JP3766507B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3766507B2
JP3766507B2 JP10289197A JP10289197A JP3766507B2 JP 3766507 B2 JP3766507 B2 JP 3766507B2 JP 10289197 A JP10289197 A JP 10289197A JP 10289197 A JP10289197 A JP 10289197A JP 3766507 B2 JP3766507 B2 JP 3766507B2
Authority
JP
Japan
Prior art keywords
magnetic field
regenerator
refrigerator
erni
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10289197A
Other languages
Japanese (ja)
Other versions
JPH10300251A (en
Inventor
英樹 矢山
彬昶 友清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP10289197A priority Critical patent/JP3766507B2/en
Publication of JPH10300251A publication Critical patent/JPH10300251A/en
Application granted granted Critical
Publication of JP3766507B2 publication Critical patent/JP3766507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍機に関し、特に、蓄冷材としてErNiを用い、前記蓄冷材に定常的に一定の磁場を印加する冷凍能力に優れた冷凍機に関するものである。
【0002】
【従来の技術】
極低温の冷凍機として、今日、GM(Giffrd−McMahon)冷凍機が広く用いられている。
図5を参照して従来のGM冷凍機の概略構成を説明すると、図中、1は蓄冷器、2はシリンダ3内に摺動自在に配置したピストン、4は熱交換器、5はコンプレッサー、V1、V2はバルブであり、これらによって構成された冷凍機は次のような動作をする。
【0003】
最初ピストン2は、シリンダ3の底(図中下方)にあり、高圧のヘリウムガスがバルブV1を通してコンプレッサー5からシリンダ3内のA室と蓄冷器1の中に導入される。次にバルブV1を開けたままでピストン2を上昇させ、シリンダ3A室内のヘリウムガスを蓄冷器1を通してB室に移す。これをホットブローと呼ぶ。この操作は、ヘリウムガスが蓄冷器1を通過する時にその体積が収縮するため、等圧条件を満足するようにバルブV1を開けたままで行う。
【0004】
次にバルブV1を閉め、バルブV2を開いてシリンダ3内のB室の圧力を下げる。この過程でヘリウムガスは膨張し、温度が減少することにより冷凍が行われる。最後にピストン2を下げ、低温のヘリウムガスがシリンダ3内のB室からA室に熱交換器4と蓄冷器1を通して移動する。これをコールトブローと呼ぶ。上記冷凍機では上記のような過程を1サイクルとして運転が行われる。
【0005】
【発明が解決しようとする課題】
このシステムの中で、蓄冷器1に用いる材料「蓄冷材」としては比熱の大きな材料が要求されるが、従来のGM冷凍機では、蓄冷材としてEr3 NiやPbが使用されていた。
しかし、Er3 NiやPbは蓄冷材として十分な比熱を有しているとは言えず、さらに大きな比熱を有する新しい蓄冷材が望まれていた。
【0006】
こうした背景のなかで、本発明者等は、ErNiが、常磁性から強磁性に転移する10.5K付近で従来の蓄冷材Er3 NiやPbなどよりも大きな比熱を示し、蓄冷材として有望であることを確認し、本発明はこの知見に基づいてされたものである。図2に、ErNi蓄冷材の磁場中での比熱の実測値を示す。比較のために従来のGM冷凍機で用いられて来たEr3 NiやPbのゼロ磁場での比熱も一緒に示す。この図からも明らかなようにErNiが蓄冷材として極めて有望であることが判る。
【0007】
本発明による冷凍機では、蓄冷材として比熱の大きいErNiを使用したため、冷凍機の効率が向上するとともに、ErNiに定常的に一定の磁場を印加することにより冷凍能力を著しく飛躍させることができる。
【0008】
【発明が解決しようとする課題】
このため、本発明が採用した技術解決手段は、冷凍機の蓄冷器の蓄冷材としてErNiを用いるとともに、前記蓄冷材に定常的に一定の磁場を印加することを特徴とする冷凍機である。
【0009】
【実施の形態】
以下、図面に基づいて本発明の実施の形態を説明すると、図1は本発明の実施の形態に係る冷凍機の構成図であり、この冷凍機は前述した従来の冷凍機の蓄冷器1の付近に磁場を印加する磁場印加手段6を備えており、他の構成要件は従来と同様である。前記磁場印加手段6としては永久磁石や電磁石等の適宜磁石を使用することができ、また磁場印加手段6の磁場制御も適宜手段にて行うことができる。たとえば、永久磁石を使用した場合、蓄冷材に永久磁石を近づけたり遠ざけたりすることで磁場の強さを変えることができ、また永久磁石の移動手段として、各種のアクチュエータを使用することができる。
【0010】
上記構成の冷凍機の蓄冷器1に使用する蓄冷材はErNiであり、この蓄冷材には前述のように磁場印加手段により、種々の形態で磁場を印加できるようにしてある。
高熱源の温度を30K、低熱源の温度を4Kとし、蓄冷材としてErNiを用い、それに磁場を印加した場合の冷凍能力(Pr /Pi )のシミュレーションの結果を図3に示す。ここで、Pi は理想の、Pr は実際のGM冷凍機の冷凍能力を表しており、L1は蓄冷機の全長、L2はその内の磁場を印加した部分の長さを表す。またB(T)は印加磁場をテスラの単位であらわす。図から明らかなように、L2/L1=0.55、B(T)=2.1Tのときに最大値は0.695であり、この値は磁場を印加しないときの値0.52に比べ1.34倍となる。このようにErNiは一定の磁場を印加することにより冷凍能力が増大することが明らかなった。
【0011】
次に、コールドブローの前に蓄冷器に磁場BH を印加し、断熱励磁する。このとき発生した熱はその直後のコールドブロー時にヘリウムガスによって高熱源に運ばれる。逆にホットブローの前に蓄冷器にかかっている磁場BH を断熱減磁してBL にすることにより蓄冷器の温度を下げる。その直後にホットブローで蓄冷器を通過するヘリウムガスが冷却され、低熱源がより低温になる。この操作によってガス冷凍(GM冷凍)だけでなく、磁気冷凍の効果もプラスされるので冷凍能力が増大する。これは磁気冷凍とガス冷凍の「ハイブリッド冷凍機」ということができる。
【0012】
図4は磁場BH とBL の組み合わせと冷凍能力の関係を示したものである。 BL =0.2T、BH =0.39Tの時最大0.773を示す。この値は、磁場を印加しない時に比べて、1.5倍の冷凍能力になることを示している。
現在市販されている最強の永久磁石(Ne−Fe−B)の表面磁場は約0.3Tであるから、この磁石を用いる場合にはBL =0.14T、BH =0.3Tとして、図から冷凍能力0.68が得られる。この値は磁場を印加しない時の値0.52に比べて1.3倍の冷凍能力になることを示している。このことは、磁石を冷凍サイクルに同期して蓄冷器に近づけたり遠ざけたりするだけで、容易に冷凍能力が1.3倍となることを示している。
