JPH0432664A - Cryostatic expander - Google Patents

Cryostatic expander

Info

Publication number
JPH0432664A
JPH0432664A JP13607590A JP13607590A JPH0432664A JP H0432664 A JPH0432664 A JP H0432664A JP 13607590 A JP13607590 A JP 13607590A JP 13607590 A JP13607590 A JP 13607590A JP H0432664 A JPH0432664 A JP H0432664A
Authority
JP
Japan
Prior art keywords
pressure
piston
valve
pressure gas
valve means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13607590A
Other languages
Japanese (ja)
Other versions
JP2830379B2 (en
Inventor
Hirotoshi Torii
宏年 鳥居
Hiroyuki Morishita
森下 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13607590A priority Critical patent/JP2830379B2/en
Publication of JPH0432664A publication Critical patent/JPH0432664A/en
Application granted granted Critical
Publication of JP2830379B2 publication Critical patent/JP2830379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title expander by which the capacity thereof can be prevented from lowering, by a method wherein a first connection line is connected between a low pressure gas pipeline and a surge tank, and a second connection line is connected between a high pressure gas pipeline and the surge tank. CONSTITUTION:For the title expander, a first connection pipeline 11 having a first valve means 11a between a low pressure gas pipeline 7 and a surge tank 9 is connected, and a second connection pipeline 12 having a second valve means 12a between a high pressure gas pipeline 6 and the surge tank 9 is also connected. The information from a temperature-detecting device 14 is inputted to a valve controller 13, and in the process of cooling-down, both of the first and second valve means 11a, 12a are closed, and opening and closing control is repeated only with a high pressure valve 51 and a low pressure valve 52. After a cryogenic condition under which the cooling- down has just finished or approached thereto, in steady operation, the opening of the first valve means 11a is synchronized with the opening of the high pressure valve 51, and the opening of the second valve means 12a is also synchronized with the opening of the low pressure valve 52. As the result of it, even in the steady operation in which a pressure difference is small, a piston 3 is stably operated and the capacity of the title expander can be prevented from lowering.

Description

【発明の詳細な説明】 (産業上の利用分野) 本! 明は、ヒートステーンロンに絶対温度数十にレベ
ルの極低温を得る極低温膨張機におけるピストン作動機
構の改良に関する。
[Detailed description of the invention] (Industrial field of application) Book! The present invention relates to an improvement of the piston actuation mechanism in a cryogenic expander that obtains cryogenic temperatures at a level of several tens of degrees in absolute temperature.

(従来の技術) 従来、特開昭62−252858号公報に開示され且つ
第3図に示すように、この種極低温膨張機は、ヒートス
テーンヨン(A、B)を備えるシリンダ(C)に、蓄冷
器(E、G)をもつディスプレーサ(D)とこれを操作
するスラックピストン(S)とから成るピストン(P)
を内装し、シリンダ(C)の内部に通じる注排用通路(
T)に、高圧及び低圧開閉弁(X、Y)をもつ切換弁装
置(W)を介してヘリウムガス等の高圧ガス管(H)と
低圧ガス管(L)とを接続すると共に、前記スラックピ
ストン(S)の作用室(F)に対抗する対抗室(R)に
、オリフィス(0)を介して、キャピラリー(J)及び
ブリード(K )により注排出通路(T)及び低圧ガス
管(L)に各々接続され、その内部を中間圧力とされる
サージボリウム(M)を接続するようにしている。
(Prior Art) Conventionally, as disclosed in Japanese Patent Laid-Open No. 62-252858 and shown in FIG. 3, this type of cryogenic expansion machine has a cylinder (C) equipped with heat stains (A, B) , a piston (P) consisting of a displacer (D) with a regenerator (E, G) and a slack piston (S) that operates it.
is installed inside the cylinder (C), and an injection/discharge passageway (
A high-pressure gas pipe (H) such as helium gas and a low-pressure gas pipe (L) are connected to T) via a switching valve device (W) having high-pressure and low-pressure on-off valves (X, Y), and the slack A counter chamber (R) opposing the action chamber (F) of the piston (S) is filled with a discharge passage (T) and a low pressure gas pipe (L) by a capillary (J) and a bleed (K) through an orifice (0). ), and a surge volume (M) whose inside is set to an intermediate pressure is connected thereto.

こうして、高圧開閉弁(X)のみを開けて高圧ガスをシ
リンダ(C)内に導入し、高圧となる作用室(F)と中
間圧力である対抗室(R)との間の差圧によりスラック
ピストン(S)及びディスプレーサ(D)を上昇させ、
ヒートステーション(A、B)に隣接する膨張空間(U
、Z)に導入ガスを充満させ、次に、低圧開閉弁(Y)
のみを開け、低圧となる作用室(F)と中間圧力の対抗
室(R)との間の差圧によりスラックピストン(S)及
びディスプレーサ(D)を下降させ、膨張後の低圧ガス
を排気するようにしている。そして、これら高圧ガスの
導入と低圧ガスの排気との繰り返しにより、ヒートステ
ーシロン(A、B)に極低温を得るようにしている。
In this way, high-pressure gas is introduced into the cylinder (C) by opening only the high-pressure on-off valve (X), and the slack is created by the differential pressure between the working chamber (F), which is at high pressure, and the opposing chamber (R), which is at intermediate pressure. Raise the piston (S) and displacer (D),
Expansion space (U) adjacent to heat station (A, B)
, Z) is filled with introduced gas, and then the low pressure on-off valve (Y)
The slack piston (S) and displacer (D) are lowered by the differential pressure between the low-pressure action chamber (F) and the intermediate-pressure counter chamber (R), and the expanded low-pressure gas is exhausted. That's what I do. By repeating the introduction of high pressure gas and the exhaust of low pressure gas, extremely low temperatures are obtained in the heat station units (A, B).

(発明が解決しようとする課題) 以上の構成で、スラックピストン(S)及びディスプレ
ーサ(D)から成るピストン(P)の駆動力は、上昇時
には作用室(F)の高圧と対抗室(R)の中間圧力との
間に生じる差圧となり、下降時には作用室(F)の低圧
と対抗室(R)の中間圧力との間に生じる差圧というこ
とになる。
(Problem to be Solved by the Invention) With the above configuration, the driving force of the piston (P) consisting of the slack piston (S) and the displacer (D) is generated by the high pressure in the action chamber (F) and the opposing chamber (R) when rising. When falling, it is the differential pressure that occurs between the low pressure of the working chamber (F) and the intermediate pressure of the opposing chamber (R).

従って、ピストン(P)を上昇時及び下降時いずれも十
分に駆動させるには、ブリード(J)及びキャピラリー
(K)の調節により、サージボリウム(M)の圧力を高
圧と低圧とのほぼ中間値程度に設定すればよいと考えら
れる。
Therefore, in order to sufficiently drive the piston (P) both when ascending and descending, adjust the bleed (J) and capillary (K) to set the pressure of the surge volume (M) to an approximately intermediate value between high pressure and low pressure. It is considered that it is sufficient to set it to a certain degree.

しかし、ヒートステーシーン(A、B)が極低温まで冷
えていないクールダウン途中のように高圧ガス管(H)
と低圧ガス管(L)とに流通される高圧ガス圧力と低圧
ガス圧力との間に十分な圧力差が確保されている場合は
ともかく、クールダウンの完了後にヒートステージ1ン
(A、B)を極低温に維持する定常運転時では、負荷の
低減により高圧と低圧との圧力差が小さくなるため、中
間圧力と高圧との差圧及び中間圧力と低圧との間の差圧
はいずれも小さくなり、上昇及び下降時双方について十
分な駆動力を得ることができなくなる問題がある。
However, the heat station scene (A, B) has not yet cooled down to an extremely low temperature and the high pressure gas pipe (H)
Regardless of the case where a sufficient pressure difference is secured between the high pressure gas pressure and the low pressure gas pressure flowing to the low pressure gas pipe (L), the heat stage 1 (A, B) is During steady operation, where the pressure is maintained at an extremely low temperature, the pressure difference between the high pressure and the low pressure becomes smaller due to the load reduction, so the differential pressure between the intermediate pressure and the high pressure and the differential pressure between the intermediate pressure and the low pressure are both small. Therefore, there is a problem that sufficient driving force cannot be obtained both during ascending and descending.

これに対し、サージボリウム(M)の中間圧を例えば高
圧に対し差圧が大きく確保されるように低く設定すれば
、上昇時はよくなるが、下降時は低圧との間の差圧がよ
り一層小さくなるため、その作動は一層不安定となる問
題がある。
On the other hand, if the intermediate pressure of the surge volume (M) is set low so as to ensure a large differential pressure with respect to high pressure, for example, it will improve when rising, but when descending, the differential pressure between low pressure and Since it becomes smaller, there is a problem that its operation becomes even more unstable.

すなわち、上記従来例のように、単にサージボリウム(
M)を設けたものでは、その中間圧力値をある一つの値
にしか設定することができす、このため、高圧と低圧と
の差圧が小さいクールダウン完了後の定常運転時、ピス
トン(P)の駆動力を十分に得ることができず、該ピス
トン(P)の作動が不安定となり、このピストン(P)
の作動不安定に起因して、振動や騒音が生じると共に性
能の低下を招く問題が起こるのである。
In other words, as in the conventional example above, the surge volume (
For those equipped with a piston (P ), the operation of the piston (P) becomes unstable, and the piston (P)
This unstable operation causes problems such as vibration and noise, as well as a decline in performance.

本発明の目的は、クールダウン完了後の定常運転時、安
定したピストン作動が行え、振動や騒音の発生を防止で
きると共に能力の低下を防止できる極低温膨張機を提供
することにある。
An object of the present invention is to provide a cryogenic expander that can perform stable piston operation during steady operation after completion of cool-down, can prevent the generation of vibration and noise, and can prevent a decrease in capacity.

(課題を解決するための手段) そこで、本発明では、上記目的を達成するため、ヒート
ステーション(1)を備えるシリンダ(2)にピストン
(3)を内装し、前記シリンダ(2)の内部に通じる注
排出通路(4)に、切換弁装置(5)を介して高圧ガス
管(6)と低圧ガス管(7)とを接続すると共に、高圧
と低圧とが切換えられる前記シリンダ(2)内における
前記ピストン(3)の作用室(8)の対抗側に、内部を
中間圧力としたサージボリウム(9)を接続シて、前記
ピストン(3)を差圧により駆動させるようにした極低
温膨張機において、前記低圧ガス管(7)とサージボリ
ウム(9)との間に、第1弁手段(11a)をもつ第1
接続路(11)を接続すると共に、前記高圧ガス管(6
)とサージボリウム(9)との間に、第2弁手段(12
a)をもつ第2接続路(12)を接続した。
(Means for Solving the Problems) Therefore, in the present invention, in order to achieve the above object, a piston (3) is installed inside a cylinder (2) equipped with a heat station (1), and a piston (3) is installed inside the cylinder (2). A high-pressure gas pipe (6) and a low-pressure gas pipe (7) are connected via a switching valve device (5) to an inlet/discharge passage (4) that communicates with the cylinder (2), where high pressure and low pressure are switched. A surge regulator (9) with an intermediate pressure inside is connected to the opposite side of the action chamber (8) of the piston (3), and the piston (3) is driven by a differential pressure. In the machine, a first valve means (11a) is provided between the low pressure gas pipe (7) and the surge regulator (9).
While connecting the connecting path (11), the high pressure gas pipe (6
) and the surge regulator (9), the second valve means (12
A second connection path (12) with a) was connected.

(作用) シリンダ(2)への高圧ガスの導入時、第1弁手段(1
1a)を開くことにより、サージボリウム(8)は第1
接続路(11)を介して低圧ガス管(7)に接続される
。これにより、サージボリウム(8)の中間圧力値を低
下でき、高圧となる作用室(8)との間の差圧を大きく
確保することができ、ピストン(3)を大きな駆動力で
作動させることができる。
(Function) When introducing high pressure gas into the cylinder (2), the first valve means (1
1a), the surge volume (8) is set to the first
It is connected to a low pressure gas pipe (7) via a connecting path (11). As a result, the intermediate pressure value of the surge volume (8) can be lowered, and a large pressure difference between the high-pressure action chamber (8) can be secured, and the piston (3) can be operated with a large driving force. I can do it.

また、シリンダ(2)からの低圧ガスの排気時、第2弁
手段(12a)を開くことにより、サージボリウム(9
)は第2接続路(12)を介して高圧ガス管(6)に接
続される。これにより、サージボリウム(9)の中間圧
力値を上昇でき、低圧となる作用室(8)との間の差圧
を大きく確保することができ、ピストン(3)を大きな
駆動力で作動させることができる。
Furthermore, when the low pressure gas is exhausted from the cylinder (2), the surge volume (9) can be adjusted by opening the second valve means (12a).
) is connected to the high pressure gas pipe (6) via a second connection path (12). As a result, the intermediate pressure value of the surge volume (9) can be increased, and a large pressure difference between the low pressure working chamber (8) can be secured, and the piston (3) can be operated with a large driving force. I can do it.

(実施例) 第1図に示す極低温膨張機は、端部にヒートステージロ
ン(1)をもつシリンダ(2)の内部に、スラックピス
トン(31)とこれに連動して作動されるディスプレー
サ(32)とから成るピストン(3)をピストンリング
(30・・)を介して摺動自由に内装している。前記デ
ィスプレーサ(32)には銅や鉛等の蓄冷器(33)が
内装され、上部にスラックピストン(31)に係合する
連動ピン(34)を設けていると共に、下端を膨張空間
(20)に臨ませている。
(Example) The cryogenic expander shown in FIG. 1 has a slack piston (31) and a displacer ( A piston (3) consisting of a piston (32) and a piston ring (30...) is freely slidably housed inside the piston ring (30...). The displacer (32) is equipped with a regenerator (33) made of copper, lead, etc., has an interlocking pin (34) at the top that engages with the slack piston (31), and has an expansion space (20) at the bottom end. I am making it happen.

前記シリンダ(2)の内部に通じる注排出通路(4)に
は、高圧開閉弁(51)と低圧開閉弁(52)とから成
る切換弁装置(5)を介して高圧ガス管(6)と低圧ガ
ス管(7)とを接続し、ヘリウム等の圧縮機ユニット(
60)との間で、高圧ガスの導入と低圧ガスの排気とが
行えるようにしている。
A high pressure gas pipe (6) and a switching valve device (5) consisting of a high pressure on-off valve (51) and a low pressure on-off valve (52) are connected to the inlet/outlet passage (4) leading to the inside of the cylinder (2). Connect the low pressure gas pipe (7) to the compressor unit (for helium, etc.)
60) so that high pressure gas can be introduced and low pressure gas can be exhausted.

又、高圧と低圧とが切換えられる前記シリンダ(2)内
におけるスラックピストン(31)の作用室(8)の対
抗側となる対抗室(10)に、キャピラリー(91)に
より前記注排出通路(4)に接続されて内部を中間圧力
とされるサージボリウム(9)を、オリフィス(92)
を介して接続している。
In addition, a capillary (91) is used to connect the injection and discharge passage (4) to a counter chamber (10) opposite to the action chamber (8) of the slack piston (31) in the cylinder (2) where high pressure and low pressure are switched. ) is connected to the surge volume (9), which has an intermediate pressure inside, and the orifice (92).
are connected via.

以上の構成で、前記低圧ガス管(7)とサージボリウム
(9)との間に、電磁弁から成る第1弁手段(11a)
をもつ第1接続路(11)を接続すると共に、前記高圧
ガス管(6)とサージボリウム(9)との間に、同じく
電磁弁から成る第2弁手段(12a)をもつ第2接続路
(工2)を接続する。
With the above configuration, a first valve means (11a) consisting of a solenoid valve is provided between the low pressure gas pipe (7) and the surge regulator (9).
and a second connecting path having a second valve means (12a), which is also a solenoid valve, between the high pressure gas pipe (6) and the surge regulator (9). Connect (Step 2).

そして、前記第1及び第2弁手段(11a)(12a)
の開閉制御と、前記切換弁装置(5)を構成する高圧及
び低圧開閉弁(51)(52)の開閉制御とを兼ねる弁
コントローラ(13)を設けて、該コントローラ(13
)にヒートステーション(1)等に付設する温度検出器
(14)を入力し、クールダウンの途中は、前記第1及
び第2弁手段(11a)(12a)を共に閉じて高圧及
び低圧開閉弁(51)(52)のみの開閉制御を繰り返
し行い、温度検出器(14)によりクールダウンの完了
又はこれに近い低温状態が検出された後の定常運転時に
は、第2図に示すように高圧開閉弁(51)の開動作に
同期させて第1弁手段(11a)を開けると共に低圧開
閉弁(52)の開動作に同期させて第2弁手段(12a
)を開ける。
and the first and second valve means (11a) (12a)
A valve controller (13) is provided, which also controls the opening and closing of the high pressure and low pressure opening and closing valves (51) and (52) constituting the switching valve device (5).
) is inputted to the temperature detector (14) attached to the heat station (1), etc., and during the cool-down, both the first and second valve means (11a) and (12a) are closed to close the high-pressure and low-pressure on-off valves. (51) The opening/closing control of only (52) is repeated, and during steady operation after the completion of cooldown or a low temperature state close to this is detected by the temperature detector (14), high pressure opening/closing is performed as shown in Figure 2. The first valve means (11a) is opened in synchronization with the opening operation of the valve (51), and the second valve means (12a) is opened in synchronization with the opening operation of the low pressure on-off valve (52).
) open.

これにより、クールダウン後の定常運転時、高圧開閉弁
(51)を開けてシリンダ(2)内に高圧ガスを導入し
、ピストン(3)を上昇させるときには、第1弁手段(
11a)の開動作によりサージボリウム(9)は第1接
続路(11)を介して低圧ガス管(7)に接続されるた
め、該サージボリウム(9)の中間圧力値を低下でき、
対抗室(10)と高圧の作用室(8)との間の差圧を大
きく確保することができて、スラックピストン(31)
及びディスプレーサ(32)を大きな駆動力で上昇させ
ることができ、その作動を安定化することができる。
As a result, during steady operation after cool-down, when the high-pressure on-off valve (51) is opened to introduce high-pressure gas into the cylinder (2) and the piston (3) is raised, the first valve means (
11a), the surge volume (9) is connected to the low pressure gas pipe (7) via the first connection path (11), so that the intermediate pressure value of the surge volume (9) can be reduced.
A large pressure difference between the opposing chamber (10) and the high-pressure action chamber (8) can be secured, and the slack piston (31)
Also, the displacer (32) can be raised with a large driving force, and its operation can be stabilized.

一方、低圧開閉弁(S2)を開けてピストン(3)を下
降させ、シリンダ(2)内から膨張した後の低圧ガスを
排気するときには、第2弁手段(12a)の開動作によ
りサージボリウム(9)は第2接続路(12)を介して
高圧ガス管(6)に接続されるため、該サージボリウム
(9)の中間圧力値を上昇でき、対抗室(10)と低圧
の作用室(8)との間の差圧を大きく確保することがで
き、スラックピストン(31)及びディスプレーサ(3
2)を大きな駆動力で下降させることができ、この場合
にもその作動を安定化することができる。
On the other hand, when opening the low pressure on-off valve (S2) to lower the piston (3) and exhaust the expanded low pressure gas from inside the cylinder (2), the surge volume ( 9) is connected to the high pressure gas pipe (6) via the second connection path (12), the intermediate pressure value of the surge volume (9) can be increased, and the counter chamber (10) and the low pressure action chamber ( 8), it is possible to secure a large differential pressure between the slack piston (31) and the displacer (3).
2) can be lowered with a large driving force, and in this case also the operation can be stabilized.

従って、高圧と低圧との差圧が小さくなる定常運転時で
も、ピストン(3)をその上昇時及び下降時双方につい
て安定した作動を行わせることができ、振動や騒音の発
生を防止できると共に、能力の低下を防止できるのであ
る。
Therefore, even during steady operation when the differential pressure between high pressure and low pressure is small, the piston (3) can be operated stably both during its ascent and descent, and it is possible to prevent the generation of vibration and noise. This can prevent a decline in performance.

尚、上記実施例では、前記第1及び第2弁手段(11a
)(12a)を、高圧及び低圧開閉弁(51)(52)
と同期させて開閉したが、やや時間差を設けて開閉する
ようにしてもよい。
In the above embodiment, the first and second valve means (11a
) (12a), high pressure and low pressure on/off valves (51) (52)
Although they are opened and closed in synchronization with each other, they may be opened and closed with a slight time difference.

また、上記実施例では、第1及び第2弁手段(11a)
(12a)の開閉を切換弁装置(5)における高圧及び
低圧開閉弁(51)(52)の開閉をも兼ねる弁コント
ローラ(13)で制御したが、独立のコントローラで制
御してもよい。更に、切換弁装置(5)は、2つの開閉
弁(51)(52)で構成する他、一つの三方弁を用い
てもよいし、又、電磁弁でなく、この種極低温膨張機に
従来から広く用いられているバルブモータによる切換機
構を用いてもよい。
Further, in the above embodiment, the first and second valve means (11a)
Although the opening and closing of (12a) was controlled by the valve controller (13) which also serves to open and close the high pressure and low pressure on/off valves (51) and (52) in the switching valve device (5), it may be controlled by an independent controller. Furthermore, the switching valve device (5) may be composed of two on-off valves (51) and (52), or may use one three-way valve, or may not be a solenoid valve, but may be used in this type of cryogenic expander. A switching mechanism using a valve motor, which has been widely used in the past, may also be used.

更に、上記実施例で、第1接続路(11)及び第2接続
路(12)の途中に、オリフィス等の減圧手段を介装し
てもよいし、又、第1及び第2弁手段(11a)(12
a)を流量調節弁で構成してもよい。
Furthermore, in the above embodiment, a pressure reducing means such as an orifice may be interposed between the first connecting path (11) and the second connecting path (12), and the first and second valve means ( 11a) (12
A) may be configured with a flow control valve.

又、実施例では、スラックピストン(31)とディスプ
レーサ(32)との2ピストンタイプのものを示したが
、スラックピストンの無い1ピストンタイプであっても
よいし、更に、単段式のディスプレーサ(32)を示し
たが、第3図のよな2段式やそれ以上の段数をもつもの
であっても勿論よい。
Further, in the embodiment, a two-piston type with a slack piston (31) and a displacer (32) is shown, but a one-piston type without a slack piston may be used, or a single-stage displacer ( 32), but it is of course possible to use a two-stage type as shown in FIG. 3 or one having more stages.

(発明の効果) 以上のように、低圧ガス管(7)とサージボリウム(9
)との間に、第1弁手段(11a)をもつ第1接続路(
11)を接続すると共に、高圧ガス管(6)とサージボ
リウム(9)との間に、第2弁手段(12a)をもつ第
2接続路(12)を接続したから、シリンダ(2)への
高圧ガスの導入時には第1弁手段(11a)を開き、又
、シリンダ(2)からの低圧ガスの排気時には第2弁手
段(12a)を開くことにより、高圧と低圧との差圧が
小さい定常運転時でも、ピストン(3)の作動を安定し
て行え、振動や騒音の発生や能力の低下を防止できるの
である。
(Effects of the invention) As described above, the low pressure gas pipe (7) and the surge regulator (9)
) having a first valve means (11a) between the first connecting passage (
11) and a second connection path (12) having a second valve means (12a) was connected between the high pressure gas pipe (6) and the surge volume (9). By opening the first valve means (11a) when introducing high pressure gas and opening the second valve means (12a) when exhausting low pressure gas from the cylinder (2), the differential pressure between the high pressure and the low pressure is small. Even during steady operation, the piston (3) can operate stably, preventing vibrations, noise, and performance degradation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明極低温膨張機の断面構造及び配管構造を
示す全体図、第2図は同弁手段の開閉タイミングを示す
図、第3図は従来例の断面図である。 ・・・・ヒートステーンヨン ・・・・シリンダ ・・ピストン ・・・・注排出通路 ・・・・切換弁装置 ・・・・高圧ガス管 ・・・・低圧ガス管 (8)・・・・作用室 (9)・・・・サージボリウム (11)・・・・第1接続路 (12)・・・・第2接続路 (11a)・・・・第1弁手段 (12a)・・・・第2弁手段 第 1図 第2図 第 8図
FIG. 1 is an overall view showing the cross-sectional structure and piping structure of the cryogenic expander of the present invention, FIG. 2 is a view showing the opening/closing timing of the valve means, and FIG. 3 is a cross-sectional view of a conventional example. ...Heat stain...Cylinder...Piston...Injection/discharge passage...Switching valve device...High pressure gas pipe...Low pressure gas pipe (8)... Action chamber (9)...Surge volume (11)...First connection path (12)...Second connection path (11a)...First valve means (12a)...・Second valve means Fig. 1 Fig. 2 Fig. 8

Claims (1)

【特許請求の範囲】[Claims] (1)ヒートステーション(1)を備えるシリンダ(2
)にピストン(3)を内装し、前記シリンダ(2)の内
部に通じる注排出通路(4)に、切換弁装置(5)を介
して高圧ガス管(6)と低圧ガス管(7)とを接続する
と共に、高圧と低圧とが切換えられる前記シリンダ(2
)内における前記ピストン(3)の作用室(8)の対抗
側に、内部を中間圧力としたサージボリウム(9)を接
続して、前記ピストン(3)を差圧により駆動させるよ
うにした極低温膨張機において、前記低圧ガス管(7)
とサージボリウム(9)との間に、第1弁手段(11a
)をもつ第1接続路(11)を接続すると共に、前記高
圧ガス管(6)とサージボリウム(9)との間に、第2
弁手段(12a)をもつ第2接続路(12)を接続した
ことを特徴とする極低温膨張機。
(1) Cylinder (2) equipped with heat station (1)
) is equipped with a piston (3), and a high-pressure gas pipe (6) and a low-pressure gas pipe (7) are connected to the inlet/discharge passage (4) leading to the inside of the cylinder (2) via a switching valve device (5). and the cylinder (2) where high pressure and low pressure are switched.
), a surge regulator (9) with an intermediate pressure inside is connected to the opposite side of the action chamber (8) of the piston (3), so that the piston (3) is driven by a differential pressure. In the low-temperature expander, the low pressure gas pipe (7)
and the surge regulator (9), the first valve means (11a
) with a first connection path (11), and a second connection path (11) with a
A cryogenic expander characterized in that a second connection path (12) is connected with a valve means (12a).
JP13607590A 1990-05-25 1990-05-25 Cryogenic expander Expired - Fee Related JP2830379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13607590A JP2830379B2 (en) 1990-05-25 1990-05-25 Cryogenic expander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13607590A JP2830379B2 (en) 1990-05-25 1990-05-25 Cryogenic expander

Publications (2)

Publication Number Publication Date
JPH0432664A true JPH0432664A (en) 1992-02-04
JP2830379B2 JP2830379B2 (en) 1998-12-02

Family

ID=15166647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13607590A Expired - Fee Related JP2830379B2 (en) 1990-05-25 1990-05-25 Cryogenic expander

Country Status (1)

Country Link
JP (1) JP2830379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905141B1 (en) * 2017-03-08 2018-10-25 한국과학기술원 Cryogenic free piston reciprocating type expander and method of operating thereof

Also Published As

Publication number Publication date
JP2830379B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP5943865B2 (en) Cryopump system, operation method of cryopump system, and compressor unit
US6094921A (en) Pulse tube refrigerator
JP3625511B2 (en) Gas cycle refrigerator
JP2511604B2 (en) Cryogen freezer
JPH0432664A (en) Cryostatic expander
US4708725A (en) Cryogenic refrigerator
JP2725689B2 (en) Regenerator refrigerator
US6301902B1 (en) Pulse tube refrigerator
JP3314769B2 (en) Pulse tube refrigerator
JP2002243294A (en) Cryo-pump
JP3271346B2 (en) Refrigerator regenerator and method of manufacturing the same
JP2007502928A (en) Vacuum equipment
SU1451483A1 (en) Helium refrigerator
JP2959157B2 (en) Stirling engine output control device
JPH0249960A (en) Stirling engine
JP2506776B2 (en) Stirling engine
JPH01210765A (en) Cryogenic refrigerator
JPH07167513A (en) Refrigerator
JP2771721B2 (en) Cryogenic refrigerator
JPH0643645Y2 (en) Cryogenic refrigerator
JPS62299662A (en) Cryogenic refrigerator
JPH0325254A (en) Cryogenic expander
JPH01159473A (en) Free piston type compressor
JPH0458092A (en) Capacity control device for screw compressor
JPS62252858A (en) Cryogenic expansion machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees