JPH0432700B2 - - Google Patents

Info

Publication number
JPH0432700B2
JPH0432700B2 JP58165109A JP16510983A JPH0432700B2 JP H0432700 B2 JPH0432700 B2 JP H0432700B2 JP 58165109 A JP58165109 A JP 58165109A JP 16510983 A JP16510983 A JP 16510983A JP H0432700 B2 JPH0432700 B2 JP H0432700B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
anion exchange
backwash
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58165109A
Other languages
Japanese (ja)
Other versions
JPS6058240A (en
Inventor
Tooru Sonobe
Kazumi Ootsuki
Shusaku Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP58165109A priority Critical patent/JPS6058240A/en
Publication of JPS6058240A publication Critical patent/JPS6058240A/en
Publication of JPH0432700B2 publication Critical patent/JPH0432700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明はアニオン交換樹脂とカチオン交換樹脂
の混合樹脂を逆洗分離する際の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in backwashing and separating a mixed resin of an anion exchange resin and a cation exchange resin.

従来から工業用水等を原水とする純水製造装置
あるいは火力発電所、原子力発電所等の復水脱塩
装置などにアニオン交換樹脂とカチオン交換樹脂
の混合樹脂を用いる混床式イオン交換装置が用い
られている。当該混床式イオン交換装置はアニオ
ン交換樹脂とカチオン交換樹脂の混合樹脂を用い
て被処理水を処理するのであるから、処理後に両
イオン交換樹脂を再生するにあたり、当該混合樹
脂をアニオン交換樹脂とカチオン交換樹脂に分離
する必要がある。従来の分離方法は稀にカ性ソー
ダ溶液などのような比重液を用いて分離する方法
も採用されているが、通常は以下のような水流に
よる逆洗分離が行われている。すなわち先ず当該
混合樹脂が充填されているイオン交換塔の下部か
ら、当該混合樹脂が約100%膨張するような流速、
通常LV(線速度、以下同様)7〜12m/Hの逆洗
水を流入して当該混合樹脂を膨張流動させる。こ
のように混合樹脂を膨張流動させると上昇流水中
における両イオン交換樹脂の沈降速度に差が生
じ、比重の小さいアニオン交換樹脂が上部に、比
重の大きいカチオン交換樹脂が下部に集合し、膨
張状態にあるアニオン交換樹脂とカチオン交換樹
脂の二層が形成される。そしてこのような二層が
形成された後に、逆洗水の流入を止めると膨張状
態にあるアニオン交換樹脂とカチオン交換樹脂が
水中を沈降し、下層がカチオン交換樹脂層、上層
がアニオン交換樹脂層となつた分離層を形成する
ことができる。
Mixed-bed ion exchange equipment that uses a mixed resin of anion exchange resin and cation exchange resin has traditionally been used in pure water production equipment that uses industrial water as raw water or condensate desalination equipment in thermal power plants, nuclear power plants, etc. It is being The mixed bed ion exchange equipment uses a mixed resin of an anion exchange resin and a cation exchange resin to treat water, so when regenerating both ion exchange resins after treatment, the mixed resin is used as an anion exchange resin. It is necessary to separate it into a cation exchange resin. In the conventional separation method, a separation method using a specific gravity liquid such as a caustic soda solution is sometimes adopted, but the following backwash separation using water flow is usually performed. In other words, first, from the lower part of the ion exchange tower filled with the mixed resin, the flow rate is such that the mixed resin expands approximately 100%.
Normally, backwash water at LV (linear velocity, hereinafter the same) of 7 to 12 m/h is introduced to cause the mixed resin to expand and flow. When the mixed resin is allowed to expand and flow in this way, a difference occurs in the settling speed of both ion exchange resins in the rising water, and the anion exchange resin with a lower specific gravity gathers at the top and the cation exchange resin with a higher specific gravity at the bottom, resulting in an expanded state. Two layers of anion exchange resin and cation exchange resin are formed. After such two layers are formed, when the flow of backwash water is stopped, the expanded anion exchange resin and cation exchange resin settle in the water, and the lower layer is the cation exchange resin layer and the upper layer is the anion exchange resin layer. A separated layer can be formed.

このような逆洗分離を行つた後、二層を形成し
たまま、あるいは例えば上層のアニオン交換樹脂
を別塔に取り出してカチオン交換樹脂は酸で、ア
ニオン交換樹脂はアルカリで再生し、水洗を行つ
た後再生済の両イオン交換樹脂を混合して再び通
水に供している。
After performing such backwash separation, the anion exchange resin in the upper layer may be taken out into a separate column while the two layers are still formed, and the cation exchange resin is regenerated with acid and the anion exchange resin with alkali, and then washed with water. After that, the regenerated both ion exchange resins are mixed and water is passed through again.

ところで高純度の処理水が要求される電子工業
用の純水製造装置あるいは火力発電所や原子力発
電所の復水脱塩装置などの混床式イオン交換装置
においても混合樹脂を分離するにあたり、上述し
た水流による逆洗分離が実施されているが、当該
混床式イオン交換装置において、度々純度上昇不
良という問題が生じ、この原因を種々検討した結
果、以下に説明する従来の逆洗分離方法における
分離不完全が大きな要因となつていることが判明
した。
By the way, when separating mixed resins in mixed bed ion exchange equipment such as pure water production equipment for the electronics industry that requires high purity treated water or condensate desalination equipment for thermal power plants and nuclear power plants, the above-mentioned method is necessary. However, in the mixed bed type ion exchange equipment, the problem of insufficient increase in purity frequently occurred.As a result of various investigations into the causes of this problem, we found that the conventional backwash separation method described below It was found that incomplete separation was a major factor.

すなわち従来の逆洗分離方法においては第1図
に示したように混合樹脂1が充填されているイオ
ン交換塔2の下部から前述したごとくLV7〜12
m/Hの逆洗水3を流入し、充填樹脂層高に対し
て約100%のレベルLまで混合樹脂を膨張流動さ
せるが、当該逆洗により第2図に示したように大
部分の混合樹脂は膨張流動し、膨張状態にあるア
ニオン交換樹脂6′とカチオン交換樹脂7′に分離
するものの、支持板4の周縁部5に存在する混合
樹脂1′は膨張流動しないでそのまま残留する。
この混合樹脂1′中におけるアニオン交換樹脂は
全アニオン交換樹脂量の3〜5%に達することが
ある。
In other words, in the conventional backwash separation method, as shown in FIG.
Backwash water 3 of m/H flows in and causes the mixed resin to expand and flow to level L, which is approximately 100% of the height of the filled resin layer. Although the resin expands and flows and separates into the expanded anion exchange resin 6' and cation exchange resin 7', the mixed resin 1' present at the peripheral edge 5 of the support plate 4 does not expand and flow and remains as it is.
The anion exchange resin in this mixed resin 1' may amount to 3 to 5% of the total amount of anion exchange resin.

支持板4の周縁部5に存在する混合樹脂1′が
そのまま残留するのは当該部分に水が流れにくい
ことに起因するものであるが、このように支持板
4の周縁部5に混合樹脂1′がそのまま残留する
と以下の再生において障害が生じそのため処理水
純度の上昇が不良となる。
The reason why the mixed resin 1' remaining on the peripheral edge 5 of the support plate 4 is because water is difficult to flow to that part. If ' remains as it is, it will cause trouble in the subsequent regeneration, which will make it difficult to increase the purity of the treated water.

すなわち第3図に示したごとく、例えば上層の
アニオン交換樹脂6を別塔に取り出し、カチオン
交換樹脂7を再生するために、塩酸8を通薬した
際に混合樹脂1′中のアニオン交換樹脂がCl形と
なる。なお第3図に示したように上層のアニオン
交換樹脂6を取り出さず、分離したアニオン交換
樹脂6とカチオン交換樹脂7を一塔内で再生する
場合においても混合樹脂1′中のアニオン交換樹
脂がCl形になることは同様である。
That is, as shown in FIG. 3, for example, when the anion exchange resin 6 in the upper layer is taken out to a separate column and hydrochloric acid 8 is passed through it in order to regenerate the cation exchange resin 7, the anion exchange resin in the mixed resin 1' is removed. It becomes Cl form. Note that even when the anion exchange resin 6 in the upper layer is not taken out and the separated anion exchange resin 6 and cation exchange resin 7 are regenerated in one tower as shown in FIG. 3, the anion exchange resin in the mixed resin 1' is The formation of Cl form is similar.

このように再生後においてCl形のアニオン交換
樹脂が存在しているとそれだけ処理水の純度上昇
が不良となり、特にPWR型原子力発電所の復水
脱塩装置においては処理水のClイオンリークの制
限が厳しく、したがつて再生後におけるCl形のア
ニオン交換樹脂の混入量を出来るだけ低減しなけ
ればならない。
In this way, the presence of Cl-type anion exchange resin after regeneration will impair the increase in purity of treated water, and in particular, in condensate desalination equipment of PWR type nuclear power plants, it is important to limit Cl ion leakage of treated water. Therefore, the amount of Cl type anion exchange resin mixed in after regeneration must be reduced as much as possible.

本発明は前述したような従来の逆洗分離方法の
欠点を解決し、支持板の周縁部に混合樹脂を極力
残留させない逆洗分離方法を提供することを目的
とするものであり、アニオン交換樹脂とカチオン
交換樹脂の混合樹脂が充填されているイオン交換
塔の下部から逆洗水を流入してアニオン交換樹脂
とカチオン交換樹脂に分離するにあたり、当該混
合樹脂が充填されているイオン交換塔の下部から
逆洗水を流入してアニオン交換樹脂とカチオン交
換樹脂の分離膨張層を形成し、次いで沈整あるい
は沈整することなく上層のアニオン交換樹脂の大
半をイオン交換塔外部に取り出し、引き続いてイ
オン交換塔の下部から逆洗水と気体とを流入して
イオン交換塔の支持板周縁部に存在する混合樹脂
を当該周縁部から離脱させ、その後気体の流入を
停止し、逆洗水のみを流入して残留するアニオン
交換樹脂とカチオン交換樹脂の分離膨張層を形成
して沈整することを特徴とする混合樹脂の逆洗分
離方法に関するものである。
The present invention aims to solve the drawbacks of the conventional backwash separation method as described above, and to provide a backwash separation method that leaves as little mixed resin as possible on the peripheral edge of the support plate. When backwashing water is introduced from the lower part of the ion exchange tower filled with a mixed resin of cation exchange resin and cation exchange resin and separated into an anion exchange resin and a cation exchange resin, the lower part of the ion exchange tower filled with the mixed resin is separated into an anion exchange resin and a cation exchange resin. Backwash water flows in from the ion exchange column to form a separated expanded layer of anion exchange resin and cation exchange resin, and then most of the anion exchange resin in the upper layer is taken out to the outside of the ion exchange tower without settling or settling. Backwash water and gas are flowed in from the bottom of the exchange tower to remove the mixed resin present at the periphery of the support plate of the ion exchange tower from the periphery, and then the gas flow is stopped and only the backwash water is allowed to flow in. The present invention relates to a method for backwashing and separating a mixed resin, which is characterized by forming a separated expanded layer of an anion exchange resin and a cation exchange resin remaining in the mixture and settling the mixture.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

従来の逆洗分離方法の欠点は支持板の周縁部に
混合樹脂が残留することであり、この原因は支持
板周縁部の水の流れが緩慢であるために当該部分
の混合樹脂が膨張流動しないことによる。
The disadvantage of the conventional backwash separation method is that the mixed resin remains on the periphery of the support plate, and this is caused by the slow flow of water around the periphery of the support plate, which prevents the mixed resin in that area from expanding and flowing. It depends.

本発明者等は支持板の周縁部に混合樹脂を残留
させない方法を種々検討した結果、通常の逆洗分
離を行つた後上層に形成される大部分のアニオン
交換樹脂を別塔に取り出し、その後再度逆洗水を
流入すると同時に空気等の気体を流入すると、支
持板周縁部の混合樹脂が流動して当該周縁部から
離脱するようになり、その結果逆洗膨張層を沈整
するともはや支持板の周縁部に混合樹脂が残留し
なくなることを知見した。
The present inventors investigated various ways to prevent the mixed resin from remaining on the peripheral edge of the support plate, and found that after normal backwash separation, most of the anion exchange resin formed in the upper layer was taken out to a separate column, and then When backwash water flows in again and a gas such as air flows in at the same time, the mixed resin at the peripheral edge of the support plate flows and separates from the peripheral edge.As a result, when the backwash expansion layer settles, the support plate no longer remains. It was discovered that the mixed resin no longer remained on the peripheral edge of the wafer.

なおこのような操作を行うことにより、いかな
る理由によつて当該混合樹脂が残留しなくなるの
か今のところ解明されていないが、おそらく大部
分のアニオン交換樹脂を塔外に取り出すので、イ
オン交換塔内の全体の樹脂量が減り、そのためイ
オン交換塔内における全イオン交換樹脂が流動し
やすくなることに加えて、逆洗水と空気とを同時
に流入させることにより、逆洗水のみを単独で流
入させる場合よりも更に流動化が促進され、その
ため支持板周縁部に存在する混合樹脂がより一層
離脱し易くなるものと考えられる。
Although it is currently unclear why the mixed resin does not remain after performing such an operation, it is likely that most of the anion exchange resin is taken out of the column, so there is no residue inside the ion exchange column. In addition to reducing the total amount of resin in the ion exchange column and making it easier for all ion exchange resins to flow in the ion exchange tower, by allowing backwash water and air to flow in at the same time, only the backwash water can flow in alone. It is thought that the fluidization is promoted more than in the case of this case, and therefore the mixed resin present at the peripheral edge of the support plate becomes easier to separate.

いずれにしても本発明により支持板周縁部に存
在する混合樹脂を離脱させることができ、その結
果従来の逆洗分離における欠点を確実に解決する
ことができる。
In any case, according to the present invention, the mixed resin present at the peripheral edge of the support plate can be removed, and as a result, the drawbacks of conventional backwash separation can be reliably solved.

以下に本発明の逆洗分離方法を工程毎に図面を
参照して以下に説明する。
Below, the backwash separation method of the present invention will be explained step by step with reference to the drawings.

先ず本発明においては第4図に示したように混
合樹脂1が充填されているイオン交換塔2の下部
から充填樹脂層高に対して約100%樹脂層高が膨
張するような流速であるLV7〜12m/Hの逆洗水
3を流入して混合樹脂を分離し、膨張状態にある
アニオン交換樹脂6′およびカチオン交換樹脂
7′を形成させる。なお当該逆洗水3の流入時間
は両イオン交換樹脂が大略分離するのに必要な時
間でよく、通常は15分前後で充分である。
First, in the present invention, as shown in FIG. 4, the flow rate is LV7, which is such that the resin layer height expands by about 100% from the bottom of the ion exchange tower 2 filled with the mixed resin 1 relative to the packed resin layer height. Backwash water 3 at a flow rate of ~12 m/h is introduced to separate the mixed resin and form expanded anion exchange resin 6' and cation exchange resin 7'. Note that the inflow time of the backwash water 3 may be the time required for the two ion exchange resins to approximately separate, and usually around 15 minutes is sufficient.

本操作までは従来の逆洗分離と同じであるか
ら、第4図に示したごとく支持板4の周縁部5に
混合樹脂1′が残留する。
Since the operation up to this point is the same as the conventional backwash separation, the mixed resin 1' remains on the peripheral edge 5 of the support plate 4 as shown in FIG.

次いで本発明においては逆洗水3の流入を止め
膨張状態にある両イオン交換樹脂を沈整し、第5
図に示したように両イオン交換樹脂の分離面9の
近傍に予め付設しておいたアニオン交換樹脂取り
出し管10から、上層のアニオン交換樹脂6の大
部分を塔外に取り出す。なお上層のアニオン交換
樹脂6の大部分を取り出す場合、前述したごとく
沈整した後に取り出す他に、第4図のごとく両イ
オン交換樹脂が膨張状態にある時に取り出しても
差し支えない。但しこの場合はアニオン交換樹脂
取り出し管10を膨張状態にある両イオン交換樹
脂の分離境界面より上方に付設することは言うま
でもない。
Next, in the present invention, the inflow of backwash water 3 is stopped, both ion exchange resins in an expanded state are settled, and the fifth
As shown in the figure, most of the anion exchange resin 6 in the upper layer is taken out of the tower from an anion exchange resin take-out pipe 10 that has been installed in advance near the separation surface 9 of both ion exchange resins. When taking out most of the anion exchange resin 6 in the upper layer, instead of taking it out after settling as described above, it is also possible to take it out when both ion exchange resins are in an expanded state as shown in FIG. 4. However, in this case, it goes without saying that the anion exchange resin outlet pipe 10 is attached above the separation interface between both ion exchange resins in an expanded state.

このように大部分のアニオン交換樹脂を塔外に
取り出した後、今後は第6図に示したように逆洗
水3を流入するとともにイオン交換塔2の下部か
ら気体、例えば圧縮空気11を流入する。このよ
うな逆洗水3と圧縮空気11との同時流入によ
り、支持板4の周縁部に存在する混合樹脂の流動
化がより一層促進されて当該周縁部から混合樹脂
が離脱し、その結果、今まで支持板4の周縁部に
存在していた混合樹脂中のアニオン交換樹脂は比
重差により上昇し、第6図に示したように支持板
4の周縁部にはアニオン交換樹脂がほぼ完全に存
在しなくなる。なお当該圧縮空気11の流入時間
は例えば3分間前後の短時間で充分に効果を発揮
し、空気量は2Nm3/min/m2前後でよい。
After most of the anion exchange resin has been taken out of the tower in this way, as shown in FIG. do. Such simultaneous inflow of backwash water 3 and compressed air 11 further promotes the fluidization of the mixed resin present at the peripheral edge of the support plate 4, and the mixed resin separates from the peripheral edge.As a result, The anion exchange resin in the mixed resin that had been present at the peripheral edge of the support plate 4 rises due to the difference in specific gravity, and as shown in FIG. cease to exist. The inflow time of the compressed air 11 is sufficiently effective, for example, in a short period of around 3 minutes, and the amount of air may be around 2Nm 3 /min/m 2 .

このような逆洗水3と圧縮空気11との同時流
入を所定時間行つた後に圧縮空気11の流入を停
止し、逆洗水3の流入のみを継続して混合樹脂の
逆洗分離を再開する。
After such simultaneous inflow of backwash water 3 and compressed air 11 is performed for a predetermined period of time, the inflow of compressed air 11 is stopped, and only the backwash water 3 continues to flow in to resume backwash separation of the mixed resin. .

当該逆洗水3の流速はアニオン交換樹脂を塔外
に取り出す前の逆洗水3と同じLV7〜12m/Hで
もよいが、塔外にアニオン交換樹脂を取り出した
後であるので、充填樹脂層高に対して100%以上
の膨張樹脂層高になるような例えばLV12m/H
以上としてもよい。
The flow rate of the backwash water 3 may be the same as the backwash water 3 before the anion exchange resin is taken out of the tower, LV7~12 m/H, but since it is after the anion exchange resin is taken out of the tower, For example, LV12m/H where the expanded resin layer height is more than 100% of the height.
It may be more than that.

上述のような逆洗水3のみの流入を20分前後行
うと、イオン交換塔2内の混合樹脂は比重差によ
り完全に分離され、膨張流動するアニオン交換樹
脂6′とカチオン交換樹脂7′が形成されるので、
このような状態となつたら逆洗水3の流入を止め
膨張樹脂層を沈整する。沈整後は前記アニオン交
換樹脂取り出し管10により上層のアニオン交換
樹脂を取り出し、イオン交換塔2に残留するカチ
オン交換樹脂は常法により酸で再生し、またイオ
ン交換塔2から取り出した全アニオン交換樹脂を
別塔において常法によりアルカリで再生する。
When only the backwash water 3 is injected for about 20 minutes as described above, the mixed resin in the ion exchange tower 2 is completely separated due to the difference in specific gravity, and the expanding and flowing anion exchange resin 6' and cation exchange resin 7' are separated. Because it is formed,
When such a state is reached, the flow of backwash water 3 is stopped and the expanded resin layer is settled. After settling, the anion exchange resin in the upper layer is taken out through the anion exchange resin take-out pipe 10, and the cation exchange resin remaining in the ion exchange tower 2 is regenerated with acid by a conventional method, and the entire anion exchange resin taken out from the ion exchange tower 2 is The resin is regenerated with alkali in a separate column using conventional methods.

以上説明したように本発明の逆洗分離を行え
ば、支持板周縁部に混合樹脂が残留することがな
く、したがつてカチオン交換樹脂の再生の際にCl
形のアニオン交換樹脂の生成量を大幅に低減させ
ることができ、従来の混床式イオン交換装置で生
じていた処理水にClイオンがリークするという欠
点を効果的に解決することができる。
As explained above, if the backwash separation of the present invention is performed, the mixed resin will not remain on the periphery of the support plate, and therefore Cl
The amount of anion exchange resin produced can be significantly reduced, and the drawback of Cl ions leaking into the treated water, which occurs in conventional mixed bed ion exchange equipment, can be effectively solved.

以下に本発明の効果を明確にするために実施例
を説明する。
Examples will be described below to clarify the effects of the present invention.

実施例 内径2000mm、直線部高さ6000mmのイオン交換塔
に6280の強酸性カチオン交換樹脂アンバーライ
ト(登録商標)200Cと3140の強塩基性アニオ
ン交換樹脂アンバーライトIRA−900の混合樹脂
を充填し、以下に示す比較例および本発明の逆洗
分離方法でカチオン交換樹脂とアニオン交換樹脂
を分離した。
Example An ion exchange tower with an inner diameter of 2000 mm and a straight section height of 6000 mm was filled with a mixed resin of 6280 strong acid cation exchange resin Amberlite (registered trademark) 200C and 3140 strong basic anion exchange resin Amberlite IRA-900. A cation exchange resin and an anion exchange resin were separated by the comparative example and the backwash separation method of the present invention shown below.

(1) 比較例 1 イオン交換塔の下部からLV10m/Hの逆洗水
を30分間流入してカチオン交換樹脂とアニオン交
換樹脂を逆洗分離した後、逆洗水の流入を止めて
沈整した。
(1) Comparative Example 1 Backwash water at LV10m/H was flowed from the bottom of the ion exchange tower for 30 minutes to backwash and separate the cation exchange resin and anion exchange resin, and then the backwash water was stopped flowing and settled. .

(2) 比較例 2 イオン交換塔の下部からLV10m/Hの逆洗水
を10分間流入しカチオン交換樹脂とアニオン交換
樹脂を逆洗分離した後、逆洗水の流入を止め沈整
し、次いで上層のアニオン交換樹脂の98%程度を
別塔に移送した後に、再度イオン交換塔の下部か
らLV10m/Hの逆洗水を20分間流入した後、逆
洗水の流入を止めて沈整した。
(2) Comparative Example 2 Backwash water at LV10m/H was flowed in from the bottom of the ion exchange tower for 10 minutes to backwash and separate the cation exchange resin and anion exchange resin, and then the backwash water was stopped flowing and allowed to settle. After about 98% of the anion exchange resin in the upper layer was transferred to another tower, backwash water at LV10 m/H was flowed in from the bottom of the ion exchange tower for 20 minutes, and then the flow of backwash water was stopped to allow settling.

(3) 本発明 イオン交換塔の下部からLV10m/Hの逆洗
水を10分間流入しカチオン交換樹脂とアニオン
交換樹脂を逆洗分離した後、逆洗水の流入を止
め沈整し、次いで上層のアニオン交換樹脂の98
%程度を別塔に移送した後に、再度イオン交換
塔の下部から1.5Kg/cm2Gの圧縮空気を2.5m3
分で2分間流入すると同時にLV10m/Hの逆
洗水を2分間流入し、その後に、LV10m/H
の逆洗水のみをイオン交換塔の下部から18分間
流入した後、逆洗水の流入を止めて沈整した。
(3) This invention Backwash water at LV10m/H flows in from the lower part of the ion exchange tower for 10 minutes to backwash and separate the cation exchange resin and anion exchange resin, then the flow of backwash water is stopped and the upper layer settles. 98 of anion exchange resin
% of the ion exchange tower, then 2.5 m 3 / 1.5 Kg/cm 2 G of compressed air was transferred from the bottom of the ion exchange tower.
At the same time, backwash water of LV10m/H flows in for 2 minutes, and then LV10m/H
Only backwash water was allowed to flow in from the bottom of the ion exchange tower for 18 minutes, and then the backwash water was stopped and allowed to settle.

以上のような比較例1および2と本発明で逆洗
分離を行い、カチオン交換樹脂中のアニオン交換
樹脂を測定したところ以下のような結果であつ
た。
When backwash separation was carried out using Comparative Examples 1 and 2 as described above and the present invention, and the anion exchange resin in the cation exchange resin was measured, the following results were obtained.

先ず比較例1においては、分離された上部のア
ニオン交換樹脂のみを注意深く別塔に取り出した
後、イオン交換塔下部より圧縮空気を流入し、カ
チオン交換樹脂層を均一に混合し試料樹脂約1
を採取し、飽和食塩水を用いアニオン交換樹脂と
カチオン交換樹脂を各々の比重差により分離した
ところ、カチオン交換樹脂中のアニオン交換樹脂
は、体積で2.5%であつた。
First, in Comparative Example 1, only the separated upper anion exchange resin was carefully taken out to a separate column, and then compressed air was introduced from the bottom of the ion exchange column to uniformly mix the cation exchange resin layer, and the sample resin
was collected, and the anion exchange resin and cation exchange resin were separated using saturated saline based on the difference in specific gravity of each, and the anion exchange resin in the cation exchange resin was found to be 2.5% by volume.

また比較例2では同じように残留する上部のア
ニオン交換樹脂のみを注意深く別塔に取り出した
後、イオン交換塔下部より圧縮空気を流入し、カ
チオン交換樹脂を均一に混合し、試料樹脂約1
を採取し、飽和食塩水を用いアニオン交換樹脂と
カチオン交換樹脂を各々の比重差により分離した
ところ、カチオン交換樹脂中のアニオン交換樹脂
は体積で0.10%であつた。
Similarly, in Comparative Example 2, only the remaining upper anion exchange resin was carefully taken out to a separate column, and then compressed air was introduced from the bottom of the ion exchange column to uniformly mix the cation exchange resin.
was collected, and the anion exchange resin and cation exchange resin were separated using saturated saline based on the difference in specific gravity of each, and the anion exchange resin in the cation exchange resin was found to be 0.10% by volume.

このアニオン交換樹脂量は全アニオン交換樹脂
の0.2%に相当する。
This amount of anion exchange resin corresponds to 0.2% of the total anion exchange resin.

一方、本発明の方法では、同じように残留する
上部のアニオン交換樹脂のみを注意深く別塔に取
り出した後、イオン交換塔下部より圧縮空気を流
入し、カチオン交換樹脂層を均一に混合し試料樹
脂約1を採取し、飽和食塩水を用いアニオン交
換樹脂とカチオン交換樹脂を各々の比重差により
分離したところ、カチオン交換樹脂中のアニオン
交換樹脂は体積で0.05%と僅かであつた。
On the other hand, in the method of the present invention, only the remaining upper anion exchange resin is carefully taken out to a separate column, and then compressed air is introduced from the bottom of the ion exchange column to uniformly mix the cation exchange resin layer and remove the sample resin. When approximately 1 was collected and the anion exchange resin and cation exchange resin were separated using a saturated saline solution based on the difference in specific gravity of each, the anion exchange resin in the cation exchange resin was as small as 0.05% by volume.

このアニオン交換樹脂量は全アニオン交換樹脂
の0.1%に過ぎない。
This amount of anion exchange resin is only 0.1% of the total anion exchange resin.

すなわち本発明の方法によれば、支持板周縁部
に残留するアニオン交換樹脂量は比較例1の50分
の1に、また比較例2と比べても1/2に減少され
ていることが確認された。
In other words, it was confirmed that according to the method of the present invention, the amount of anion exchange resin remaining on the peripheral edge of the support plate was reduced to 1/50 of Comparative Example 1 and 1/2 compared to Comparative Example 2. It was done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は従来の逆洗分離方法
における分離の状態を示した説明図であり、第1
図は逆洗分離前の状態説明図、第2図は逆洗分離
中の状態説明図、第3図は逆洗分離後アニオン交
換樹脂を別塔(図示せず)に移送した後の状態説
明図である。また、第4図、第5図、第6図は本
発明の逆洗分離方法における分離の状態を示した
説明図であり、第4図はアニオン交換樹脂を取り
出す前の逆洗分離状態説明図、第5図、第6図は
アニオン交換樹脂を取り出した後の状態説明図で
ある。 1……混合樹脂、2……イオン交換塔、3……
逆洗水、4……支持板、5……周縁部、6……ア
ニオン交換樹脂、7……カチオン交換樹脂、8…
…塩酸、9……分離面、10……アニオン交換樹
脂取り出し管、11……圧縮空気。
Figures 1, 2, and 3 are explanatory diagrams showing the state of separation in the conventional backwash separation method.
The figure is an explanatory diagram of the state before backwash separation, Figure 2 is an explanatory diagram of the state during backwash separation, and Figure 3 is an explanatory diagram of the state after the anion exchange resin is transferred to another column (not shown) after backwash separation. It is a diagram. Moreover, FIGS. 4, 5, and 6 are explanatory diagrams showing the separation state in the backwash separation method of the present invention, and FIG. 4 is an explanatory diagram of the backwash separation state before taking out the anion exchange resin. , FIG. 5, and FIG. 6 are explanatory views of the state after the anion exchange resin is taken out. 1...Mixed resin, 2...Ion exchange tower, 3...
Backwash water, 4...Support plate, 5...Periphery, 6...Anion exchange resin, 7...Cation exchange resin, 8...
...Hydrochloric acid, 9...Separation surface, 10...Anion exchange resin extraction pipe, 11...Compressed air.

Claims (1)

【特許請求の範囲】[Claims] 1 アニオン交換樹脂とカチオン交換樹脂の混合
樹脂が充填されているイオン交換塔の下部から逆
洗水を流入してアニオン交換樹脂とカチオン交換
樹脂に分離するにあたり、当該混合樹脂が充填さ
れているイオン交換塔の下部から逆洗水を流入し
てアニオン交換樹脂とカチオン交換樹脂の分離膨
張層を形成し、次いで沈整あるいは沈整すること
なく上層のアニオン交換樹脂の大半をイオン交換
塔外部に取り出し、引き続いてイオン交換塔の下
部から逆洗水と気体とを流入してイオン交換塔の
支持板周縁部に存在する混合樹脂を当該周縁部か
ら離脱させ、その後気体の流入を停止し、逆洗水
のみを流入して残留するアニオン交換樹脂とカチ
オン交換樹脂の分離膨張層を形成して沈整するこ
とを特徴とする混合樹脂の逆洗分離方法。
1 When backwashing water is introduced from the bottom of the ion exchange tower filled with a mixed resin of an anion exchange resin and a cation exchange resin to separate it into an anion exchange resin and a cation exchange resin, the ions filled with the mixed resin are Backwash water is introduced from the bottom of the exchange tower to form a separated expanded layer of anion exchange resin and cation exchange resin, and then most of the anion exchange resin in the upper layer is taken out to the outside of the ion exchange tower without settling or settling. Then, backwash water and gas are introduced from the lower part of the ion exchange tower to remove the mixed resin present at the peripheral edge of the support plate of the ion exchange tower from the peripheral edge, and then the gas flow is stopped and the backwash is started. A method for backwashing and separating a mixed resin, characterized in that only water is introduced to form and settle a separated expanded layer of residual anion exchange resin and cation exchange resin.
JP58165109A 1983-09-09 1983-09-09 Backwashing separation of resin mixture Granted JPS6058240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165109A JPS6058240A (en) 1983-09-09 1983-09-09 Backwashing separation of resin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165109A JPS6058240A (en) 1983-09-09 1983-09-09 Backwashing separation of resin mixture

Publications (2)

Publication Number Publication Date
JPS6058240A JPS6058240A (en) 1985-04-04
JPH0432700B2 true JPH0432700B2 (en) 1992-06-01

Family

ID=15806069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165109A Granted JPS6058240A (en) 1983-09-09 1983-09-09 Backwashing separation of resin mixture

Country Status (1)

Country Link
JP (1) JPS6058240A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659412B2 (en) * 1986-12-25 1994-08-10 株式会社荏原製作所 Separation and transfer method of ion exchange resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588860A (en) * 1978-12-28 1980-07-04 Japan Organo Co Ltd Taking-out method for ion exchange resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588860A (en) * 1978-12-28 1980-07-04 Japan Organo Co Ltd Taking-out method for ion exchange resin

Also Published As

Publication number Publication date
JPS6058240A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
US4528101A (en) Method of separating acid from salt by adsorption with recycling
JPH0432700B2 (en)
JPH046423B2 (en)
JP2002224663A (en) Method and apparatus for removing and recovering phosphorus from water containing ss and phosphorus
JPH046422B2 (en)
JP2002361247A (en) Method for manufacturing pure water
JP2940651B2 (en) Pure water production equipment
JP4347491B2 (en) Regeneration method of mixed-bed starch sugar liquid purification equipment
CA1105158A (en) Removal of silica from mixed bed demineralizer
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
JPS6228698B2 (en)
JP7184152B1 (en) Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same
JP2742975B2 (en) Regeneration method of ion exchange device
JP2940648B2 (en) Pure water production equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JPS602102B2 (en) How to regenerate ion exchange resin
JPS6139849B2 (en)
JPH0243541B2 (en)
JPH0353758Y2 (en)
JPH0472581B2 (en)
JPS6140462B2 (en)
JPH047261B2 (en)
JPS6133624B2 (en)
JPS6340137B2 (en)
JP2024055010A (en) Method for separating and regenerating anion exchange resin and cation exchange resin of mixed ion exchange resin