【0013】
上述したように本発明は、蓄冷材としてErNiを用い、さらに蓄冷材に磁場を印加することにより、従来の冷凍機に比較して大幅に冷凍能力を増大することができる。この場合磁場を印加する手段として永久磁石に限らず、電磁石などを使用することができることは言うまでもない。また、蓄冷材に印加する磁場の強さは永久磁石を適宜手段により近づけたり遠ざけたりするばかりでなく、電磁石への電流制御等により行うこともできる。
なお、本発明はその精神また主要な特徴から逸脱することなく、他の色々な形で実施することができ、そのため前述の実施の形態は単なる例示に過ぎず、限定的に解釈してはならない。更に特許請求の範囲の均等範囲に属する変形や変更は全て本発明の範囲内のものである。
【0014】
【発明の効果】
以上詳細に説明したように本発明によれば、比熱の高いErNiを蓄冷材い、さらに同蓄冷材に印加する磁場を定常的に一定とすることで、従来のガス冷凍機に比較して冷凍能力を大幅に向上することができる、等の優れた効果を奏することができる。
【図面の簡単な説明】
【図1】本発明に係わるGM冷凍機の概略構成図である。
【図2】ErNi蓄冷材の磁場中での比熱の実測値を示す図である。
【図3】蓄冷材としてErNiを用い、それに磁場を印加した場合の冷凍能力(Pr /Pi )のシミュレーションの結果である。
【図4】磁場BH とBL の組み合わせと冷凍能力の関係を示した図である。
【図5】従来のGM冷凍機の概略構成図である。
【符号の説明】
1 蓄冷器
2 ピストン
3 シリンダ
4 熱交換器
5 コンプレッサー
6 磁場印加手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator, and more particularly, to a refrigerator excellent in refrigerating capacity using ErNi as a cold storage material and applying a constant magnetic field constantly to the cold storage material .
[0002]
[Prior art]
Today, GM (Giffrd-McMahon) refrigerators are widely used as cryogenic refrigerators.
Referring to FIG. 5, a schematic configuration of a conventional GM refrigerator will be described. In the figure, 1 is a regenerator, 2 is a piston slidably disposed in the cylinder 3, 4 is a heat exchanger, 5 is a compressor, V1 and V2 are valves, and the refrigerator constituted by these operates as follows.
[0003]
The piston 2 is initially located at the bottom of the cylinder 3 (downward in the figure), and high-pressure helium gas is introduced from the compressor 5 into the chamber A and the regenerator 1 through the valve V1. Next, with the valve V1 kept open, the piston 2 is raised, and the helium gas in the cylinder 3A chamber is transferred to the B chamber through the regenerator 1. This is called hot blow. This operation is performed while the valve V1 is opened so as to satisfy the isobaric condition because the volume of the helium gas contracts when the helium gas passes through the regenerator 1.
[0004]
Next, the valve V1 is closed and the valve V2 is opened to lower the pressure in the B chamber in the cylinder 3. In this process, the helium gas expands, and the temperature is reduced, thereby freezing is performed. Finally, the piston 2 is lowered, and the low-temperature helium gas moves from the B chamber in the cylinder 3 to the A chamber through the heat exchanger 4 and the regenerator 1. This is called cold blow. The refrigerator is operated with the above process as one cycle.
[0005]
[Problems to be solved by the invention]
In this system, a material having a large specific heat is required as the material “cool storage material” used for the regenerator 1, but Er 3 Ni and Pb have been used as the cool storage material in the conventional GM refrigerator.
However, Er 3 Ni and Pb cannot be said to have sufficient specific heat as a cold storage material, and a new cold storage material having a larger specific heat has been desired.
[0006]
Against this background, the present inventors have shown that the specific heat of ErNi is greater than that of conventional cold storage materials Er 3 Ni and Pb at around 10.5 K where the transition from paramagnetism to ferromagnetism is promising as a cold storage material. The present invention has been confirmed based on this finding. In FIG. 2, the actual value of the specific heat in the magnetic field of an ErNi cool storage material is shown. For comparison, specific heat of Er 3 Ni and Pb used in a conventional GM refrigerator in a zero magnetic field is also shown. As can be seen from this figure, ErNi is extremely promising as a cold storage material.
[0007]
In the refrigerator according to the present invention, due to the use of specific heat large ErNi as cold accumulating material, thereby improving the efficiency of the refrigerator, it is possible to greatly dramatically cooling capacity by applying a constantly a certain magnetic field to ErNi .
[0008]
[Problems to be solved by the invention]
For this reason, the technical solution means which this invention employ | adopted is a refrigerator characterized by using ErNi as a cool storage material of the cool storage of a refrigerator, and applying a constant magnetic field to the said cool storage material steadily .
[0009]
Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a refrigerator according to an embodiment of the present invention. A magnetic field applying means 6 for applying a magnetic field is provided in the vicinity, and the other constituent elements are the same as in the prior art. As the magnetic field applying means 6, an appropriate magnet such as a permanent magnet or an electromagnet can be used, and the magnetic field control of the magnetic field applying means 6 can be performed by an appropriate means. For example, when a permanent magnet is used, the strength of the magnetic field can be changed by moving the permanent magnet closer to or away from the cold storage material, and various actuators can be used as means for moving the permanent magnet.
[0010]
The regenerator material used in the regenerator 1 of the refrigerator having the above-described configuration is ErNi, and a magnetic field can be applied to the regenerator material in various forms by the magnetic field application means as described above.
FIG. 3 shows the simulation results of the refrigerating capacity (P r / P i ) when the temperature of the high heat source is 30 K, the temperature of the low heat source is 4 K, ErNi is used as the cold storage material, and a magnetic field is applied thereto. Here, Pi represents the ideal, Pr represents the actual refrigeration capacity of the GM refrigerator, L1 represents the total length of the regenerator, and L2 represents the length of the portion to which the magnetic field is applied. B (T) represents the applied magnetic field in units of Tesla. As is apparent from the figure, when L2 / L1 = 0.55 and B (T) = 2.1T, the maximum value is 0.695, which is compared with the value 0.52 when no magnetic field is applied. 1.34 times. Thus, it has been clarified that ErNi increases its refrigeration capacity by applying a constant magnetic field.
[0011]
Next, before cold blow, a magnetic field B H is applied to the regenerator and adiabatic excitation is performed. The heat generated at this time is carried to a high heat source by helium gas at the time of cold blow immediately thereafter. Conversely, the temperature of the regenerator is lowered by adiabatically demagnetizing the magnetic field B H applied to the regenerator before hot blow to B L. Immediately thereafter, the helium gas passing through the regenerator is cooled by hot blow, and the low heat source becomes cooler. By this operation, not only gas refrigeration (GM refrigeration) but also the effect of magnetic refrigeration is added, so that the refrigeration capacity is increased. This can be called a “hybrid refrigerator” of magnetic refrigeration and gas refrigeration.
[0012]
FIG. 4 shows the relationship between the combination of the magnetic fields B H and B L and the refrigerating capacity. A maximum of 0.773 is shown when B L = 0.2T and B H = 0.39T. This value indicates that the refrigerating capacity is 1.5 times that when no magnetic field is applied.
Since the surface magnetic field of the strongest permanent magnet (Ne-Fe-B) currently on the market is about 0.3 T, when using this magnet, B L = 0.14 T, B H = 0.3 T, A refrigerating capacity of 0.68 is obtained from the figure. This value indicates that the refrigerating capacity is 1.3 times that of 0.52 when no magnetic field is applied. This indicates that the refrigerating capacity can easily be increased 1.3 times simply by moving the magnet closer to or away from the regenerator in synchronization with the refrigeration cycle.
[0013]
As described above, the present invention can significantly increase the refrigerating capacity as compared with a conventional refrigerator by using ErNi as the regenerator and further applying a magnetic field to the regenerator. In this case, it goes without saying that the means for applying the magnetic field is not limited to a permanent magnet, but an electromagnet or the like can be used. Further, the strength of the magnetic field applied to the cold storage material can be determined not only by bringing the permanent magnet closer to or away from the appropriate means but also by controlling the current to the electromagnet.
It should be noted that the present invention can be implemented in various other forms without departing from the spirit and main features thereof, and therefore the above-described embodiment is merely an example and should not be interpreted in a limited manner. . Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
[0014]
【The invention's effect】
As described above in detail, according to the present invention, ErNi having a high specific heat is stored in the regenerator material , and the magnetic field applied to the regenerator material is made constant and constant, so that the refrigeration can be performed as compared with the conventional gas refrigerator. It is possible to achieve excellent effects such as greatly improving the ability.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a GM refrigerator according to the present invention.
FIG. 2 is a diagram showing actual measurement values of specific heat of ErNi regenerator material in a magnetic field.
FIG. 3 is a result of a simulation of refrigeration capacity (P r / P i ) when ErNi is used as a cold storage material and a magnetic field is applied thereto.
FIG. 4 is a diagram showing the relationship between the combination of magnetic fields B H and B L and the refrigerating capacity.
FIG. 5 is a schematic configuration diagram of a conventional GM refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Regenerator 2 Piston 3 Cylinder 4 Heat exchanger 5 Compressor 6 Magnetic field application means

Claims (1)

冷凍機の蓄冷器の蓄冷材としてErNiを用いるとともに、前記蓄冷材に定常的に一定の磁場を印加することを特徴とする冷凍機。A refrigerator characterized in that ErNi is used as a regenerator material of a regenerator of a refrigerator and a constant magnetic field is constantly applied to the regenerator material .
JP10289197A 1997-04-21 1997-04-21 refrigerator Expired - Fee Related JP3766507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10289197A JP3766507B2 (en) 1997-04-21 1997-04-21 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10289197A JP3766507B2 (en) 1997-04-21 1997-04-21 refrigerator

Publications (2)

Publication Number Publication Date
JPH10300251A JPH10300251A (en) 1998-11-13
JP3766507B2 true JP3766507B2 (en) 2006-04-12

Family

ID=14339492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10289197A Expired - Fee Related JP3766507B2 (en) 1997-04-21 1997-04-21 refrigerator

Country Status (1)

Country Link
JP (1) JP3766507B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250087B1 (en) 1999-10-01 2001-06-26 Abi Limited Super-quick freezing method and apparatus therefor
JP5127226B2 (en) 2004-08-25 2013-01-23 アルバック・クライオ株式会社 Regenerator and cryopump
JP4533838B2 (en) * 2005-12-06 2010-09-01 株式会社東芝 Heat transport device, refrigerator and heat pump
DE102006006326B4 (en) * 2006-02-11 2007-12-06 Bruker Biospin Ag Hybrid heat pump / chiller with magnetic cooling stage
CN102538285B (en) * 2010-12-29 2014-01-08 中国科学院理化技术研究所 Magnetic refrigeration and regenerative gas refrigeration composite method and refrigerating device

Also Published As

Publication number Publication date
JPH10300251A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US4735053A (en) Method of removing heat from a refrigeration load and apparatus for performing this method
JP2008249175A (en) Magnetic refrigerating device and method
JP3766507B2 (en) refrigerator
Qiu et al. Performance improvement of a pulse tube cooler below 4 K by use of GdAlO3 regenerator material
JPH06281285A (en) Operating method of heat pump for low-temperature formation and heat pump
Yayama et al. Hybrid cryogenic refrigerator: combination of brayton magnetic-cooling and Gifford-McMahon gas-cooling system
KR20160089401A (en) Hybrid brayton-gifford-mcmahon expander
Kamiya et al. Hydrogen liquefaction by magnetic refrigeration
JP3648265B2 (en) Superconducting magnet device
JPH04186802A (en) Magnetic material with high thermal capacity within temperature range of 4k-20k, and cold acculator and magnetic refrigeration unit using same
JP2818099B2 (en) Cryogenic refrigerator
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JPH0317055B2 (en)
JPH10132405A (en) Cold storage freezer and its operating method
Zimm et al. Magnetic refrigeration: Application and enabler for HTSC magnets
JPH05340622A (en) Cold heat accumulative type freezer
JPH0151747B2 (en)
JP2012057871A (en) Pulse tube refrigerating machine, and superconductive magnet device using the same
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JPH08189716A (en) Cool storage vessel type refrigerating machine
JP2000146332A (en) Cold storage type refrigerating machine
JPH02254264A (en) Cryostatic accumulator
JPH0933130A (en) Cold accumulator type refrigerator
Jeong et al. Magnetically augmented regeneration in Stirling Cryocooler
JPH046352A (en) Refrigerating method, cold-heat accumulator and liquefier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees