JP2725689B2 - Regenerator refrigerator - Google Patents

Regenerator refrigerator

Info

Publication number
JP2725689B2
JP2725689B2 JP4173744A JP17374492A JP2725689B2 JP 2725689 B2 JP2725689 B2 JP 2725689B2 JP 4173744 A JP4173744 A JP 4173744A JP 17374492 A JP17374492 A JP 17374492A JP 2725689 B2 JP2725689 B2 JP 2725689B2
Authority
JP
Japan
Prior art keywords
stage
temperature
gas
pressure
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4173744A
Other languages
Japanese (ja)
Other versions
JPH05340622A (en
Inventor
宏 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP4173744A priority Critical patent/JP2725689B2/en
Publication of JPH05340622A publication Critical patent/JPH05340622A/en
Application granted granted Critical
Publication of JP2725689B2 publication Critical patent/JP2725689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はギフォ−ドマクマホンサ
イクル等を用いた蓄冷器式冷凍機の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a regenerative refrigerator using a gido-female mahmahon cycle or the like.

【0002】[0002]

【従来の技術】従来の蓄冷器式冷凍機において、低温状
態にある冷却部を昇温させる手段としては、1)断熱真
空を破壊させる方法、2)冷却ステ−ジに設けたヒ−タ
に電流を流し、発生するジュ−ル熱で昇温させる方法な
どがあるが、これらの方法は昇温時間が長くかかるこ
と、電源設備が必要であること、或いはヒ−タの劣化の
問題などの欠点がある。
2. Description of the Related Art In a conventional regenerative refrigerator, as means for raising the temperature of a cooling unit in a low temperature state, 1) a method of breaking adiabatic vacuum, and 2) a heater provided in a cooling stage. There are methods such as passing an electric current and raising the temperature by the generated Joule heat.However, these methods require a long heating time, require power supply equipment, or have a problem of heater deterioration. There are drawbacks.

【0003】[0003]

【発明が解決しようとする課題】ギフォ−ド・マクマホ
ンサイクルなどを用いた蓄冷器式冷凍機において、低温
状態にある冷却部を昇温させる過程において、昇温時間
を短縮すること、及び冷却ステ−ジの温度を調節するこ
とを目的とする。
SUMMARY OF THE INVENTION In a regenerative refrigerator using a Gifford-McMahon cycle or the like, in a process of raising the temperature of a cooling unit in a low temperature state, it is necessary to shorten the temperature raising time and to reduce the cooling step. -To regulate the temperature of the die.

【0004】[0004]

【課題を解決するための手段】 吸気弁2と排気弁3の
開閉切り換えによって、ヘリウム圧縮機1によって圧縮
した高圧のヘリウムガスと、該高圧のヘリウムガスが断
熱膨張して温度の下がった低圧のヘリウムガスが第1段
蓄冷器10と第2段蓄冷機14内を交互に逆方向に流れ
るとき、高温高圧のヘリウムガスと低温低圧のヘリウム
ガスが蓄冷材を介しての熱交換を繰返し、第1段膨張室
20と第2段膨張室21のガスの温度を下げ、シリンダ
8,12を介して第1段冷却ステ−ジ11および第2段
冷却ステ−ジ15を冷却するようにした蓄冷器式冷凍機
において、冷凍機の高低圧ガス流路4から温度調節弁を
備えた導管を分岐させ、該導管を冷却ステ−ジと熱的に
接触している発熱部と接続し、蓄冷器10,14へ供給
する冷媒ガスと同じ周期及び圧力のガスを発熱部に供給
し、発熱部に供給される際に発生する断熱圧縮熱によっ
て加温させるようにした。
A high-pressure helium gas compressed by the helium compressor 1 and a low-pressure helium gas adiabatically expanded by the open / close switching of the intake valve 2 and the exhaust valve 3. When the helium gas flows alternately in the first stage regenerator 10 and the second stage regenerator 14 in opposite directions, the high-temperature and high-pressure helium gas and the low-temperature and low-pressure helium gas repeat heat exchange through the regenerator material, Cold storage in which the temperature of the gas in the first-stage expansion chamber 20 and the second-stage expansion chamber 21 is lowered, and the first-stage cooling stage 11 and the second-stage cooling stage 15 are cooled via the cylinders 8 and 12. In a regenerative refrigerator, a conduit provided with a temperature control valve is branched from the high / low pressure gas flow path 4 of the refrigerator, and the conduit is connected to a heat generating portion which is in thermal contact with a cooling stage. Same as refrigerant gas supplied to 10, 14 The gas having the cycle and the pressure is supplied to the heat generating portion, and the gas is heated by adiabatic compression heat generated when the gas is supplied to the heat generating portion.

【0005】[0005]

【実施例】ギフォ−ド・マクマホンサイクル式冷凍機
(以下GMサイクル式冷凍機という)の冷凍運転について
図1を参照して説明する。吸気弁2と排気弁3の開閉の
切り換えによって、ヘリウム圧縮機1によって圧縮され
た高圧のヘリウムガスとこの高圧のヘリウムガスが断熱
膨張して温度の下がった低圧のヘリウムガスが第1段蓄
冷器10と第2段蓄冷機14内を交互に逆方向に流れる
とき、高温高圧のヘリウムガスと低温低圧のヘリウムガ
スが蓄冷材を介して熱交換する。この繰返し手段によっ
て第1段膨張室20と第2段膨張室21のガスの温度が
下がり、その寒冷がシリンダを介して第1段冷却ステ−
ジ11および第2段冷却ステ−ジ15に伝わって冷却さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Gifford McMahon cycle type refrigerator
The refrigeration operation of a GM cycle refrigerator will be described with reference to FIG. By switching between opening and closing of the intake valve 2 and the exhaust valve 3, the high-pressure helium gas compressed by the helium compressor 1 and the low-pressure helium gas whose adiabatic expansion and lowering temperature are reduced by the first stage regenerator. When the gas flows alternately in the direction 10 and the second stage regenerator 14 in the opposite direction, helium gas of high temperature and high pressure and helium gas of low temperature and low pressure exchange heat via the regenerator material. The temperature of the gas in the first-stage expansion chamber 20 and the second-stage expansion chamber 21 is reduced by this repetition means, and the cold thereof is reduced through the cylinder to the first-stage cooling stage.
The cooling is transmitted to the die 11 and the second stage cooling stage 15.

【0006】このような手段によって冷却された各冷却
ステ−ジを昇温または温度調節する場合の従来の方法
は、第1段及び第2段冷却ステ−ジ11,15に設けた
ヒ−タ16と18に電流を流し発生するジュ−ル熱で昇
温させ、温度センサ−と組合せた制御回路によって行う
のが一般的な方法である。
The conventional method of raising the temperature or adjusting the temperature of each cooling stage cooled by such means is the heater provided in the first and second stage cooling stages 11 and 15. It is a general method to apply a current to the heaters 16 and 18 to raise the temperature by Joule heat generated, and to perform the control by a control circuit combined with a temperature sensor.

【0007】これに対する本発明による冷凍機の昇温手
段の構成について図2を参照して説明する。第1段及び
第2段冷却ステ−ジ11,15に従来のヒ−タの代りに
設けた第1段と第2段発熱部22,23(ある容積の空
間部)に高低圧ガス流路4から分岐させた冷凍機の作動
ガスを温度調節弁6,7を介して冷却ステ−ジに熱的に
接触されている第1段と第2段発熱部22,23とが導
管22a及び23aとで接続されている。この発熱部22,2
3には第1段及び第2段蓄冷器10,14に供給される
のと同周期の圧力のガスが詰め込まれ(断熱圧縮)この際
に発生する圧縮熱を利用して昇温または温度調節を行う
もので、発熱の手段として特に電源などの設備を必要と
しない。図2の場合は、温度調節弁(A)6,と同じく
(B)7に電磁弁を用い、温度制御回路からの指示によっ
て電磁弁の開閉を制御する構成である。また、冷凍機の
冷却運転の場合や、冷却ステ−ジを昇温させない場合に
は、温度調節弁6,7は閉じられた状態である。
The configuration of the temperature raising means of the refrigerator according to the present invention will be described with reference to FIG. High and low pressure gas passages are provided in the first and second stage heat generating parts 22 and 23 (spaces of a certain volume) provided in the first and second stage cooling stages 11 and 15 instead of the conventional heater. The first stage and the second stage heat generating parts 22, 23, which are in thermal contact with the cooling stage via the temperature control valves 6, 7, and the working gas of the refrigerator branched from the line 4, form conduits 22a, 23a. And are connected by. This heating part 22, 2
3 is filled with gas having the same cycle of pressure as that supplied to the first and second regenerators 10 and 14 (adiabatic compression). No special equipment such as a power supply is required as a means for generating heat. In the case of FIG. 2, the same as the temperature control valve (A) 6,
(B) An electromagnetic valve is used for 7, and the opening and closing of the electromagnetic valve is controlled by an instruction from the temperature control circuit. In the case of the cooling operation of the refrigerator or when the temperature of the cooling stage is not raised, the temperature control valves 6 and 7 are in a closed state.

【0008】[0008]

【作動】本発明による昇温過程の作動について図2を参
照して説明する。なお、冷凍機の各冷却ステ−ジ11,
15の温度は低温定常に達していて、第2段冷却ステ−
ジ15の温度のみを到達温度の10Kから50Kまで昇
温させる場合について説明する。
Operation The operation of the temperature raising process according to the present invention will be described with reference to FIG. In addition, each cooling stage 11 of the refrigerator,
The temperature of No. 15 has reached the low temperature steady state, and the second cooling stage
A case where only the temperature of the die 15 is raised from the ultimate temperature of 10K to 50K will be described.

【0009】温度調節弁(B)7を開(温度調節弁(A)6
は閉)にすると蓄冷器10,14に供給されるのと同周
期の圧力のガスが第2段発熱部23の空間部に導管23a
を介して供給される。この際、ガスが空間部に詰め込ま
れて発生する断熱圧縮熱によって第2段発熱部23で熱
が発生する。この繰り返し手段によって第2発熱部23
が加熱されて第2段冷却ステ−ジ15は50Kに昇温さ
れる。第2段冷却ステ−ジ15が50Kに昇温される
と、第2段温度センサ−19からの温度を制御回路が検
出して温度調節弁B7は閉となる。
[0009] Open the temperature control valve (B) 7 (temperature control valve (A) 6
Is closed), the gas having the same cycle as that supplied to the regenerators 10 and 14 is supplied to the space of the second-stage heat generating part 23 through the conduit 23a.
Is supplied via At this time, heat is generated in the second-stage heating section 23 by adiabatic compression heat generated by the gas being packed in the space. By this repetition means, the second heat generating portion 23
Is heated, and the second stage cooling stage 15 is heated to 50K. When the temperature of the second stage cooling stage 15 is raised to 50K, the control circuit detects the temperature from the second stage temperature sensor 19, and the temperature control valve B7 is closed.

【0010】次に2段式GMサイクル式冷凍機(冷凍能
力:1段77K/20W・2段20K/4W・50H
Z)を用いた実施例(第2段冷却ステ−ジのみ昇温)につ
いて図3を参照して説明する。この場合、第2段発熱部
23は、材質C1100,重量0.5kg,空間部容積8.
0cm3の構成において、最低到達温度の10Kから50
Kまでの昇温時間は2分以内であった。また、温度調節
弁B7(実施例は手動弁)の流路を調節して2段冷却ステ
−ジ15を70Kに保持することも可能であった。ま
た、調節弁B7の流路を全開した場合の冷却ステ−ジ1
5の温度は約115Kで、使用した冷凍機に対する入熱
は約23Wに相当する発熱量であった。図4にこの実施
例における温度測定結果を示す。
Next, a two-stage GM cycle refrigerator (refrigeration capacity: 77K / 20W for one stage, 20K / 4W / 50H for two stages)
An embodiment using Z) (only the second stage cooling stage is heated) will be described with reference to FIG. In this case, the second-stage heating section 23 is made of a material C1100, weighs 0.5 kg, and has a space volume of 8.
In the configuration of 0 cm 3 , the minimum temperature is 10K to 50K.
The temperature rise time to K was within 2 minutes. It was also possible to adjust the flow path of the temperature control valve B7 (manual valve in the embodiment) to maintain the two-stage cooling stage 15 at 70K. The cooling stage 1 when the flow path of the control valve B7 is fully opened.
The temperature of Sample No. 5 was about 115K, and the heat input to the refrigerator used was a calorific value corresponding to about 23W. FIG. 4 shows the result of temperature measurement in this embodiment.

【0011】[0011]

【効果】昇温の手段として、冷却ステ−ジまたは被冷却
物などに設けた空間部内に高圧のヘリウムガスが供給さ
れる際のガスの断熱圧縮による発熱作用を用いたので、
特に電源設備などを必要とせずに昇温や温度調節するこ
とが可能となった。また、冷凍機を停止させることなく
昇温することができる為、例えばクライオポンプ用冷凍
機として用いた場合、クライオパネルの再生作用に要す
る時間(クライオポンプとしてはロス時間)が大巾に短
縮される。尚、昇温手段として本装置の冷凍機駆動部5
を冷却モ−ドの回転と逆の方向に回転させることにより
更に高い昇温効果が得られる。
[Effect] As a means for raising the temperature, a heat generation effect by adiabatic compression of gas when high-pressure helium gas is supplied into a space provided in a cooling stage or an object to be cooled is used.
In particular, it has become possible to raise and control the temperature without the need for power supply equipment. Further, since the temperature can be raised without stopping the refrigerator, for example, when used as a cryopump refrigerator, the time required for the cryopanel regeneration operation (loss time as a cryopump) is greatly reduced. You. In addition, the refrigerator drive unit 5 of the present apparatus is used as a temperature raising means.
By rotating in the direction opposite to the rotation of the cooling mode, a higher temperature raising effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】公知GMサイクル式冷凍機を示す。FIG. 1 shows a known GM cycle refrigerator.

【図2】本発明による昇温手段を備えたGMサイクル式
冷凍機を示す。
FIG. 2 shows a GM cycle refrigerator provided with a temperature raising means according to the present invention.

【図3】同じく2段式GMサイクル式冷凍機を示す。FIG. 3 also shows a two-stage GM cycle refrigerator.

【図4】実施例における温度測定結果を示す図。FIG. 4 is a view showing a result of temperature measurement in the example.

【符号の説明】[Explanation of symbols]

1 ヘリウム圧縮機 2 吸気弁 3 排気弁 4 高低圧ガス流路 5 駆動部 6,7 温度調節弁 8 第1段シリンダ 9 第1段ディスプ
レイサ 10 第1段蓄冷器 11 第1段冷却ステ
−ジ 12 第2段シリンダ 13 第2段ディスプ
レイサ 14 第2段蓄冷器 15 第2段冷却ステ
−ジ 16 ヒ−タ 17 第1段温度セン
サ− 18 ヒ−タ 19 第2段温度セン
サ− 20 第1段膨張室 21 第2段膨張室 22 第1段発熱部 23 第2段発熱部 22a 導管 23a 導管
DESCRIPTION OF SYMBOLS 1 Helium compressor 2 Intake valve 3 Exhaust valve 4 High-low pressure gas flow path 5 Drive part 6,7 Temperature control valve 8 First-stage cylinder 9 First-stage displacer 10 First-stage regenerator 11 First-stage cooling stage 12 Second-stage cylinder 13 Second-stage displacer 14 Second-stage regenerator 15 Second-stage cooling stage 16 Heater 17 First-stage temperature sensor 18 Heater 19 Second-stage temperature sensor 20 First Step expansion chamber 21 Second stage expansion chamber 22 First stage heating section 23 Second stage heating section 22a Conduit 23a Conduit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸気弁(2)と排気弁(3)の開閉切り換え
によって、ヘリウム圧縮機(1)によって圧縮した高圧の
ヘリウムガスと、該高圧のヘリウムガスが断熱膨張して
温度の下がった低圧のヘリウムガスが第1段蓄冷器(10)
と第2段蓄冷機(14)内を交互に逆方向に流れるとき、高
温高圧のヘリウムガスと低温低圧のヘリウムガスが蓄冷
材を介しての熱交換を繰返し、第1段膨張室(20)と第2
段膨張室(21)のガスの温度を下げ、シリンダ(8,12)を
介して第1段冷却ステ−ジ(11)および第2段冷却ステ−
ジ(15)を冷却するようにした蓄冷器式冷凍機において、
冷凍機の高低圧ガス流路(4)から温度調節弁を備えた導
管を分岐させ、該導管を冷却ステ−ジと熱的に接触して
いる発熱部と接続し、蓄冷器(10,14)へ供給する冷媒ガ
スと同じ周期及び圧力のガスを発熱部に供給し、発熱部
に供給される際に発生する断熱圧縮熱によって加温させ
るようにしたことを特徴とする蓄冷器式冷凍機。
1. The high-pressure helium gas compressed by the helium compressor (1) and the high-pressure helium gas are adiabatically expanded by the switching of the opening and closing of the intake valve (2) and the exhaust valve (3), and the temperature is lowered. Low-pressure helium gas is the first-stage regenerator (10)
And the second-stage regenerator (14) alternately flow in the opposite direction, the high-temperature and high-pressure helium gas and the low-temperature and low-pressure helium gas repeat heat exchange via the regenerator material, and the first-stage expansion chamber (20) And the second
The temperature of the gas in the stage expansion chamber (21) is lowered, and the first stage cooling stage (11) and the second stage cooling stage are moved through the cylinders (8, 12).
In a regenerative refrigerator that cools the di (15),
A conduit provided with a temperature control valve is branched from the high and low pressure gas flow path (4) of the refrigerator, and the branch is connected to a heat generating portion which is in thermal contact with a cooling stage, and a regenerator (10, 14) is provided. A) a gas having the same cycle and pressure as the refrigerant gas to be supplied to the heat generating section, and heated by adiabatic compression heat generated when the gas is supplied to the heat generating section. .
JP4173744A 1992-06-09 1992-06-09 Regenerator refrigerator Expired - Fee Related JP2725689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173744A JP2725689B2 (en) 1992-06-09 1992-06-09 Regenerator refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173744A JP2725689B2 (en) 1992-06-09 1992-06-09 Regenerator refrigerator

Publications (2)

Publication Number Publication Date
JPH05340622A JPH05340622A (en) 1993-12-21
JP2725689B2 true JP2725689B2 (en) 1998-03-11

Family

ID=15966331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173744A Expired - Fee Related JP2725689B2 (en) 1992-06-09 1992-06-09 Regenerator refrigerator

Country Status (1)

Country Link
JP (1) JP2725689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016467A1 (en) * 1990-04-16 1991-10-31 Carondelet Foundry Company Heat resistant alloys
JP5972666B2 (en) * 2012-05-22 2016-08-17 住友重機械工業株式会社 Cooling system and method for determining whether maintenance is necessary
JP2019039571A (en) * 2017-08-22 2019-03-14 アイシン精機株式会社 refrigerator
JP7186132B2 (en) * 2019-05-20 2022-12-08 住友重機械工業株式会社 Cryogenic equipment and cryostats
JP2024010936A (en) * 2022-07-13 2024-01-25 住友重機械工業株式会社 Cryogenic system and control method for cryogenic system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582379U (en) * 1981-06-30 1983-01-08 日本真空技術株式会社 cryopump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015568A (en) * 2010-05-12 2017-02-08 브룩스 오토메이션, 인크. System and method for cryogenic cooling

Also Published As

Publication number Publication date
JPH05340622A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP3624542B2 (en) Pulse tube refrigerator
JP2725689B2 (en) Regenerator refrigerator
JP2511604B2 (en) Cryogen freezer
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
US4735053A (en) Method of removing heat from a refrigeration load and apparatus for performing this method
JP2824365B2 (en) Cool storage type refrigerator
US6351954B1 (en) Pulse tube refrigerator
JPH0350957B2 (en)
JPH03286968A (en) Cryogenic freezer device
JP2609327B2 (en) refrigerator
US6393845B1 (en) Pulse tube refrigerator
JP3766507B2 (en) refrigerator
US5568731A (en) Ambient air freezing system and process therefor
JPH0452468A (en) Cryogenic refrigerator
US5575155A (en) Cooling system
JP2007502928A (en) Vacuum equipment
JP2818099B2 (en) Cryogenic refrigerator
JPH10132405A (en) Cold storage freezer and its operating method
JPH03286967A (en) Pulse pipe type freezer
JP3732102B2 (en) Cryogenic refrigerator
JPH08152212A (en) Double inlet type pulse pipe refrigerating machine and temperature raising operation method for the same
JP2000046426A (en) Temperature raising method for pulse pipe refrigerating machine
JP2698477B2 (en) Cryogenic refrigerator
JP3589401B2 (en) Pulse tube refrigerator
JP2771721B2 (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees