JPH0432027B2 - - Google Patents

Info

Publication number
JPH0432027B2
JPH0432027B2 JP61214047A JP21404786A JPH0432027B2 JP H0432027 B2 JPH0432027 B2 JP H0432027B2 JP 61214047 A JP61214047 A JP 61214047A JP 21404786 A JP21404786 A JP 21404786A JP H0432027 B2 JPH0432027 B2 JP H0432027B2
Authority
JP
Japan
Prior art keywords
weight
parts
glass body
glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61214047A
Other languages
Japanese (ja)
Other versions
JPS6369751A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61214047A priority Critical patent/JPS6369751A/en
Priority to FR878712628A priority patent/FR2603883B1/en
Priority to DE3730637A priority patent/DE3730637C2/en
Priority to US07/095,458 priority patent/US4859634A/en
Publication of JPS6369751A publication Critical patent/JPS6369751A/en
Publication of JPH0432027B2 publication Critical patent/JPH0432027B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 産業上の利用分野 本発明は、機器部品等を製作するに適する、機
械加工可能なガラス質セラミツクスの製造法に関
する。 従来の技術 電気機器の部品などに使用されるセラミツクス
材料として機械加工可能な結晶化ガラス質のセラ
ミツクスなどが用いられることが多い。かかるガ
ラス質セラミツクスには、たとえば特公昭54−
34775号に開示された、フツ素金雲母固溶体の結
晶を少くも50容量%分散含有しているガラス−セ
ラミツク物品が知られている。このガラス−セラ
ミツクスは、原料配合物を溶融してガラス化した
のちフツ素金雲母の結晶を析出させたもので、微
細な結晶を無秩序に含んでおり、気密性が高く、
切削等の機械加工が容易であるが、特にガラス体
を製造する工程でクラツクの発生が多く収率が低
いという問題があつた。 また、特開昭61−72654号には、陶石を主原料
とするフツ素含有混合物を溶融して得たガラス化
成形物と、気化しやすいフツ素化合物とを密閉容
器中で1100〜1360℃で加熱し、ガラス成形物にフ
ツ素雲母を結晶化する方法が開示されている。こ
の方法によれば、短時間で結晶化ガラスセラミツ
クスが得られるが、ガラス体製造工程でのクラツ
ク発生および製品の強度はあまり改良されなかつ
た。 解決しようとする問題点 前述のような従来技術におけるフツ素金雲母含
有ガラス質セラミツクスは、切削加工が可能であ
り適当な機械的強度を有するものであつた。そし
て小型の製品を製造する際にはそれほど問題はな
いが大型の製品(たとえば15cm×15cm×3cm以上
または同等形状以上のサイズのもの。)を製造し
ようとするとガラス化成形物(以下ガラス体とい
う。)にクラツクが発生し易く、収率が低いとい
う問題があつた。さらに、強度も大きいものが望
まれるが、強度が大となるような原料配合比と製
造条件を選択すると切削性が低下するという問題
があつた。 そこで本発明は、従来技術における上述のよう
な問題点を克服して、切削加工性が良好であつて
且つ充分な機械的強度を有する大型のガラス質セ
ラミツクスを高収率で製造する方法を提供しよう
とするものである。 〔発明の構成〕 問題点を解決するための手段 前述のような本発明の目的は、陶石50〜70重量
部、ジルコン1.5〜10重量部、フツ化マグネシウ
ム5〜15重量部、マグネシア5〜15重量部、酸化
カリウム4〜10重量部を含むカリウム化合物、お
よび酸化ホウ素2.5〜10重量部を含むホウ素化合
物からなる配合物を加熱溶融する工程と、前記溶
融工程で得られた溶融液を得られるガラス体の転
移温度より少なくとも50℃高い温度から該温度よ
り少なくとも70℃低い温度までの間を100℃/hr
以下の冷却速度で徐冷してガラス体を得る工程
と、蓋付容器中で該ガラス体を1100℃を超え1360
℃までの温度で熱処理する工程と、からなるガラ
ス質セラミツクスの製造法によつて達成される。 すなわち、本発明によつて得られるガラス質セ
ラミツクスは、必須の原料成分として陶石、ジル
コン、フツ化マグネシウムならびにマグネシアを
用い、また酸化カリウムおよび酸化ホウ素の含有
量を調整するための適宜の化合物をこれに配合し
て製造するものである。 陶石はシリカ、アルミナおよび酸化カリウムか
らなる複合酸化物を主成分とする鉱物であるが、
できるだけ高純度のもので夾雑物を含まないもの
を使用することが望ましい。かかる各成分を含ん
で複合した構造を有する陶石を用いることによ
り、溶融が早く微細な結晶を容易に生成すること
が可能となるが、その使用量は、原料配合物100
重量部に対して50〜70重量部の範囲であるのが適
当である。この範囲とすることにより、切削加工
が容易となるような適切な結晶化が達成される。 ジルコンはZrSiO4(またはZrO2・SiO2)なる化
学組成の複合酸化物であつて、これまたできるだ
け高純度のものを使用することが望ましい。複合
構造を有するジルコンを使用する代りに単味のジ
ルコニアまたはジルコニアとシリカを使用した場
合にはジルコニアが殆んど溶解せず、本発明の目
的とする効果が発揮されない。そして、ジルコン
として配合することではじめて迅速に溶融して均
一なガラスが得られ、大型ガラス体製造工程にお
けるワレ発生率が大巾に低下し、また均一で微細
な結晶を容易に生成できるようになるものであ
り、物理強度を損わずに切削性を高めるに有効で
ある。かかるジルコンの使用量は、原料配合物
100重量部に対して1.5〜10重量部がよい。1.5%
以下では充分な効果が得られず、10%を超えると
メルト中に溶解しなくなる。 フツ化マグネシウムおよびマグネシアは、それ
ぞれ原料配合物100重量部に対して5〜15重量部
および5〜15重量部を使用するのが好ましい。こ
の範囲とすることにより、適切な結晶化度が得ら
れる。 酸化カリウムを含むカリウム化合物としては、
たとえば炭酸カリウムやホウ酸カリウムなどを用
いることができるが、配合物の組成に大巾な影響
を及ぼさない限り他のカリウム化合物を用いて差
支えない。カリウム化合物の使用量は、原料配合
物100重量部当り酸化カリウムとして4〜10重量
部であるのが好ましい。これは溶融を容易にする
とともに、適切な結晶化度を与えるために必要な
範囲である。 酸化ホウ素を含む化合物としては、たとえばホ
ウ酸、ホウ酸カリウムなどを用いることができる
が、原料配合物の組成に本質的な影響を及ぼさな
い限り他のホウ素化合物を用いてもよい。これら
のホウ素化合物の使用量は、原料配合物100重量
部当り酸化ホウ素として2.5〜10重量部であるの
が好ましい。これは溶融を容易にするとともに、
好ましいガラス形成性を与える範囲である。 このような各成分を含む原料配合物は充分に粉
砕混合されたのち、高温炉中で溶融されてガラス
転移温度がおよそ600〜680℃の範囲内にあるガラ
ス溶融液が得られる。この溶融液はモールド内に
注入され、たとえば730℃すなわち前記の転移温
度の範囲より少くとも50℃高い温度から、530℃
すなわち前記の転移温度の範囲により少くとも70
℃低い温度までの間では、1時間当り100℃以下
の冷却速度となるようにして徐々に冷却されて固
化し、ガラス体となる。この際の冷却速度が大き
すぎるときは、得られたガラス体の内部歪が増大
し、大型のガラス体を得ようとするとクラツクな
どが生じて収率が低下する。また、冷却速度が小
さければガラス体の品質や収率などに問題はない
が、生産性が低下するから好ましくない。 このようにして得たガラス体は、容器中で1100
〜1360℃で熱処理される。この際、容器が開放さ
れているとフツ素化合物の蒸気が揮散するから容
器には蓋を施すのが必要で、このようにすること
によりガラス体の表面からのフツ素化合物の揮散
を最小限にすることができる。なお容器中に揮発
性のフツ素化合物、たとえばフツ化マグネシウム
などを小量入れておくことにより、ガラス体から
のフツ素化合物の揮散が抑制される。こうして容
器中で熱処理することにより、ガラス体中にフツ
素金雲母の微細結晶が生成し、結晶化したガラス
質セラミツクスが得られる。 作 用 前述のような本発明の方法に従えば、従来技術
の問題点であつた特に大形のガラス体製造工程に
おけるワレ発生が防止されて、高い収率をあげる
ことができるほか、製品の機械的強度と切削加工
性とのバランスが改良される。 実施例 1 表1の如き化学組成を有する精製陶石および表
2の如き化学組成を有する精製ジルコンを用い、
フツ化マグネシウム、マグネシア、炭酸カリウ
ム、ホウ酸を添加し、また、さらにジルコンをジ
ルコニア、シリカなどで置きかえて、それぞれ表
3に示すような配合割合の原料配合物を得た。 表 1 成 分 重量% 灼熱減量 3.41 SiO2 66.86 Al2O3 23.21 K2O 5.55 不純物 0.97 表 2 成 分 重量% 灼熱減量 0.46 ZrSiO4 97.70 不純物 0.97 原料配合物はボールミルで1時間充分に混合
し、ルツボ炉に装入して1450℃で溶融させた。こ
れを25cm×25cm×4cmの角型黒鉛製モールド中に
注入し、750℃から500℃に至るまで5時間かけて
冷却し、以後はほぼ室温まで放冷してガラス体を
得た。 このようなガラス体のガラス転移点およびワレ
率を調べた結果を同じく表3に示す。
[Object of the Invention] Industrial Application Field The present invention relates to a method for producing machinable vitreous ceramics suitable for producing equipment parts and the like. 2. Description of the Related Art Ceramic materials such as glass-ceramic ceramics, which can be machined, are often used for parts of electrical equipment. Such vitreous ceramics include, for example,
Glass-ceramic articles are known which contain crystals of a fluorine phlogopite solid solution dispersed at least 50% by volume, as disclosed in US Pat. This glass-ceramic is made by melting and vitrifying a raw material mixture and then precipitating fluorine phlogopite crystals.It contains fine crystals in a disordered manner and is highly airtight.
Although machining such as cutting is easy, there are problems in that many cracks occur particularly in the process of manufacturing the glass body, resulting in a low yield. Furthermore, in JP-A-61-72654, a vitrified molded product obtained by melting a fluorine-containing mixture whose main raw material is pottery stone and an easily vaporized fluorine compound are heated at 1100 to 1360 in a closed container. A method of crystallizing fluorine mica in a glass molded article by heating at .degree. C. is disclosed. According to this method, crystallized glass ceramics can be obtained in a short time, but the occurrence of cracks in the glass body manufacturing process and the strength of the product are not significantly improved. Problems to be Solved The fluorine-phlogopite-containing vitreous ceramics in the prior art as described above can be cut and have appropriate mechanical strength. There is not much of a problem when manufacturing small products, but when trying to manufacture large products (for example, 15 cm x 15 cm x 3 cm or larger or equivalent size or larger), vitrified molded products (hereinafter referred to as glass objects) ) had problems in that cracks were likely to occur and the yield was low. Furthermore, although a material with high strength is desired, there is a problem in that machinability deteriorates when raw material blending ratios and manufacturing conditions are selected that result in high strength. Therefore, the present invention overcomes the above-mentioned problems in the prior art and provides a method for producing large-sized vitreous ceramics with good machinability and sufficient mechanical strength at a high yield. This is what I am trying to do. [Structure of the Invention] Means for Solving the Problems The object of the present invention as described above is to provide 50 to 70 parts by weight of chinastone, 1.5 to 10 parts by weight of zircon, 5 to 15 parts by weight of magnesium fluoride, and 5 to 5 parts by weight of magnesia. 15 parts by weight of potassium oxide, a potassium compound containing 4 to 10 parts by weight of potassium oxide, and a boron compound containing 2.5 to 10 parts by weight of boron oxide. 100°C/hr from a temperature at least 50°C higher than the transition temperature of the glass body to a temperature at least 70°C lower than said temperature.
A step of obtaining a glass body by slow cooling at a cooling rate of
This is achieved by a method for manufacturing vitreous ceramics, which comprises a step of heat treatment at temperatures up to 0.9°C. That is, the vitreous ceramics obtained by the present invention uses chinastone, zircon, magnesium fluoride, and magnesia as essential raw material components, and also contains appropriate compounds to adjust the contents of potassium oxide and boron oxide. It is manufactured by mixing it with this. Pottery stone is a mineral whose main component is a complex oxide consisting of silica, alumina, and potassium oxide.
It is desirable to use one that is as pure as possible and does not contain any impurities. By using pottery stone that has a composite structure containing each of these components, it is possible to melt quickly and easily generate fine crystals, but the amount used is 100% of the raw material mixture.
A range of 50 to 70 parts by weight is suitable. By setting it within this range, appropriate crystallization that facilitates cutting can be achieved. Zircon is a complex oxide with a chemical composition of ZrSiO 4 (or ZrO 2 .SiO 2 ), and it is also desirable to use one with as high purity as possible. If simple zirconia or zirconia and silica is used instead of zircon having a composite structure, zirconia is hardly dissolved and the desired effect of the present invention is not achieved. By blending it as zircon, it is possible to quickly melt and obtain a uniform glass, which greatly reduces the cracking rate in the manufacturing process of large glass bodies, and also makes it possible to easily generate uniform and fine crystals. This is effective in increasing machinability without impairing physical strength. The amount of zircon used is
It is preferably 1.5 to 10 parts by weight per 100 parts by weight. 1.5%
If it is less than 10%, sufficient effect will not be obtained, and if it exceeds 10%, it will not dissolve in the melt. Preferably, magnesium fluoride and magnesia are used in an amount of 5 to 15 parts by weight and 5 to 15 parts by weight, respectively, based on 100 parts by weight of the raw material mixture. By setting it as this range, an appropriate degree of crystallinity can be obtained. Potassium compounds including potassium oxide include:
For example, potassium carbonate or potassium borate can be used, although other potassium compounds can be used as long as they do not significantly affect the composition of the formulation. The amount of potassium compound used is preferably 4 to 10 parts by weight as potassium oxide per 100 parts by weight of the raw material mixture. This is the range necessary to facilitate melting and provide adequate crystallinity. As the compound containing boron oxide, for example, boric acid, potassium borate, etc. can be used, but other boron compounds may be used as long as they do not essentially affect the composition of the raw material mixture. The amount of these boron compounds used is preferably 2.5 to 10 parts by weight as boron oxide per 100 parts by weight of the raw material mixture. This facilitates melting and
This is a range that provides preferable glass forming properties. After the raw material mixture containing each of these components is sufficiently ground and mixed, it is melted in a high temperature furnace to obtain a glass melt having a glass transition temperature within the range of approximately 600 to 680°C. This melt is injected into the mold from a temperature of, for example, 730°C, i.e. at least 50°C above the aforementioned transition temperature range,
i.e. at least 70
When the temperature is lower than 100°C, the material is gradually cooled and solidified at a cooling rate of 100°C or less per hour to form a glass body. If the cooling rate at this time is too high, the internal strain of the obtained glass body will increase, and if an attempt is made to obtain a large glass body, cracks will occur and the yield will decrease. Furthermore, if the cooling rate is low, there will be no problem with the quality of the glass body or the yield, but it is not preferable because productivity will decrease. The glass body thus obtained was heated to 1100 mL in a container.
Heat treated at ~1360℃. At this time, if the container is open, the vapor of the fluorine compound will volatilize, so it is necessary to put a lid on the container. By doing this, the volatilization of the fluorine compound from the surface of the glass body can be minimized. It can be done. Note that by placing a small amount of a volatile fluorine compound, such as magnesium fluoride, in the container, volatilization of the fluorine compound from the glass body is suppressed. By heat-treating in the container in this manner, fine crystals of fluorine phlogopite are generated in the glass body, and crystallized vitreous ceramics are obtained. Effects According to the method of the present invention as described above, the occurrence of cracking, which was a problem in the prior art, especially in the manufacturing process of large glass bodies, can be prevented, and a high yield can be increased, as well as the product quality. The balance between mechanical strength and machinability is improved. Example 1 Using refined chinastone having a chemical composition as shown in Table 1 and refined zircon having a chemical composition as shown in Table 2,
Magnesium fluoride, magnesia, potassium carbonate, and boric acid were added, and zircon was replaced with zirconia, silica, etc., to obtain raw material blends having the blending ratios shown in Table 3. Table 1 Components Weight % Loss on ignition 3.41 SiO 2 66.86 Al 2 O 3 23.21 K 2 O 5.55 Impurities 0.97 Table 2 Components Weight % Loss on ignition 0.46 ZrSiO 4 97.70 Impurities 0.97 The raw material mixture was thoroughly mixed in a ball mill for 1 hour. It was charged into a crucible furnace and melted at 1450°C. This was poured into a 25 cm x 25 cm x 4 cm square graphite mold, cooled from 750°C to 500°C over 5 hours, and then allowed to cool to approximately room temperature to obtain a glass body. Table 3 also shows the results of examining the glass transition point and cracking rate of such glass bodies.

【表】【table】

【表】 次に、アルミナ製容器の中に、フツ化マグネシ
ウムを入れたルツボと並べて上記のガラス成形体
を収容し、同じくアルミナ製の蓋を載置して電気
炉中に入れ、4時間かけて1150℃まで昇温し、そ
の温度で3時間保持してから徐冷した。 得られたガラス質セラミツクスについて曲げ強
さおよび圧縮強さを測定し、また切削加工性を高
速旋盤を用いて試験した。これらの結果を表4に
示す。
[Table] Next, the above glass molded body was placed in an alumina container along with a crucible containing magnesium fluoride, and an alumina lid was placed on it and placed in an electric furnace, where it was heated for 4 hours. The temperature was raised to 1150°C, held at that temperature for 3 hours, and then gradually cooled. The bending strength and compressive strength of the obtained vitreous ceramics were measured, and the machinability was tested using a high-speed lathe. These results are shown in Table 4.

【表】 実施例 2 実施例1における試験番号AおよびCの配合に
従つて溶融ガラスを製造し、次いで、ガラス化条
件および結晶化条件を種々変更したほかは実施例
1におけると同様にして、ガラス質セラミツクス
を製造した。得られた製品の曲げ強さ、圧縮強さ
および切削加工性についての試験結果を合せて表
5に示す。
[Table] Example 2 Molten glass was produced according to the formulations of test numbers A and C in Example 1, and then in the same manner as in Example 1 except that the vitrification conditions and crystallization conditions were variously changed. Glassy ceramics were manufactured. Table 5 shows the test results for the bending strength, compressive strength, and machinability of the obtained product.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明のガラス質セラミツクスの製造法は、特
定原料を特定量配合し、特定条件でガラス体を形
成したのち特定条件で結晶化させるもので、特に
大型ガラス体製造時のワレ率を大巾に低下させる
ことができるとともに、物理的強度と切削性が共
に良好であつて均一性が高く欠陥のない大型成形
物を高収率で得ることができる特長を有する。
The method for manufacturing vitreous ceramics of the present invention involves blending specific amounts of specific raw materials, forming a glass body under specific conditions, and then crystallizing it under specific conditions, which greatly reduces the cracking rate especially when manufacturing large glass bodies. It has the feature that it is possible to obtain large-sized molded products with good physical strength and machinability, high uniformity, and no defects at a high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 陶石50〜70重量部、ジルコン1.5〜10重量部、
フツ化マグネシウム5〜15重量部、マグネシア5
〜15重量部、酸化カリウム4〜10重量部を含むカ
リウム化合物、および酸化ホウ素2.5〜10重量部
を含むホウ素化合物からなる配合物を加熱溶融す
る工程と、前記溶融工程で得られた溶融液を得ら
れるガラス体の転移温度より少なくとも50℃高い
温度から該温度より少なくとも70℃低い温度まで
の間を100℃/hr以下の冷却速度で徐冷してガラ
ス体を得る工程と、蓋付容器中で該ガラス体を
1100℃を超え1360℃までの温度で熱処理する工程
と、からなるガラス質セラミツクスの製造法。
1. 50 to 70 parts by weight of pottery stone, 1.5 to 10 parts by weight of zircon,
Magnesium fluoride 5-15 parts by weight, magnesia 5
-15 parts by weight of potassium compound, a potassium compound containing 4-10 parts by weight of potassium oxide, and a boron compound containing 2.5-10 parts by weight of boron oxide. A step of obtaining a glass body by slowly cooling the glass body from a temperature at least 50 °C higher than the transition temperature of the obtained glass body to a temperature at least 70 °C lower than the temperature at a cooling rate of 100 °C / hr or less, and in a container with a lid. the glass body with
A method for manufacturing vitreous ceramics that consists of a process of heat treatment at temperatures exceeding 1100℃ and up to 1360℃.
JP61214047A 1986-09-12 1986-09-12 Manufacture of glassy ceramics Granted JPS6369751A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61214047A JPS6369751A (en) 1986-09-12 1986-09-12 Manufacture of glassy ceramics
FR878712628A FR2603883B1 (en) 1986-09-12 1987-09-11 PROCESS FOR PRODUCING VITRO-CERAMICS
DE3730637A DE3730637C2 (en) 1986-09-12 1987-09-11 Process for producing a glass ceramic
US07/095,458 US4859634A (en) 1986-09-12 1987-09-11 Process for production of vitreous ceramics and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214047A JPS6369751A (en) 1986-09-12 1986-09-12 Manufacture of glassy ceramics

Publications (2)

Publication Number Publication Date
JPS6369751A JPS6369751A (en) 1988-03-29
JPH0432027B2 true JPH0432027B2 (en) 1992-05-28

Family

ID=16649388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214047A Granted JPS6369751A (en) 1986-09-12 1986-09-12 Manufacture of glassy ceramics

Country Status (1)

Country Link
JP (1) JPS6369751A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523908B2 (en) * 1989-01-06 1996-08-14 株式会社日立製作所 Magnetic disk device, thin film magnetic head, and wafer for manufacturing thin film magnetic head

Also Published As

Publication number Publication date
JPS6369751A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
JP2648673B2 (en) Glass ceramic products
US3940255A (en) Process for making cordierite glass-ceramic having nucleating agent and increased percent cordierite crystallinity
US3275493A (en) Glass body having surface crystalline layer thereon and method of making it
US3113877A (en) Partially devitrified glasses
JPH0699162B2 (en) Glass ceramic product containing cristobalite and potassium fluororichterite and method for producing the same
US4097295A (en) Silica-alumina-nitrogen containing glasses for production of glass-ceramics
US3428513A (en) Strengthened crystalline article and method of making the same
US4666486A (en) Process for making bulk heavy metal fluoride glasses
US3620781A (en) Partially stabilized zirconia refractory
JPS6159257B2 (en)
US4070198A (en) SiO2 -Al2 O3 -N glass for production of oxynitride glass-ceramics
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
US4186021A (en) Oxynitride glass-ceramics
US4222760A (en) Preparation of oxynitride glass-ceramics
US3899340A (en) High elastic modulus glass-ceramic articles
JPH0432027B2 (en)
US5061308A (en) Method of manufacturing readily machinable high strength glass ceramics
DE3925486A1 (en) EARTH ALKALIALUMINOBORATE GLASS CERAMICS
US3011868A (en) Method of making synthetic mica
JPH0432783B2 (en)
US3325265A (en) Method of making synthetic mica bodies
US4859634A (en) Process for production of vitreous ceramics and product thereof
JP3925077B2 (en) GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION FOR GLASS CERAMIC
US4141739A (en) Oxynitride glass-ceramics
US3193400A (en) Optical glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term