JPH04326951A - Granulating coal cinder and apparatus therefor - Google Patents

Granulating coal cinder and apparatus therefor

Info

Publication number
JPH04326951A
JPH04326951A JP9597791A JP9597791A JPH04326951A JP H04326951 A JPH04326951 A JP H04326951A JP 9597791 A JP9597791 A JP 9597791A JP 9597791 A JP9597791 A JP 9597791A JP H04326951 A JPH04326951 A JP H04326951A
Authority
JP
Japan
Prior art keywords
coal ash
solid
gas mixed
mixed flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9597791A
Other languages
Japanese (ja)
Inventor
Toshio Inoue
俊夫 井上
Noboru Kuroda
昇 黒田
Toshio Sakuma
佐久間 敏雄
Minoru Wakabayashi
稔 若林
Masayuki Tanaka
雅之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO CHUBU KK
Chubu Electric Power Co Inc
Kobe Steel Ltd
Original Assignee
TECHNO CHUBU KK
Chubu Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO CHUBU KK, Chubu Electric Power Co Inc, Kobe Steel Ltd filed Critical TECHNO CHUBU KK
Priority to JP9597791A priority Critical patent/JPH04326951A/en
Publication of JPH04326951A publication Critical patent/JPH04326951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To provide a method for granulating a coal cinder and an apparatus therefor capable of efficiently removing unburned material from the coal cinder containing the unburned material. CONSTITUTION:After it is crushed by a slit nozzle 5, a coal cinder is sorted into coarse powder 19 and fine powder 18 by means of a rebounding wall 17 and gyrating wall 54. The slit nozzle 5 pulverizes an unburned material, a component of the coal cinder liable to break with ease and the pulverized unburned material is efficiently separated in the form of the fine powder 18 due to the rebounding on the wall surface and the Coanda effect. Thus, the coarse powder 19 having a minimized content of unburned material can be recovered for use as a suitable raw material of cement, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は未燃炭素等の未燃物を含
有する石炭灰から同未燃物を除去する石炭灰の精粒方法
及び装置の改良に係り,詳しくは同未燃物の除去性能を
向上し得る石炭灰の精粒方法及び装置に関する。
[Field of Industrial Application] The present invention relates to improvements in a method and apparatus for refining coal ash, which removes unburned materials such as unburned carbon from coal ash. The present invention relates to a coal ash refining method and apparatus that can improve the removal performance of coal ash.

【0002】0002

【従来の技術】上記石炭灰は,現在主として石炭火力発
電所等から排出されるが,周辺環境の公害対策上,石炭
の燃焼温度が低く押えられているため,通常未燃炭素等
の未燃物を若干含んでいる。しかしながら,セメント等
の混和用の原料等としてこの石炭灰を有効利用するには
,上記未燃物の含有量は少ない程(例えばJTSフライ
アッシュ規格の3.5%以下)良い。図12は,コアン
ダ効果を利用して上記石炭灰を分級・精粒する石炭灰の
精粒方法及び装置の一例を示している。この精粒装置5
1は,圧縮空気と上記石炭灰とからなる固気混合流52
を噴出する供給ノズル53と,該供給ノズル53から噴
出された上記固気混合流52を壁面付着流として旋回さ
せる旋回壁54と,旋回中の上記固気混合流52の速度
低下と旋回面剥離とを防止するための補助流を噴出する
吐出管55と,上記旋回壁54に沿って旋回する時に遠
心力の作用で細粗に分離された石炭灰を別々の部屋に導
くための排出管56,57とを具備している。この精粒
装置51では,上記供給ノズル53から噴出された固気
混合流52中の石炭灰が受ける上記旋回壁54に沿う壁
面付着流としての旋回力によって,この図12に示すよ
うに細粉60及び粗粉61に分級され(いわゆるコアン
ダ効果),それぞれ上記排出管56及び57に導かれる
。なお,上記石炭灰の主成分は主としてαクオーツ(S
iO2 )やムライト(2SiO2 ・3Al2 O3
 )等のシリカ等であり,これらは,図13に示すよう
に通常,球形状の大A,中B,小C,及びその凝集物D
等の形態を有している。しかし,残存した未燃物は,こ
の図13に示すように通常,不定形状の大E,中F,小
G,及びその凝集物H等の形態である。
[Prior Art] The above-mentioned coal ash is currently mainly discharged from coal-fired power plants, etc., but since the combustion temperature of coal is kept low in order to prevent pollution in the surrounding environment, it is usually produced by unburned carbon such as unburned carbon. Contains some things. However, in order to effectively utilize this coal ash as a raw material for mixing cement, etc., the content of the unburned matter should be as low as possible (for example, 3.5% or less according to the JTS fly ash standard). FIG. 12 shows an example of a coal ash refining method and apparatus for classifying and refining the coal ash using the Coanda effect. This fine particle device 5
1 is a solid-gas mixed flow 52 consisting of compressed air and the above coal ash.
A supply nozzle 53 that spouts out a gas, a swirling wall 54 that swirls the solid-gas mixed flow 52 spouted from the supply nozzle 53 as a wall adhesion flow, and a speed reduction and separation of the swirling surface of the solid-gas mixed flow 52 during swirling. a discharge pipe 55 that spouts out an auxiliary flow to prevent the coal ash from collapsing, and a discharge pipe 56 that guides the coal ash, which has been separated into fine pieces by the action of centrifugal force when swirling along the swirling wall 54, to separate rooms. , 57. In this particle refining device 51, the coal ash in the solid-gas mixed flow 52 ejected from the supply nozzle 53 is subjected to a swirling force as a wall adhesion flow along the swirling wall 54, so that fine powder is produced as shown in FIG. The powder is classified into 60 and coarse powder 61 (so-called Coanda effect) and guided to the discharge pipes 56 and 57, respectively. The main component of the above coal ash is mainly alpha quartz (S
iO2 ) and mullite (2SiO2 ・3Al2 O3
), etc., and these are usually spherical large A, medium B, small C, and aggregates D, as shown in Figure 13.
It has the form of However, the remaining unburnt materials are usually in the form of irregularly shaped large E, medium F, small G, and their agglomerates H, as shown in FIG.

【0003】そこで,ふるい等を用いて例えば上記未燃
炭素の含有量が4.2%である石炭灰をふるい分けして
,その粒子サイズが例えば45μ以下である細粉に分級
すると,同細粉の同含有量は上記3.5%以下の例えば
2.4%となり,上記コアンダ効果を利用した場合より
も石炭灰中の未燃炭素の含有量を少なくすることができ
,セメントの混和用などに適したものが得られる。一方
,未燃炭素は比較的粗粉側に集まる傾向があるので,前
記従来の精粒装置51では,例えば上記未燃炭素の含有
量が4.2%である石炭灰を,上記のようにコアンダ効
果を利用して例えば同含有量が11.2%の石炭灰(粗
粉)及び同含有量が3.7%の石炭灰(細粉)に分級す
ることができるが,この細粉の同含有量は上記した3.
5%以下にも達しておらず,効果的な分離方法とはいえ
ない。また,上記精粒装置51及びふるい分け方法のい
ずれにおいても,従来は,上記石炭灰の壊れ易い未燃物
及びその凝集物を,できるだけ壊さないように処理して
いた。ところで,上記石炭灰をふるい分けする方法は,
その処理量が上記精粒装置51よりも少なく,大量生産
に適さない。また,上記石炭灰を振動させて形状別に分
級する例えば揺動テーブルを用いた方法も,その精粒性
能は良好であるが,同様に大量生産に適さない。他方,
湿式分級法である浮選法や上記未燃物を重油に付着・凝
集させる凝集法等は,その精粒性能は良好であるが,通
常排水処理,乾燥工程などの工程を有しているので,上
記精粒装置51等の乾式法よりも,手間がかかると共に
コスト高となる。
[0003] Therefore, if the above-mentioned coal ash with an unburned carbon content of 4.2% is sieved using a sieve or the like and classified into fine powder having a particle size of, for example, 45 μm or less, the same fine powder can be obtained. The same content of coal ash is 2.4%, for example, below 3.5%, which makes it possible to reduce the content of unburned carbon in coal ash compared to when the Coanda effect is used. You can get what is suitable for you. On the other hand, since unburned carbon tends to gather on the relatively coarse powder side, the conventional granulation device 51 uses, for example, coal ash with an unburned carbon content of 4.2% as described above. For example, the Coanda effect can be used to classify coal ash (coarse powder) with a content of 11.2% and coal ash (fine powder) with a content of 3.7%. The same content is described in 3 above.
It does not even reach 5% or less, so it cannot be said to be an effective separation method. Furthermore, in both the particle refining device 51 and the sieving method, the fragile unburned coal ash and its aggregates have been conventionally treated in a manner that prevents them from being destroyed as much as possible. By the way, the method for sifting the coal ash mentioned above is as follows:
Its throughput is smaller than that of the grain refining device 51, and it is not suitable for mass production. Furthermore, the method of vibrating the coal ash and classifying it according to shape, for example using a swinging table, has good particle refining performance, but is similarly unsuitable for mass production. On the other hand,
The flotation method, which is a wet classification method, and the flocculation method, which attaches and aggregates the unburned materials to heavy oil, have good particle performance, but they usually involve steps such as wastewater treatment and drying. , is more time-consuming and costly than the dry method such as the above-mentioned grain refining device 51.

【0004】0004

【発明が解決しようとする課題】さて,上記未燃物の凝
集性等を利用する湿式法では,同未燃物をより一層微細
化してその凝集性を高めることができるとすれば,その
精粒性能を,更に高めることが可能になると考えられる
。また,上記コアンダ効果を利用した気流式の精粒装置
51においても,壊れ易い未燃炭素を,従来と逆に壁等
に衝突させて,むしろ積極的に微細化することにより,
細粉側に回収するようにすると共に,粗粉側に,壊れに
くく硬いシリカ等を回収するようにできるとすれば,そ
の精粒性能を飛躍的に向上させることも可能になると考
えられる。従って,本発明は石炭灰の未燃物を微細化す
ることにより,同未然物の除去性能を向上し得るように
した石炭灰の精粒方法及び装置を提供することを目的と
してなされたものである。
[Problem to be solved by the invention] Now, in the wet method that utilizes the cohesive properties of the unburned substances mentioned above, if the unburned substances can be further refined to improve their cohesive properties, then It is thought that it will be possible to further improve grain performance. In addition, in the airflow-type particle refining device 51 that utilizes the Coanda effect, the fragile unburned carbon is collided with a wall or the like, contrary to the conventional method, and is actively atomized.
If it is possible to recover hard and hard silica etc. from the coarse powder side as well as the fine powder side, it is thought that it will be possible to dramatically improve the fine particle performance. Therefore, the present invention has been made for the purpose of providing a method and apparatus for refining coal ash, which improves the removal performance of unburned materials by refining the unburned materials in coal ash. be.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は,未然物を含有する石炭灰から該未然物を除
去する石炭灰の精粒方法において,上記石炭灰を粉砕し
た後に,該石炭灰を細粉及び粗粉に分級することを特徴
とする石炭灰の精粒方法として構成されている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a coal ash refining method for removing unnatural matters from coal ash containing unnatural matters, in which after the coal ash is pulverized, This method is configured as a method for refining coal ash, which is characterized by classifying the coal ash into fine powder and coarse powder.

【0006】[0006]

【作用】この石炭灰の精粒方法及び装置では,石炭灰が
粉砕された後に,同石炭灰が細粉及び粗粉に分級される
。それゆえに,この精粒方法及び装置では,上記石炭灰
中の壊れ易い未燃物を主に微細化することができ,同微
細化された未燃物は上記細粉として効率良く回収される
。従って,この精粒方法及び装置では,上記粗粉側に未
燃物の含有量の少ないセメント原料等として好適の石炭
灰を得ることができる。
[Operation] In this method and apparatus for refining coal ash, after the coal ash is crushed, the coal ash is classified into fine powder and coarse powder. Therefore, with this grain refining method and apparatus, the fragile unburned materials in the coal ash can be mainly refined, and the refined unburned materials can be efficiently recovered as the fine powder. Therefore, with this granulation method and apparatus, it is possible to obtain coal ash, which is suitable as a raw material for cement, etc., and has a low content of unburnt substances on the coarse powder side.

【0007】[0007]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここに
,図1は本発明の一実施例に係る石炭灰の精粒方法及び
装置の一例を示す模式説明図,図2は同精粒方法及び装
置の他の例を示す模式説明図,図3は同精粒方法及び装
置のスリットノズルの一例を示す断面模式図,図4(a
)及び図4(b)は同スリットノズルの石炭灰の粉砕性
能の一例を示す粒度分布図,図5は同粉砕性能の一例を
示す風量特性図,図6は図1に示す石炭灰の精粒方法及
び装置を用いて石炭灰を精粒したときの精粒特性図,図
7は図3に示すスリットノズルにより石炭灰を繰り返し
粉砕した時の同石炭灰の一例の粒度分布図,図8は図1
に示す石炭灰の精粒方法及び装置を用いて石炭灰を繰り
返し精粒したときの精粒特性図,図9は本発明の一実施
例に係る石炭灰の精粒方法及び装置の更に他の例を示す
模式説明図,図10及び図11はそれぞれ同精粒方法及
び装置により石炭灰を精粒したときの一例の同石炭灰の
粒度累積分布図である。この石炭灰の精粒方法及び装置
1は,図1に示すように圧縮空気2と石炭灰3とからな
る固気混合流4を通すことにより同固気混合流4中の石
炭灰を粉砕する以下に示すスリットノズル5と,同スリ
ットノズル5により粉砕された石炭灰をそれぞれ粗粉及
び細粉に分級する前段サイクロン6及び後段サイクロン
7とを具備している。上記スリットノズル5は,図3に
示すように上記固気混合流4を空洞部10内に均一に分
配する分配ノズル11と,同空洞部10内に分配された
固気混合流を加速するためのスリット部14と,同スリ
ット部14から吐出された固気混合流4を衝突させる衝
突壁15とを具備して構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. still,
The following examples are examples embodying the present invention, and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic explanatory diagram showing an example of a coal ash refining method and apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram showing another example of the same refining method and apparatus. 3 is a cross-sectional schematic diagram showing an example of the slit nozzle of the fine grain method and apparatus, and FIG.
) and Figure 4(b) are particle size distribution diagrams showing an example of the coal ash crushing performance of the same slit nozzle, Figure 5 is an air volume characteristic diagram showing an example of the same crushing performance, and Figure 6 is a particle size distribution diagram showing an example of the coal ash crushing performance of the same slit nozzle. Fig. 7 is a particle size distribution diagram of an example of coal ash obtained by repeatedly pulverizing coal ash using the slit nozzle shown in Fig. 3. Figure 1
Fig. 9 is a grain characteristic diagram when coal ash is repeatedly refined using the coal ash refining method and apparatus shown in FIG. 10 and 11, which are schematic explanatory diagrams showing an example, are cumulative particle size distribution maps of coal ash obtained by refining coal ash using the same refining method and apparatus, respectively. This coal ash refining method and apparatus 1 crush coal ash in a solid-gas mixed flow 4 by passing a solid-gas mixed flow 4 consisting of compressed air 2 and coal ash 3 as shown in FIG. It is equipped with a slit nozzle 5 shown below, and a front cyclone 6 and a rear cyclone 7 that classify the coal ash pulverized by the slit nozzle 5 into coarse powder and fine powder, respectively. As shown in FIG. 3, the slit nozzle 5 includes a distribution nozzle 11 for uniformly distributing the solid-gas mixed flow 4 into the cavity 10, and a distribution nozzle 11 for accelerating the solid-gas mixed flow distributed within the cavity 10. , and a collision wall 15 that causes the solid-gas mixture flow 4 discharged from the slit portion 14 to collide.

【0008】この精粒装置1では,上記固気混合流4が
上記分配ノズル11により空洞部10内に分配・供給さ
れ,更に上記スリット部14により加速されて上記衝突
壁15に衝突し,その結果,同固気混合流4中の石炭灰
の壊れ易い未燃物が主に粉砕されて,このスリットノズ
ル5から吐出される。図4(a)及び図4(b)は上記
スリットノズル5を通る固気混合流4の風量が,それぞ
れ3Νm3 /h及び25Νm3 /hであるときの石
炭灰の粉砕前後(実線及び破線)の粒度分布の一例を示
している。また,図5は上記風量を3Νm3 /hから
25Νm3 /hに変えたときの上記スリットノズル5
から吐出された固気混合流中の石炭灰の平均粒径の一例
を示している。これらの図から上記風量が多い程,石炭
灰が細かく粉砕されることが解る。上記した石炭灰を粉
砕する機能を実現するスリットノズル5が粉砕手段の一
例である。更に,この精粒装置1では,上記スリットノ
ズル5から吐出された固気混合流4が,図1に示すよう
に前段サイクロン6に供給され,同固気混合流4中の石
炭灰の粗粉が同前段サイクロン6により分離される。そ
して,同前段サイクロン6から吐出された固気混合流4
は,更に後段サイクロン7に供給され,同固気混合流4
中の細粉が同後段サイクロン7により分離される。上記
したようにこの精粒装置1では,スリットノズル5によ
り粉砕された石炭灰が前段サイクロン6及び後段サイク
ロン7によりそれぞれ粗粉及び細粉に分級される。なお
,図6は上記固気混合流4の風量を3Nm3 /hから
25Nm3 /hに変えたときの上記前段サイクロン6
及び後段サイクロン7により分級された粗粉及び細粉の
未燃炭素の含有量を示している。この図から解るように
,この精粒装置1では,上記風量を7Νm3 /h以上
とすることにより上記粗粉の未燃炭素の含有量をセメン
ト等の原料として用いることのできる3%以下にするこ
とができる。 これは,上記スリットノズル5により石炭灰中の壊れ易
い未燃物を主に粉砕することができ,同未燃物を細粉側
に回収することができたからと考えられる。
In this particle refining device 1, the solid-gas mixed flow 4 is distributed and supplied into the cavity 10 by the distribution nozzle 11, and is further accelerated by the slit part 14 and collides with the collision wall 15. As a result, the fragile unburned coal ash in the solid-gas mixture flow 4 is mainly crushed and discharged from the slit nozzle 5. Figures 4(a) and 4(b) show before and after pulverization of coal ash (solid line and broken line) when the air volume of the solid-gas mixed flow 4 passing through the slit nozzle 5 is 3Νm3/h and 25Νm3/h, respectively. An example of particle size distribution is shown. Figure 5 also shows the slit nozzle 5 when the air volume is changed from 3Νm3/h to 25Νm3/h.
An example of the average particle size of coal ash in a solid-gas mixed flow discharged from From these figures, it can be seen that the larger the airflow rate, the finer the coal ash is pulverized. The slit nozzle 5 that achieves the function of crushing the coal ash described above is an example of the crushing means. Furthermore, in this grain refining device 1, the solid-gas mixed flow 4 discharged from the slit nozzle 5 is supplied to the pre-stage cyclone 6 as shown in FIG. is separated by the first stage cyclone 6. Then, the solid-gas mixed flow 4 discharged from the previous stage cyclone 6
is further supplied to the latter stage cyclone 7, and the same solid-gas mixed flow 4
The fine powder inside is separated by the latter stage cyclone 7. As described above, in this grain refiner 1, coal ash pulverized by the slit nozzle 5 is classified into coarse powder and fine powder by the front cyclone 6 and the rear cyclone 7, respectively. In addition, FIG. 6 shows the above-mentioned front-stage cyclone 6 when the air volume of the solid-gas mixed flow 4 is changed from 3Nm3/h to 25Nm3/h.
and the content of unburned carbon in the coarse powder and fine powder classified by the latter stage cyclone 7. As can be seen from this figure, in this particle refiner 1, by setting the air flow rate to 7Nm3/h or more, the unburned carbon content of the coarse powder is reduced to 3% or less, which can be used as a raw material for cement, etc. be able to. This is thought to be because the slit nozzle 5 was able to mainly crush fragile unburned materials in the coal ash, and the unburned materials could be recovered as fine powder.

【0009】また,図2は,上記石炭灰を分級処理する
サイクロンを,前述したコアンダ効果を利用した精粒装
置51(図12参照)に置き換えて精粒装置1aを構成
したところを示している。このようにすれば,上記サイ
クロン方式よりも上記石炭灰の未燃炭素除去の性能を,
更に高めることができる(後述する図9等参照)。上述
したスリットノズル5から吐出された固気混合流4を粗
粉及び細粉に分級する機能を実現するサイクロン6,7
及び精粒装置51等が分級手段の一例である。なお,図
7は上記スリットノズル5に風量25Nm3 /hの固
気混合流4を繰り返し(例えばこの図に示すように1回
,2回,4回程)通したときの石炭灰の一例の粒度分布
を示している。また,図8は上記図1に示す精粒装置1
により精粒した粗粉Sを,更に同精粒装置1により粗粉
Tに精粒し,以下同様の手順を繰り返すことにより同粗
粉Tを粗粉U(及び同粗粉Uを粗粉V)に精粒したとこ
ろを示している。このようにすれば,この精粒装置1で
は,この図に示すように例えば粗粉Vの未燃炭素の含有
量を約2.5%にすることができる。また,図9は図2
(図12参照)に示した精粒装置51の供給ノズル53
と旋回壁54との間に,同供給ノズル53から噴出され
た固気混合流4を衝突させる反発壁17を設けてなる精
粒装置51aを具備した精粒装置1bを構成したところ
を示している。この精粒装置1bでは,固気混合流4が
スリットノズル5を通ることにより,同固気混合流4中
の石炭灰が粉砕され,更に,同固気混合流4が上記供給
ノズル53から噴出されて,上記反発壁17に衝突した
後に,上記旋回壁54に沿って壁面付着流として旋回さ
れ,前記コアンダ効果により細粉18及び粗粉19に分
級される。即ち,この精粒装置1bでは,石炭灰中の壊
れ易い未燃物は,上記スリットノズル5により粉砕され
,更に,上記反発壁17に衝突し,その反発係数が小さ
いことにより同反発壁17によって大きく反発されない
こと及び上記コアンダ効果により細粉18として回収さ
れる。
Furthermore, FIG. 2 shows a grain refining device 1a constructed by replacing the cyclone for classifying the coal ash with the grain refining device 51 (see FIG. 12) that utilizes the Coanda effect described above. . In this way, the performance of removing unburned carbon from the coal ash can be improved compared to the cyclone method.
It can be further increased (see FIG. 9, etc. described later). Cyclones 6 and 7 realize the function of classifying the solid-gas mixed flow 4 discharged from the slit nozzle 5 into coarse powder and fine powder.
The particle refining device 51 and the like are examples of the classifying means. In addition, FIG. 7 shows an example of the particle size distribution of coal ash when the solid-gas mixed flow 4 at an air flow rate of 25 Nm3/h is repeatedly passed through the slit nozzle 5 (for example, once, twice, and four times as shown in this figure). It shows. In addition, Fig. 8 shows the particle refining device 1 shown in Fig. 1 above.
The coarse powder S refined by is further refined into coarse powder T by the same refining device 1, and the same procedure is repeated to convert the same coarse powder T to coarse powder U (and the same coarse powder U to coarse powder V). ) shows the fine grains. In this way, in this particle refiner 1, the content of unburned carbon in the coarse powder V can be reduced to about 2.5%, for example, as shown in this figure. Also, Figure 9 is Figure 2
The supply nozzle 53 of the grain refining device 51 shown in (see FIG. 12)
A particle refining device 1b is shown comprising a particle refining device 51a which is provided with a repulsion wall 17 that collides the solid-gas mixed flow 4 ejected from the supply nozzle 53 between the supply nozzle 53 and the swirling wall 54. There is. In this granulator 1b, the solid-gas mixed flow 4 passes through the slit nozzle 5 to crush the coal ash in the solid-gas mixed flow 4, and the solid-gas mixed flow 4 is further jetted out from the supply nozzle 53. After colliding with the repelling wall 17, the powder is swirled along the swirling wall 54 as a wall adhering flow, and is classified into fine powder 18 and coarse powder 19 by the Coanda effect. That is, in this grain refining device 1b, the fragile unburned materials in the coal ash are crushed by the slit nozzle 5, and further collide with the repulsion wall 17, and due to the small coefficient of repulsion, the unburned materials in the coal ash are crushed by the repulsion wall 17. It is recovered as fine powder 18 due to the fact that it is not strongly repulsed and the Coanda effect mentioned above.

【0010】他方,同石炭灰中の硬質のシリカ等は,上
記スリットノズル5によりほとんど粉砕されずに上記反
発壁17に衝突し,その反発係数が大きいことにより同
反発壁17によって大きく反発されること及び上記コア
ンダ効果により粗粉19として回収される。例えば,上
記固気混合流4の風量を20Nm3/hとしたとき,こ
の精粒装置1bでは,粗粉19の未燃炭素の含有量を1
.22%にすることができた。この含有量1.22%は
,従来方式と比べれば飛躍的に小さい値である。このよ
うに石炭灰の精粒性能を高めることができたのは,上記
スリットノズル5により粉砕された石炭灰を,その分級
性能がサイクロンよりも良好な反発壁17を具備してな
る上記精粒装置51aにより分級したからと考えられる
。なお,図10にこのときの粗粉19及び細粉18(サ
イクロン20及び21により分級回収された細粉18a
及び18b)の粒度累積分布を一例として示す。上述し
たスリットノズル5から吐出された固気混合流4を反発
壁17及びコアンダ効果によって粗粉19及び細粉18
に反発分級する機能を実現する精粒装置51aが分級手
段の一例である。また,図11はスリットノズル5に風
量25Nm3 /hの固気混合流を4回通した後に(例
えば同スリットノズルを4個直列接続),風量を20N
m3 /hとして上記精粒装置51aにより反発分級し
たときの一例の細粉18a,18b,及び粗粉19の粒
度累積分布を示している。この場合,上記粗粉19の未
燃炭素の含有量を0.9%にすることができた。上記し
たように,この精粒装置1bでは,セメント等の原料等
としてきわめて好適な未燃炭素の含有量が非常に少ない
粗粉を得ることができる。上記実施例では,スリットノ
ズル5により石炭灰を粉砕したが,他の方法,例えば回
転する羽根車の羽根に同石炭灰を衝突させたり,上記石
炭灰に圧力を加えて圧縮する等により,同石炭灰中の未
燃物を粉砕するようにしてもよい。また,上記実施例で
は,スリットノズル5により粉砕された石炭灰をサイク
ロン6及び7(図1),精粒装置51(図2),及び精
粒装置51a(図9)により分級・精粒したが,上記粉
砕処理により微細化された未燃物の凝集性を有効に活用
する方法(通常,微細粒子は凝集性が高い),例えば凝
集法等の湿式法等により,分級・精粒するようにしても
よい。
On the other hand, hard silica, etc. in the coal ash collides with the repulsion wall 17 without being crushed by the slit nozzle 5, and is largely repelled by the repulsion wall 17 due to its large coefficient of repulsion. Due to this and the above-mentioned Coanda effect, it is recovered as coarse powder 19. For example, when the air flow rate of the solid-gas mixed flow 4 is 20 Nm3/h, in this particle refiner 1b, the content of unburned carbon in the coarse powder 19 is 1
.. We were able to reduce it to 22%. This content of 1.22% is a dramatically smaller value compared to the conventional method. The reason why the fine grain performance of coal ash could be improved in this way is that the coal ash pulverized by the slit nozzle 5 is classified into fine grains, which are equipped with the repulsion wall 17, which has a better classification performance than that of a cyclone. This is probably because the classification was performed by the device 51a. In addition, FIG. 10 shows the coarse powder 19 and fine powder 18 (fine powder 18a classified and collected by cyclones 20 and 21).
The particle size cumulative distribution of and 18b) is shown as an example. The solid-gas mixed flow 4 discharged from the slit nozzle 5 described above is transformed into coarse powder 19 and fine powder 18 by the repulsion wall 17 and the Coanda effect.
A fine particle device 51a that realizes a repulsion classification function is an example of a classification means. In addition, Fig. 11 shows that after passing a solid-gas mixed flow with an air volume of 25 Nm3/h through the slit nozzle 5 four times (for example, by connecting four of the same slit nozzles in series), the air volume was increased to 20 Nm3/h.
The particle size cumulative distribution of fine powders 18a, 18b and coarse powder 19 as an example when repulsively classified by the particle refining device 51a is shown as m3/h. In this case, the content of unburned carbon in the coarse powder 19 could be reduced to 0.9%. As described above, this grain refiner 1b can produce coarse powder with a very low unburned carbon content, which is extremely suitable as a raw material for cement and the like. In the above example, the coal ash was pulverized by the slit nozzle 5, but the same method could be used, such as colliding the coal ash with the blades of a rotating impeller or compressing the coal ash by applying pressure. Unburned materials in the coal ash may also be pulverized. In addition, in the above embodiment, the coal ash pulverized by the slit nozzle 5 was classified and refined by the cyclones 6 and 7 (Fig. 1), the refining device 51 (Fig. 2), and the refining device 51a (Fig. 9). However, it is possible to classify and refine particles by a method that effectively utilizes the cohesiveness of the unburnt material made fine by the above-mentioned crushing process (usually, fine particles have a high cohesiveness), such as a wet method such as a coagulation method. You may also do so.

【0011】[0011]

【発明の効果】本発明に係る石炭灰の精粒方法及び装置
は上記のように構成されているので,石炭灰中の未燃物
の除去性能を飛躍的に向上させることができる。
[Effects of the Invention] Since the method and apparatus for refining coal ash according to the present invention are constructed as described above, the performance of removing unburned substances from coal ash can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例に係る石炭灰の精粒方法
及び装置の一例を示す模式説明図。
FIG. 1 is a schematic explanatory diagram showing an example of a method and apparatus for refining coal ash according to an embodiment of the present invention.

【図2】  同精粒方法及び装置の他の例を示す模式説
明図。
FIG. 2 is a schematic explanatory diagram showing another example of the fine grain method and apparatus.

【図3】  同精粒方法及び装置のスリットノズルの一
例を示す断面模式図。
FIG. 3 is a schematic cross-sectional view showing an example of a slit nozzle of the fine grain method and apparatus.

【図4】  同スリットノズルの石炭灰の粉砕性能の一
例を示す粒度分布図。
[Figure 4] A particle size distribution diagram showing an example of the coal ash crushing performance of the same slit nozzle.

【図5】  同粉砕性能の一例を示す風量特性図。[Fig. 5] An air volume characteristic diagram showing an example of the same crushing performance.

【図6】  図1に示す石炭灰の精粒方法及び装置を用
いて石炭灰を精粒したときの精粒特性図。
FIG. 6 is a grain characteristic diagram when coal ash is refined using the coal ash refining method and apparatus shown in FIG. 1.

【図7】  図3に示すスリットノズルにより石炭灰を
繰り返し粉砕した時の同石炭灰の一例の粒度分布図。
7 is a particle size distribution diagram of an example of coal ash obtained by repeatedly crushing the coal ash using the slit nozzle shown in FIG. 3. FIG.

【図8】  図1に示す石炭灰の精粒方法及び装置を用
いて石炭灰を繰り返し精粒したときの精粒特性図。
FIG. 8 is a grain characteristic diagram when coal ash is repeatedly refined using the coal ash refining method and apparatus shown in FIG. 1;

【図9】  本発明の一実施例に係る石炭灰の精粒方法
及び装置の更に他の例を示す模式説明図。
FIG. 9 is a schematic explanatory diagram showing still another example of the coal ash refining method and apparatus according to one embodiment of the present invention.

【図10】  同精粒方法及び装置により石炭灰を精粒
したときの一例の同石炭灰の粒度累積分布図。
FIG. 10 is a particle size cumulative distribution diagram of coal ash obtained by refining coal ash using the same refining method and apparatus.

【図11】  同精粒方法及び装置により石炭灰を精粒
したときの他の例の同石炭灰の粒度累積分布図。
FIG. 11 is a particle size cumulative distribution diagram of another example of coal ash when the coal ash is refined by the same refining method and apparatus.

【図12】  石炭灰がコアンダ効果により分級される
状態を示す模式説明図。
FIG. 12 is a schematic explanatory diagram showing a state in which coal ash is classified by the Coanda effect.

【図13】  石炭灰中のシリカ等がコアンダ効果によ
り分級される状態を示す模式説明図。
FIG. 13 is a schematic diagram showing how silica and the like in coal ash are classified by the Coanda effect.

【符号の説明】[Explanation of symbols]

1,1a,1b…精粒装置             
   2…圧縮空気 3…石炭灰                    
          4…固気混合流 5…スリットノズル(粉砕手段) 6…前段サイクロン(分級手段) 7…後段サイクロン(分級手段) 14…スリット部 15…衝突壁 17…反発壁 51,51a…精粒装置(分級手段) 53…供給ノズル 54…旋回壁
1, 1a, 1b...Particle refining device
2...Compressed air 3...Coal ash
4...Solid gas mixed flow 5...Slit nozzle (pulverizing means) 6...Pre-stage cyclone (classifying means) 7...Post-stage cyclone (classifying means) 14...Slit section 15...Collision wall 17...Repulsion wall 51, 51a...Particle refining device ( classification means) 53...supply nozzle 54...swivel wall

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  未然物を含有する石炭灰から該未然物
を除去する石炭灰の精粒方法において,上記石炭灰を粉
砕した後に,該石炭灰を細粉及び粗粉に分級することを
特徴とする石炭灰の精粒方法。
[Claim 1] A coal ash refining method for removing unnatural materials from coal ash containing unnatural materials, characterized in that after the coal ash is crushed, the coal ash is classified into fine powder and coarse powder. A method for refining coal ash.
【請求項2】  未然物を含有する石炭灰から該未然物
を除去する石炭灰の精粒装置において,上記石炭灰を粉
砕する粉砕手段と,該粉砕手段により粉砕された石炭灰
を細粉及び粗粉に分級する分級手段とを具備してなるこ
とを特徴とする石炭灰の精粒装置。
2. A coal ash refining device for removing unnatural materials from coal ash containing unnatural materials, comprising a crushing means for crushing the coal ash, and a fine powder and a fine powder for the crushed coal ash. A coal ash refining device characterized by comprising a classification means for classifying into coarse powder.
【請求項3】  上記粉砕手段を,上記石炭灰と圧縮空
気とからなる固気混合流を通すスリット部と,該スリッ
ト部から吐出された固気混合流を衝突させる衝突壁とを
具備して構成してなる請求項2記載の石炭灰の精粒装置
3. The crushing means comprises a slit portion through which the solid-gas mixed flow consisting of the coal ash and compressed air passes, and a collision wall that collides the solid-gas mixed flow discharged from the slit portion. The coal ash refining device according to claim 2, comprising:
【請求項4】  上記分級手段を,圧縮空気と上記粉砕
手段により粉砕された石炭灰とからなる固気混合流を噴
出する供給ノズルと,該供給ノズルから噴出された上記
固気混合流を壁面付着流として旋回させることにより細
粉及び粗粉に分級する旋回壁とを具備して構成してなる
請求項2記載の石炭灰の精粒装置。
4. The classifying means includes a supply nozzle for spouting a solid-gas mixed flow consisting of compressed air and coal ash pulverized by the pulverizing means, and a wall surface for the solid-gas mixed flow spouted from the supply nozzle. 3. The coal ash refining device according to claim 2, further comprising a swirling wall that classifies the coal ash into fine powder and coarse powder by swirling the coal ash as an attached flow.
【請求項5】  上記分級手段を,圧縮空気と上記粉砕
手段により粉砕された石炭灰とからなる固気混合流を噴
出する供給ノズルと,該供給ノズルから噴出された上記
固気混合流を衝突させる反発壁と,該反発壁に衝突した
後の上記固気混合流を壁面付着流として旋回させること
により細粉及び粗粉に分級する旋回壁とを具備して構成
してなる請求項2記載の石炭灰の精粒装置。
5. The classification means is configured to collide with a supply nozzle that spouts out a solid-gas mixed flow consisting of compressed air and coal ash crushed by the crushing means, and the solid-gas mixed flow jetted from the supply nozzle. and a swirling wall that classifies the solid-gas mixed flow into fine powder and coarse powder by swirling the solid-gas mixed flow after colliding with the rebound wall as a flow adhering to the wall surface. coal ash granulation equipment.
JP9597791A 1991-04-26 1991-04-26 Granulating coal cinder and apparatus therefor Pending JPH04326951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9597791A JPH04326951A (en) 1991-04-26 1991-04-26 Granulating coal cinder and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9597791A JPH04326951A (en) 1991-04-26 1991-04-26 Granulating coal cinder and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH04326951A true JPH04326951A (en) 1992-11-16

Family

ID=14152228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9597791A Pending JPH04326951A (en) 1991-04-26 1991-04-26 Granulating coal cinder and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH04326951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272714A (en) * 2007-05-07 2008-11-13 Mie Univ Air current type classifier
JP2010142731A (en) * 2008-12-18 2010-07-01 R-Inversatech Ltd Powder separation apparatus, powder separation system, and powder separation method
JP2016060673A (en) * 2014-09-19 2016-04-25 株式会社Ihi Processing method of fly ash

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272714A (en) * 2007-05-07 2008-11-13 Mie Univ Air current type classifier
JP2010142731A (en) * 2008-12-18 2010-07-01 R-Inversatech Ltd Powder separation apparatus, powder separation system, and powder separation method
JP2016060673A (en) * 2014-09-19 2016-04-25 株式会社Ihi Processing method of fly ash

Similar Documents

Publication Publication Date Title
US6038987A (en) Method and apparatus for reducing the carbon content of combustion ash and related products
US4538764A (en) Method and apparatus for providing finely divided powder
Hixon et al. Sizing materials by crushing and grinding
JPH04326951A (en) Granulating coal cinder and apparatus therefor
KR100206609B1 (en) Double separator for particulate material sorting
JP2003080297A (en) Method and apparatus for recovering useful granular material from waste
FI74890B (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN KLASSIFICERAD FRAKTION AV FINFOERDELAT MATERIAL.
JPS6133245A (en) Crusher
JPS63501776A (en) Method and device for improving the crushing efficiency of pressure chamber crushers
JPH067694A (en) Method and device for pulverizing solid particle of brittle material
JP3518751B2 (en) Airflow classifier
JP2896663B2 (en) Method and apparatus for producing fine aggregate for concrete
JPH11114442A (en) Apparatus for producing crushed sand
JPS63112627A (en) Production of toner powder
US5318227A (en) Beneficiation of dry scrubber product
JPH01317555A (en) Air-blast crushed material classifying apparatus
JP2000237626A (en) Milling and sieving apparatus
JP3091289B2 (en) Collision type air crusher
JPH0819702A (en) Method for highly purifying diatomaceous earth
JPH0751591A (en) Dry type production of crushed sand
JP3091281B2 (en) Collision type air crusher
JP2811621B2 (en) Method and apparatus for supplying raw material powder to airflow classifier
JPH0653234B2 (en) Method for producing fine powder
RU2069096C1 (en) Bulk material grinding apparatus
JPH07185383A (en) Circulation type pulverizing and classifying machine