないもの
を使用することが望ましい。かかる各成分を含ん
で複合した構造を有する陶石を用いることによ
り、溶融が早く微細な結晶を容易に生成すること
が可能となるが、その使用量は、配合物の強熱減
量分を除いた合計の実質的重量分(以下単に配合
物という。)100部に対してアルミニウムの含量が
6〜9部の範囲であり、かつケイ素の含量が、他
の原料に含まれるケイ素分を加えて16〜25部の範
囲であるのが適当である。この範囲とすることに
より、切削加工が容易となるような適切な結晶化
が達成される。 フツ化マグネシウムは配合物100部に対してフ
ツ素が3.0〜9.3部となるように配合され、また酸
化マグネシウムを生成し得る化合物は酸化マグネ
シウムそれ自身またはたとえば水酸化マグネシウ
ムなどの加熱により分解して酸化マグネシウムを
生成するマグネシウム化合物を含み、フツ化マグ
ネシウムと合わせてマグネシウムが同様に4.7〜
15部となるように使用するのが好ましい。この範
囲とすることにより、適切な結晶化度が得られ
る。 酸化カリウムを生成し得るカリウム化合物とし
ては、加熱により分解して酸化カリウムを生成す
る化合物たとえば炭酸カリウムやホウ酸カリウム
などを用いることができるが、配合物の組成に大
巾な影響を及ぼさない限り他のカリウム化合物を
用いても差支えない。カリウム化合物の使用量
は、他の原料中に含まれる酸化カリウムと合計し
て配合物100部中のカリウム含量が5.5〜12部であ
るのが好ましい。これは溶融を容易にするととも
に、適切な結晶化度を与えるために必要な範囲で
ある。酸化ホウ素を生成し得る化合物としては、
加熱によつて分解して酸化ホウ素を生成する化合
物たとえばホウ酸や、ホウ酸カリウムなどを用い
ることができるが、原料配合物の組成に本質的な
影響を及ぼさない限り他のホウ素化合物を用いて
もよい。これらのホウ素化合物の使用量は、配合
物100部中にホウ素として0.7〜3.2部であるのが
好ましい。これは溶融を容易にするとともに、好
ましいガラス形成性を与える範囲である。 アルカリ金属、アルカリ土類金属、および鉛か
ら選ばれた少くとも1種の金属の酸化物と二酸化
ジルコニウムとの複合酸化物は、これらの金属の
酸化物、水酸化物、または炭酸塩と酸化ジルコニ
ウムを溶融して得られたジルコニウム酸塩たとえ
ばジルコニウム酸リチウム、ジルコニウム酸カリ
ウム、ジルコニウム酸カルシウム、ジルコニウム
酸バリウム、ジルコニウム酸鉛などが用いられ
る。これらの複合酸化物構造を有しない単なるジ
ルコニアまたはジルコニアと他の金属酸化物との
混合物を使用した場合には、ジルコニアが殆んど
または僅かしか溶解せずに残るため本発明の目的
とする効果が発揮されない。 本発明においては、複合酸化物形態のジルコニ
ウム化合物を配合することにより、はじめて迅速
に溶融して均一なガラスが得られ、大型ガラス体
製造工程におけるワレ発生率が大巾に低下するの
みならず、熱処理に際してフツ素金雲母とジルコ
ニアとの2種類の均一で微細な結晶を容易に生成
できるようになるものであり、機械的強度と同時
に切削性を高めるのに有効である。 このような複合酸化物形態のジルコニウム化合
物の使用量は、配合物100部中にジルコニウムの
含量が0.7〜5.0部がよい。ジルコニウムの含量が
0.7部以下では充分な効果が得られず、5.0部を超
えると溶融物中に溶解せずに残り、品質に悪影響
を及ぼすので好ましくない。 なお、複合酸化物中に含まれるアルカリ金属や
アルカリ土類金属その他の金属などで、特に規定
されていないものについては、得られるガラス質
セラミツクスの性質を損なわない限りその合計量
が7部まで存在して構わないが、一般に7部を超
えると切削性が損われるなどの問題が生ずるので
好ましくない。 このような各成分を含む原料配合物は充分に粉
砕混合されたのち、高温炉中で溶融されてガラス
転移温度がおよそ600〜680℃の範囲内にあるガラ
ス溶融液が得られる。この溶融液はモールド内に
注入され、たとえば730℃すなわち前記の転移温
度の範囲より少くとも50℃高い温度から、530℃
すなわち前記の転移温度の範囲により少くとも70
℃低い温度までの間では、1時間当り100℃以下
の冷却速度となるようにして除々に冷却されて固
化し、ガラス体となる。この際の冷却速度が大き
すぎるときは、得られたガラス体の内部歪が増大
し、大型のガラス体を得ようとするとクラツクな
どが生じて収率が低下する。また、冷却速度が小
さければガラス体の品質や収率などに問題はない
が、生産性が低下するから好ましくない。 このようにして得たガラス体は、容器中で1100
〜1360℃で熱処理される。この際、容器が開放さ
れているとフツ素化合物の蒸気が揮散するから容
器には蓋を施すのが必要で、このようにすること
によりガラス体の表面からのフツ素化合物の揮散
を最小限にすることができる。なお容器中に揮発
性のフツ素化合物、たとえばフツ化マグネシウム
などを小量入れておくことにより、ガラス体から
のフツ素化合物の揮散が抑制される。こうして容
器中で熱処理することにより、ガラスマトリツク
ス中にフツ素金雲母とジルコニアの微細結晶が均
一に分散生成し、性質のすぐれたガラス質セラミ
ツクスが得られる。 作 用 前述のような本発明の方法に従えば、従来技術
の問題点であつた特に大形のガラス体製造工程に
おけるワレ発生が防止されて、高い収率をあげる
ことかできるほか、製品の機械的強度と切削加工
性との両者の改善が達成される。 実施例 1 表1の如き化学組成を有する精製陶石、フツ化
マグネシウム、酸化マグネシウム、炭酸カリウ
ム、ホウ酸、およびジルコニウム含有複合酸化物
としてそれぞれジルコン酸リチウム、ジルコン酸
カリウム、ジルコン酸カルシウム、ジルコン酸バ
リウム、ジルコン酸鉛を用い、またジルコニウム
含有複合酸化物の代りにジルコニアを用いるなど
して、それぞれ表2に示すような組成割合の原料
配合物を得た。 表1 成 分 重量% 灼熱減量 3.41 SiO2 66.86 Al2O3 23.21 K2O 5.55 不純物 0.97 原料配合物はボールミルで1時間充分に混合
し、ルツボ炉に装入して1450℃で溶融させた。こ
れを25cm×25cm×4cmの角型黒鉛製モールド中に
注入し、750℃から500℃に至るまで5時間かけて
冷却し、以後はほぼ室温まで放冷してガラス体を
得た。 このようなガラス体のガラス転移点およびワレ
率を調べた結果を同じく表2に示す。 次に、アルミナ製容器の中に、フツ化マグネシ
ウムを入れたルツボと並べて蒸気のガラス成形体
を収容し、同じくアルミナ製の蓋を載置して電気
炉中に入れ、4時間かけて1150℃まで昇温し、そ
の温度で3時間保持してから徐冷した。 得られたガラス質セラミツクスについて曲げ強
さおよび圧縮強さを測定し、また切削加工性を高
速旋盤を用いて試験した。これらの結果を同じく
表2に示す。
[Object of the Invention] Industrial Application Field The present invention relates to a method for producing machinable vitreous ceramics suitable for producing equipment parts and the like. 2. Description of the Related Art Ceramic materials such as glass-ceramic ceramics, which can be machined, are often used for parts of electrical equipment. Such vitreous ceramics include, for example,
Glass-ceramic articles are known which contain crystals of a fluorophlogopite solid solution dispersed at least 50% by volume, as disclosed in US Pat. This glass-ceramics is made by melting and vitrifying a raw material mixture and then precipitating fluorine phlogopite crystals.
It contains fine crystals in a disordered manner, has high airtightness, and is easy to machine such as cutting, but it has the problem of low yields due to the occurrence of many cracks, especially during the process of manufacturing glass bodies. Furthermore, in JP-A-61-72654, a vitrified molded product obtained by melting a fluorine-containing mixture whose main raw material is pottery stone and an easily vaporized fluorine compound are heated at 1100 to 1360 in a closed container. A method of crystallizing fluorine mica in a glass molded article by heating at .degree. C. is disclosed. According to this method, crystallized glass ceramics can be obtained in a short time, but the occurrence of cracks in the glass body manufacturing process and the strength of the product are not significantly improved. Problems to be Solved The fluorine-phlogopite-containing vitreous ceramics in the prior art as described above can be cut and have appropriate mechanical strength. There is not much of a problem when manufacturing small products, but if you try to manufacture large products (for example, 15 cm x 15 cm x 3 cm or more or equivalent size or more), vitrified molded products (hereinafter referred to as glass objects) ) had problems in that cracks were likely to occur and the yield was low. Furthermore, although a material with high strength is desired, there is a problem in that machinability deteriorates when raw material blending ratios and manufacturing conditions are selected that result in high strength. Therefore, the present invention overcomes the above-mentioned problems in the prior art and provides a method for producing large-sized vitreous ceramics with good machinability and sufficient mechanical strength at a high yield. This is what I am trying to do. [Structure of the Invention] Means for Solving the Problems The object of the present invention as described above is to provide a compound capable of producing chinastone, magnesium fluoride, magnesium oxide, a compound capable of producing potassium oxide, and boron oxide. Compounds that can be generated include alkali metals,
Elements contained in 100 parts of the total weight excluding ignition loss by blending a composite oxide of at least one metal oxide selected from alkaline earth metals and lead with zirconium dioxide. The content of silicon: 16 to 25 parts, aluminum: 6 to 9 parts, respectively.
parts, potassium: 5.5 to 12 parts, magnesium: 4.7 to
15 parts, zirconium: 0.7 to 5.0 parts, boron: 0.7 to
3.2 parts, fluorine: 3.0 to 9.3 parts, metal elements other than these elements: 7.0 parts or less, and the balance amount of oxygen,
a step of heating and melting said compound within a range of from at least 50° C. above the transition temperature of the glass body forming the melt obtained in said melting step to at least at least above said temperature. A step of obtaining a glass body by gradually cooling the glass body at a cooling rate of 100°C/hr or less to a temperature lower than 70°C, and a step of heat-treating the glass body at a temperature exceeding 1100°C and up to 1360°C in a container with a lid. This is achieved by a method for manufacturing vitreous ceramics comprising: That is, the vitreous ceramics obtained by the present invention contains suitable compounds capable of producing china stone, magnesium fluoride, magnesium oxide, potassium oxide, and boron oxide, respectively, as raw material components, and alkali metals and alkaline earth metals. ,
It is manufactured by blending a composite oxide of at least one metal selected from lead and zirconium dioxide. Pottery stone is a mineral whose main component is a complex oxide consisting of silica, alumina, and potassium oxide.
It is desirable to use one that is as pure as possible and does not contain any impurities. By using pottery stone that has a composite structure containing each of these components, it is possible to melt quickly and easily generate fine crystals, but the amount used is limited, excluding the loss on ignition of the compound. The aluminum content is in the range of 6 to 9 parts with respect to 100 parts of the total substantial weight (hereinafter simply referred to as the blend), and the silicon content is in the range of 6 to 9 parts, and the silicon content is greater than the silicon content contained in other raw materials. A range of 16 to 25 parts is suitable. By setting it within this range, appropriate crystallization that facilitates cutting can be achieved. Magnesium fluoride is blended so that the amount of fluorine is 3.0 to 9.3 parts per 100 parts of the compound, and compounds that can produce magnesium oxide are either magnesium oxide itself or magnesium hydroxide decomposed by heating. Contains a magnesium compound that produces magnesium oxide, and together with magnesium fluoride, magnesium is also 4.7 ~
It is preferable to use 15 parts. By setting it as this range, an appropriate degree of crystallinity can be obtained. As the potassium compound that can generate potassium oxide, compounds that can be decomposed to generate potassium oxide by heating, such as potassium carbonate and potassium borate, can be used, but as long as they do not significantly affect the composition of the formulation. Other potassium compounds may also be used. The amount of potassium compound used is preferably such that the potassium content in total with potassium oxide contained in other raw materials is 5.5 to 12 parts per 100 parts of the formulation. This is the range necessary to facilitate melting and provide adequate crystallinity. Compounds that can generate boron oxide include:
Compounds that decompose to produce boron oxide when heated, such as boric acid and potassium borate, can be used, but other boron compounds may not be used as long as they do not essentially affect the composition of the raw material mixture. Good too. The amount of these boron compounds used is preferably 0.7 to 3.2 parts of boron per 100 parts of the formulation. This is a range that facilitates melting and provides favorable glass forming properties. A composite oxide of zirconium dioxide and an oxide of at least one metal selected from alkali metals, alkaline earth metals, and lead is a composite oxide of zirconium dioxide and oxides, hydroxides, or carbonates of these metals. Zirconate salts obtained by melting zirconate, such as lithium zirconate, potassium zirconate, calcium zirconate, barium zirconate, and lead zirconate, are used. When using simple zirconia without these composite oxide structures or a mixture of zirconia and other metal oxides, most or only a small amount of zirconia remains undissolved, so that the desired effect of the present invention cannot be achieved. is not demonstrated. In the present invention, by blending a zirconium compound in the form of a composite oxide, it is possible to quickly melt and obtain a uniform glass, which not only greatly reduces the cracking rate in the manufacturing process of large glass bodies, but also During heat treatment, two types of uniform, fine crystals, fluorine phlogopite and zirconia, can be easily generated, and it is effective in increasing mechanical strength and machinability at the same time. The amount of the zirconium compound in the form of a complex oxide to be used is preferably 0.7 to 5.0 parts per 100 parts of the composition. Zirconium content
If it is less than 0.7 parts, a sufficient effect cannot be obtained, and if it exceeds 5.0 parts, it remains undissolved in the melt, which has an adverse effect on quality, which is not preferable. Furthermore, regarding alkali metals, alkaline earth metals, and other metals contained in the composite oxide, which are not specifically specified, the total amount thereof may be up to 7 parts as long as the properties of the resulting vitreous ceramics are not impaired. However, in general, if it exceeds 7 parts, problems such as impaired machinability occur, so it is not preferable. After the raw material mixture containing each of these components is sufficiently ground and mixed, it is melted in a high temperature furnace to obtain a glass melt having a glass transition temperature within the range of approximately 600 to 680°C. This melt is injected into the mold from a temperature of, for example, 730°C, i.e. at least 50°C above the aforementioned transition temperature range,
i.e. at least 70
When the temperature is lower than 100°C, the material is gradually cooled and solidified at a cooling rate of 100°C or less per hour to form a glass body. If the cooling rate at this time is too high, the internal strain of the obtained glass body will increase, and if an attempt is made to obtain a large glass body, cracks will occur and the yield will decrease. Furthermore, if the cooling rate is low, there will be no problem with the quality of the glass body or the yield, but it is not preferable because productivity will decrease. The glass body thus obtained was heated to 1100 mL in a container.
Heat treated at ~1360℃. At this time, if the container is open, the vapor of the fluorine compound will volatilize, so it is necessary to put a lid on the container. By doing this, the volatilization of the fluorine compound from the surface of the glass body can be minimized. It can be done. Note that by placing a small amount of a volatile fluorine compound, such as magnesium fluoride, in the container, volatilization of the fluorine compound from the glass body is suppressed. By heat-treating in the container in this manner, fine crystals of fluorine phlogopite and zirconia are uniformly dispersed and produced in the glass matrix, resulting in a glassy ceramic with excellent properties. Effects According to the method of the present invention as described above, it is possible to prevent the occurrence of cracking, which was a problem in the prior art, especially in the process of manufacturing large glass bodies, and not only to increase the yield, but also to improve the quality of the product. Improvements in both mechanical strength and machinability are achieved. Example 1 Refined chinastone having the chemical composition as shown in Table 1, magnesium fluoride, magnesium oxide, potassium carbonate, boric acid, and zirconium-containing composite oxides such as lithium zirconate, potassium zirconate, calcium zirconate, and zirconate, respectively. By using barium and lead zirconate, and by using zirconia instead of the zirconium-containing composite oxide, raw material mixtures having the composition ratios shown in Table 2 were obtained. Table 1 Components Weight % Loss on ignition 3.41 SiO 2 66.86 Al 2 O 3 23.21 K 2 O 5.55 Impurities 0.97 The raw material mixture was thoroughly mixed in a ball mill for 1 hour, charged into a crucible furnace, and melted at 1450°C. This was poured into a 25 cm x 25 cm x 4 cm square graphite mold, cooled from 750°C to 500°C over 5 hours, and then allowed to cool to approximately room temperature to obtain a glass body. Table 2 also shows the results of examining the glass transition point and cracking rate of such glass bodies. Next, the steam glass molded body was placed in an alumina container alongside a crucible containing magnesium fluoride, and an alumina lid was placed on it and placed in an electric furnace, where it was heated to 1150°C for 4 hours. The mixture was heated to a temperature of 100.degree. C., maintained at that temperature for 3 hours, and then slowly cooled. The bending strength and compressive strength of the obtained vitreous ceramics were measured, and the machinability was tested using a high-speed lathe. These results are also shown in Table 2.

【表】【table】

【表】 (1) 対照例 (2) 対照例(特公昭54−34775号の方法による)。
K2CO3およびH3BO3の代りに、それぞれK2O
およびB2O3の含量を示した。 (3) 比熱法により測定。誤差±10℃。 (4) 25cm×25cmの面積のガラス体を成形して、ク
ラツク発生のために最低2cm×20cmの面積を有
するガラス体が得られない場合をワレとし、生
産個数に対するワレ発生個数を表示。 (5) 円柱形に整形した製品を、超硬工具(K種)
を用いて旋盤で切削して工具の摩耗を顕微鏡に
より観察し、摩耗の程度により5段階で評価。 良:1→不良:5 実施例 2 実施例1における試験番号12および13の配合に
従つて溶融ガラスを製造し、次いで、ガラス化条
件および結晶化条件を種々変更したほかは実施例
1におけると同様にして、ガラス質セラミツクス
を製造した。得られた製品の曲げ強さ、圧縮強さ
および切削加工性についての試験結果を合せて表
3に示す。
[Table] (1) Control example (2) Control example (according to the method of Japanese Patent Publication No. 54-34775).
K2O instead of K2CO3 and H3BO3 , respectively
and the content of B2O3 . (3) Measured by specific heat method. Error ±10℃. (4) If a glass body with an area of 25cm x 25cm is molded and a glass body with an area of at least 2cm x 20cm cannot be obtained due to the occurrence of cracks, it is considered cracked, and the number of cracked pieces is indicated based on the number of pieces produced. (5) The product shaped into a cylinder is cut into a carbide tool (K type).
The tool was cut using a lathe and the wear of the tool was observed using a microscope, and the degree of wear was evaluated on a five-point scale. Good: 1 → Bad: 5 Example 2 Molten glass was produced according to the formulations of test numbers 12 and 13 in Example 1, and then the same procedure as in Example 1 was made, except that the vitrification conditions and crystallization conditions were variously changed. Glassy ceramics were produced in the same manner. Table 3 shows the test results for the bending strength, compressive strength, and machinability of the obtained product.

〔発明の効果〕〔Effect of the invention〕

本発明のガラス質セラミツクスの製造方法は、
特定原料を特定量配合し、特定条件でガラス体を
形成したのち特定条件で結晶化させるもので、特
に大型ガラス体製造時のワレ率を大巾に低下させ
ることができるとともに、物理的強度と切削性が
共に良好であつて均一性が高く欠陥のない大型成
形物を高収率で得ることができる特長を有する。
The method for producing vitreous ceramics of the present invention includes:
By blending specific amounts of specific raw materials, forming a glass body under specific conditions, and then crystallizing it under specific conditions, it is possible to significantly reduce the cracking rate, especially when manufacturing large glass bodies, and improve physical strength. It has the advantage of being able to obtain large molded products with good machinability, high uniformity, and no defects at a high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 陶石、フツ化マグネシウム、酸化マグネシウ
ムを生成し得る化合物、酸化カリウムを生成し得
る化合物、および酸化ホウ素を生成し得る化合物
に、アルカリ金属、アルカリ土類金属、および鉛
から選ばれた少くとも1種の金属の酸化物と二酸
化ジルコニウムとの複合酸化物を配合して、強熱
減量分を除いた合計の重量100部中に含まれる元
素の含量が、それぞれ、ケイ素:16〜25部、アル
ミニウム:6〜9部、カリウム:5.5〜12部、マ
グネシウム:4.7〜15部、ジルコニウム:0.7〜5.0
部、ホウ素:0.7〜3.2部、フツ素:3.0〜9.3部、
これらの元素以外の金属元素:7.0部以下、およ
び酸素のバランス量、の範囲内にある配合物を得
る工程と、該配合物を加熱溶融する工程と、前記
溶融工程で得られた溶融液を生成するガラス体の
転移温度より少なくとも50℃高い温度から該温度
より少なくとも70℃低い温度までの間を100℃/
hr以下の冷却速度で徐冷してガラス体を得る工程
と、蓋付容器中で該ガラス体を1100℃を超え1360
℃までの温度で熱処理する工程と、からなるガラ
ス質セラミツクスの製造方法。
1 At least one selected from alkali metals, alkaline earth metals, and lead is added to chinastone, magnesium fluoride, compounds capable of producing magnesium oxide, compounds capable of producing potassium oxide, and compounds capable of producing boron oxide. When a composite oxide of one metal oxide and zirconium dioxide is blended, the content of the elements contained in 100 parts of the total weight excluding ignition loss is 16 to 25 parts silicon, respectively. Aluminum: 6 to 9 parts, Potassium: 5.5 to 12 parts, Magnesium: 4.7 to 15 parts, Zirconium: 0.7 to 5.0
parts, boron: 0.7 to 3.2 parts, fluorine: 3.0 to 9.3 parts,
A step of obtaining a compound containing 7.0 parts or less of metallic elements other than these elements and a balanced amount of oxygen, a step of heating and melting the compound, and a step of melting the molten liquid obtained in the melting step. 100°C/100°C between a temperature at least 50°C higher than the transition temperature of the glass body to be formed and a temperature at least 70°C lower than said temperature.
a step of obtaining a glass body by slow cooling at a cooling rate of less than hr;
A method for producing vitreous ceramics, comprising a step of heat treatment at temperatures up to ℃.
JP18885687A 1986-09-12 1987-07-30 Production of glassy ceramics Granted JPS6433032A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18885687A JPS6433032A (en) 1987-07-30 1987-07-30 Production of glassy ceramics
FR878712628A FR2603883B1 (en) 1986-09-12 1987-09-11 PROCESS FOR PRODUCING VITRO-CERAMICS
DE3730637A DE3730637C2 (en) 1986-09-12 1987-09-11 Process for producing a glass ceramic
US07/095,458 US4859634A (en) 1986-09-12 1987-09-11 Process for production of vitreous ceramics and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18885687A JPS6433032A (en) 1987-07-30 1987-07-30 Production of glassy ceramics

Publications (2)

Publication Number Publication Date
JPS6433032A JPS6433032A (en) 1989-02-02
JPH0432783B2 true JPH0432783B2 (en) 1992-06-01

Family

ID=16231050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18885687A Granted JPS6433032A (en) 1986-09-12 1987-07-30 Production of glassy ceramics

Country Status (1)

Country Link
JP (1) JPS6433032A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582028B2 (en) * 2006-03-13 2010-11-17 石川県 Method for producing free-cutting glass ceramics
CN110066110B (en) * 2019-04-30 2022-05-24 武汉龙族药号生物医药科技有限公司 Method for preparing ceramic-like leakage-proof glass bottle body and ceramic-like leakage-proof glass bottle

Also Published As

Publication number Publication date
JPS6433032A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
JP2648673B2 (en) Glass ceramic products
EP0222478B1 (en) Glass-ceramics containing cristobalite and potassium fluorrichterite
US3275493A (en) Glass body having surface crystalline layer thereon and method of making it
US3428513A (en) Strengthened crystalline article and method of making the same
US4097295A (en) Silica-alumina-nitrogen containing glasses for production of glass-ceramics
GB1593202A (en) Method of making a cellular body from a high silica borosilicate composition
JPS581056B2 (en) Glass ceramics
JPS6159257B2 (en)
US4070198A (en) SiO2 -Al2 O3 -N glass for production of oxynitride glass-ceramics
US4186021A (en) Oxynitride glass-ceramics
US4222760A (en) Preparation of oxynitride glass-ceramics
US3899340A (en) High elastic modulus glass-ceramic articles
JPH0432783B2 (en)
US3834911A (en) Glass composition and method of making
DE3925486A1 (en) EARTH ALKALIALUMINOBORATE GLASS CERAMICS
JPH0432027B2 (en)
US3325265A (en) Method of making synthetic mica bodies
US4859634A (en) Process for production of vitreous ceramics and product thereof
JP2021183549A (en) Glass ceramics
JP3925077B2 (en) GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION FOR GLASS CERAMIC
US4141739A (en) Oxynitride glass-ceramics
US3338692A (en) Method of making synthetic mica and ceramoplastic materials
JPS6345148A (en) Production of crystallized glass of precipitated needle-like crystal having mechanical processing property
US7947214B1 (en) Process and product for making ceramic materials for semiconductor doping
JPS6172654A (en) Preparation of fluorine mica glass ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees