JPH0432596A - Method for continuously coloring titanium - Google Patents

Method for continuously coloring titanium

Info

Publication number
JPH0432596A
JPH0432596A JP13805090A JP13805090A JPH0432596A JP H0432596 A JPH0432596 A JP H0432596A JP 13805090 A JP13805090 A JP 13805090A JP 13805090 A JP13805090 A JP 13805090A JP H0432596 A JPH0432596 A JP H0432596A
Authority
JP
Japan
Prior art keywords
coloring
titanium
coil
liquid
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13805090A
Other languages
Japanese (ja)
Inventor
Shigeru Kitani
滋 木谷
Kenichi Goshokubo
賢一 御所窪
Yoshimitsu Ota
太田 好光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP13805090A priority Critical patent/JPH0432596A/en
Publication of JPH0432596A publication Critical patent/JPH0432596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To prevent the generation of striped color shades on a Ti strip at the time of continuously coloring the strip by the anodization in a liq. colorant by arranging an anode close to the position where the strip enters the colorant to control the anodization reaction caused at this time. CONSTITUTION:A voltage is impressed on a titanium coil 6 through a conductor roll 5, and the coil 6 is continuously immersed in a liq. colorant 3 by an immersion roll 7, anodized and colored. At this time, an anode 10 is arranged close to the position where the coil 6 enters the colorant 3 so that the distance from the coil 6 is controlled to about 5-50mm and the immersion depth to about 20-200mm and connected to the conductor roll 5 with a lead wire. The anodization reaction caused when the coil 6 enters the colorant 3 is controlled by this constitution. As a result, a colored titanium material with the color shades reduced and excellent in appearance is industrially and stably mass-produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、チタン及びチタン合金を色ムラ少なく連続
発色させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for continuously coloring titanium and titanium alloys with little color unevenness.

〈従来技術とその課題〉 チタン(以降、チタン合金をも含めた総称とする)は比
強度が高く耐食性にも冨んでおり、しかも陽極酸化法に
よって種々の色に化学発色させることが可能であること
から、これらの特色が注目され、近年、建材等の分野に
おいて大幅に需要を延ばしている材料の1つである。
<Prior art and its challenges> Titanium (hereinafter referred to as a general term including titanium alloys) has high specific strength and excellent corrosion resistance, and can be chemically colored into various colors by anodizing. Therefore, these characteristics have attracted attention, and in recent years, it is one of the materials whose demand has increased significantly in fields such as building materials.

ところで、このチタン材の陽極酸化法による発色処理は
、従来、工業的規模での連続操業技術が確立されておら
ず、そのためバッチ操業に鱈って製品需要に応えている
のが実情であった。
By the way, until now, technology for continuous operation on an industrial scale has not been established for this coloring treatment of titanium materials by anodizing, and as a result, product demand has been met by batch operations. .

そこで、本発明者等は、量的にも安定した供給が必要な
建材分野等からの要望に沿うべく、チタンのコイル(帯
板)素材を連続的に陽極酸化法によって発色させる工業
的手法の確立を目指して研究を重ね、先に、その成果を
特願昭63−325249号、特願平1−253472
号、特願平2−35793号、特願平2−41629号
等として世に提供した。そして、これら提案技術は、チ
タン発色材の量産技術確立に大きく貢献することとなっ
た。
Therefore, in order to meet the demands of the building materials field, which requires a stable supply in terms of quantity, the present inventors developed an industrial method in which titanium coil (strip plate) material is continuously colored by anodizing. We conducted repeated research with the aim of establishing the
No., Japanese Patent Application No. 2-35793, Japanese Patent Application No. 2-41629, etc. These proposed technologies have greatly contributed to the establishment of mass production technology for titanium coloring materials.

しかしながら、その後も様々な観点に立って検討を重ね
てきた本発明者等は、前記提案技術を基に「チタンコイ
ルを巻戻しながら発色液中で連続的に陽極酸化処理する
チタンの連続発色方法」の実際操業が可能とはなったが
、それでも従来のバッチ式陽極酸化法と比べて“色ムラ
”の点で製品品質に幾分不満が残ることを認識せずには
居られなかった。
However, the inventors of the present invention have continued to conduct studies from various viewpoints since then, and based on the above-mentioned proposed technology, they have developed a method for continuous coloring of titanium in which a titanium coil is continuously anodized in a coloring solution while being unwound. Although it became possible to actually operate this method, we still couldn't help but realize that the product quality remained somewhat unsatisfactory in terms of color unevenness compared to the conventional batch-type anodizing method.

即ち、発色液や印加電圧等の条件を同じようにした場合
でも、従来のパッチ式陽極酸化処理では色ムラの発生が
殆んど見られないのに対して、コイルの連続的陽極酸化
処理を行うと、どうしても第4図(alや第4図(b)
に示すような色ムラが発生しがちであった。
In other words, even when the conditions such as the coloring solution and applied voltage are the same, there is almost no color unevenness in conventional patch-type anodizing treatment, whereas continuous anodizing treatment of the coil If you do this, you will inevitably see Figure 4 (al) and Figure 4 (b).
Color unevenness as shown in Fig. 3 was apt to occur.

このようなことから、本発明が目的としたのば、従来の
ハツチ式陽極酸化処理材に劣らない均質外観を有したチ
タン材を安定して量産できる“チタンの連続発色方法”
を確立することであった。
For this reason, the purpose of the present invention is to create a "continuous coloring method for titanium" that can stably mass-produce titanium materials with a homogeneous appearance comparable to that of conventional hatch-type anodized materials.
The goal was to establish the

く課題を解決するための手段〉 本発明者等は、上記目的の達成を目指して、まず「チタ
ンコイルの連続陽極酸化による発色法で得られる製品」
に色ムラが生じる原因の究明を行ったところ、 (A)  第4図(a)に示したような縞状色ムラは、
チタンコイルが発色液に侵入した瞬間に起きる発色反応
(以陣“液面反応“と称す)の条件変動に起因して生じ
る。
Means for Solving the Problems> In order to achieve the above object, the present inventors first developed a "product obtained by a coloring method using continuous anodic oxidation of titanium coils."
(A) The striped color unevenness shown in Figure 4 (a) is caused by the following:
This occurs due to changes in the conditions of the coloring reaction (referred to as "liquid surface reaction") that occurs the moment the titanium coil enters the coloring liquid.

(B)  第4図(blに示したような水玉状色ムラは
、前記発色反応によって発生した気泡に起因して生じる
(B) The polka dot-like color unevenness shown in FIG. 4 (bl) is caused by air bubbles generated by the coloring reaction.

との推測を持つに至った。I have come to the conclusion that this is the case.

つまり、バッチ式陽極酸化法の場合は、第5図に示した
如く、チタン材(11を処理槽(2)内の発色液(3)
中に浸漬してから対極(4)との間に電圧を印加し陽極
酸化すれば良いが、連続発色法の場合には、第6図に示
すように、コンダクタ−ロール(5)を用いて電圧を加
えながらチタンコイル(6)を発色液(3)の中へ連続
的に浸漬しつつ陽極酸化する必要がある(なお、図中の
符号7は浸漬ロールを示す)。従って、連続発色法の場
合には、チタンコイル(6)が発色液(3)に侵入した
瞬間から発色反応が起きることになる。そして、この時
、発色液(3)の液面が完全な静止状態で、かつチタン
コイル(6)が一定速度で滑らかに発色液(3)中に入
っていくならば縞状色ムラの問題が生じないと思われる
が、実際には発色液(3)の液面は多かれ少なかれ常に
揺れ動いているのでどうしてもコンダクタ−ロール(5
)から液面までの距離(第6図にlで示す)に変動が生
じてしまい、これが電圧変動につながり、発色反応が強
弱を伴う脈動状に起きる結果となる。
In other words, in the case of the batch type anodizing method, as shown in Fig.
It is sufficient to apply a voltage between the electrode and the counter electrode (4) for anodic oxidation, but in the case of continuous coloring method, a conductor roll (5) is used as shown in Figure 6. It is necessary to anodize the titanium coil (6) while continuously immersing it in the coloring liquid (3) while applying a voltage (note that 7 in the figure indicates a dipping roll). Therefore, in the case of the continuous coloring method, a coloring reaction occurs from the moment the titanium coil (6) enters the coloring liquid (3). At this time, if the liquid level of the coloring liquid (3) is completely stationary and the titanium coil (6) enters the coloring liquid (3) smoothly at a constant speed, there will be a problem of striped color unevenness. However, in reality, the liquid level of the coloring liquid (3) is more or less constantly fluctuating, so the conductor roll (5) is unavoidable.
) to the liquid level (indicated by l in FIG. 6), which leads to voltage fluctuations, resulting in a pulsating color reaction with varying strengths.

しかも、第7図に示す如く、チタンコイル(6)が発色
液(3)中に侵入する側では Ti+2N○3−−Ti02+ 2 No□+ 26と
思われるチタンの発色反応によって気泡(8)か発生し
、これが液面上に浮き上がって泡の層(9)を作る。チ
タンコイル(6)はこの泡の層(9)を通過する間にお
いても陽極酸化されるが、泡は液とガスの混合体である
から、上記泡の層(9)とチタンコイル(6)とが接し
て起きる陽極酸化反応(発色反応)は液中でのそれに比
べ遥かに不均一で不安定なものである。
Furthermore, as shown in Fig. 7, on the side where the titanium coil (6) enters the coloring liquid (3), bubbles (8) are formed due to the coloring reaction of titanium, which is thought to be Ti+2N○3--Ti02+ 2 No□+ 26. This rises to the surface of the liquid and forms a layer of foam (9). The titanium coil (6) is also anodized while passing through the foam layer (9), but since the foam is a mixture of liquid and gas, the foam layer (9) and the titanium coil (6) are anodized. The anodic oxidation reaction (coloring reaction) that occurs when the two come into contact with each other is much more uneven and unstable than that in liquid.

そして、チタンの陽極酸化では、例え電圧が終始一定に
なるように調整されたとしても、第8図に示される如く
、電圧を印加した瞬間に反応が最も激しく起きて大きな
電解電流が流れるが、この反応は数秒の間に急速に進行
するので電解電流は速やかに減少してしまう。これを連
続発色法における陽極酸化に当て嵌めると、チタンコイ
ルが発色液に侵入する場所において最も激しい発色反応
が起こり、チタンコイルが発色液から出る場所での反応
が最も弱くなっていると考えられる。その上、チタンの
電気抵抗はかなり大きいため、コンダクターロールとチ
タンコイルとの接触点からの距離が離れるにつれて電圧
は目立って低下する。
In titanium anodic oxidation, even if the voltage is adjusted to be constant throughout, as shown in Figure 8, the reaction occurs most intensely at the moment the voltage is applied, and a large electrolytic current flows. Since this reaction progresses rapidly within a few seconds, the electrolytic current quickly decreases. Applying this to anodic oxidation in the continuous coloring method, it is thought that the most intense coloring reaction occurs where the titanium coil enters the coloring liquid, and the weakest reaction occurs where the titanium coil exits the coloring liquid. . Moreover, since the electrical resistance of titanium is quite high, the voltage drops noticeably with increasing distance from the point of contact between the conductor roll and the titanium coil.

従って、“チタンコイルが発色液に侵入する場所”にお
ける反応が他の部位でのそれよりも一段と激しく起きる
傾向は更に強まる。
Therefore, the tendency for the reaction to occur more vigorously at "the location where the titanium coil enters the coloring liquid" than at other locations is further strengthened.

このように、連続発色法における陽極酸化では、チタン
コイルが発色液へ侵入した瞬間に最終的な色調に影響を
及ぼすような最も激しい発色反応が起きるにもかかわら
ず、液面が揺れ動いているためにコンダクタ−ロールか
ら液面までの距離変動に起因した電圧変動がこの部位で
発生し、縞状色ムラの最大原因となる上、コイルが液面
上に形成された泡の層を通過する際にも激しいけれども
不均一で不安定な発色反応が起きるため、これも縞状色
ムラを助長する原因となっているものと推測される。
In this way, in anodic oxidation in the continuous coloring method, the moment the titanium coil enters the coloring liquid, the most intense coloring reaction that affects the final color tone occurs, but because the liquid level is oscillating. Voltage fluctuations due to changes in the distance from the conductor roll to the liquid surface occur in this area, which is the biggest cause of striped color unevenness, and when the coil passes through a layer of bubbles formed on the liquid surface. Since a vigorous, non-uniform, and unstable coloring reaction occurs during this process, it is assumed that this is also a cause of promoting striped color unevenness.

一方、水玉状の色ムラは、前記発色反応により発生した
N O2ガスが気泡となってコイル面に付着し、発色反
応を局部的に阻害するために生じるものと推測されたの
である。
On the other hand, it was speculated that the polka dot-like color unevenness was caused by the NO2 gas generated by the coloring reaction forming bubbles and adhering to the coil surface, thereby locally inhibiting the coloring reaction.

そこで、本発明者等は、チタンの連続発色法に指摘され
た色ムラ問題の解消には“チタンコイルが発色液に侵入
した瞬間の激しい反応”を防止する平文てが欠かせない
との観点に立ち、その具体策を求めて更に研究を重ねた
結果、「チタンコイルが発色液に侵入する発色液面近傍
部位に陽極を配置しておくと、コイル浸漬直後の激しい
反応が効果的に防止されるか又は弱められ、成る程度発
色液中に侵入した後に本格的な発色反応が始まるように
なるため、製品品質にもっとも影響の大きい縞状色ムラ
を十分に抑えることがモきる上、この際に発色液の攪拌
を実施すれば、上記手段によってもある程度減少傾向の
見られる水玉状色ムラの発生が一層効果的に抑えられて
しまう」との知見を得ることができた。
Therefore, the present inventors believe that in order to solve the color unevenness problem that has been pointed out in the titanium continuous coloring method, it is essential to have a plain text that prevents the "violent reaction at the moment the titanium coil enters the coloring liquid." As a result of further research in search of specific measures, we found that ``by placing an anode near the surface of the color-forming liquid where the titanium coil penetrates into the color-forming liquid, violent reactions immediately after the coil is immersed can be effectively prevented. The full-fledged coloring reaction begins after the coloring liquid has penetrated into the coloring liquid to a certain extent. It was found that if the coloring solution is stirred at the time of coloring, the occurrence of polka dot-like color unevenness, which tends to decrease to some extent even with the above-mentioned means, can be more effectively suppressed.

この発明は、上記知見等に基づいてなされたもので、 [発色液中での陽極酸化処理によってチタンコイル(帯
板)を連続的に発色させる際に、第1図に示す如く、当
該チタンコイル(6)が発色液(3)の中へ侵入する位
置の近傍に陽極QOIを配置しておいて、発色液中侵入
と同時に起きる陽極酸化反応を抑制するか、これと共に
発色液(3)の攪拌をも実施することにより、色ムラの
発生を極力防止し得るようにした点」 に特徴を有するものである。
This invention was made based on the above findings, etc. [When a titanium coil (strip plate) is continuously colored by anodizing treatment in a coloring solution, as shown in FIG. An anode QOI is placed near the position where (6) enters the coloring liquid (3) to suppress the anodic oxidation reaction that occurs at the same time as the coloring liquid (6) enters the coloring liquid (3). It is characterized by the fact that the occurrence of color unevenness can be prevented as much as possible by also carrying out stirring.

ここで、発色液としては、均一で安定した発色効果が確
保できるものとして、硝酸塩、亜硝酸塩及び重クロム酸
塩の1種又は2種以上を主成分とした溶融物を適用する
のが好適である。
Here, as the coloring liquid, it is preferable to use a molten material containing one or more of nitrates, nitrites, and dichromates as main components, as it can ensure a uniform and stable coloring effect. be.

前述したように、特に縞状の色ムラを防止するためには
、チタンコイルが発色液に侵入した瞬間の激しい反応を
防止し、成る程度まで発色液中に入ってから発色反応が
始まるようにすることが必要であり、それが達成できれ
ばバッチ式と同様に色ムラの無い製品が得られる筈であ
るが、チタンコイルが発色液に侵入する部位に陽極を配
置することでその目的を十分に達成することができる。
As mentioned above, in order to prevent striped color unevenness in particular, it is necessary to prevent a violent reaction at the moment the titanium coil enters the coloring liquid, and to ensure that the coloring reaction starts only after the titanium coil has entered the coloring liquid to a certain extent. If this can be achieved, it should be possible to obtain a product with no color unevenness, just as with the batch method, but by placing the anode in the area where the titanium coil enters the coloring liquid, this purpose can be fully achieved. can be achieved.

第2図は、上記陽極α〔の形状と配置位置の1例を示し
た概略模式図であり、陽極形状は角筒型とされているが
、陽極の形状やサイズには格別な制限はない。ただ、こ
の場合、チタンコイル(6)と陽極0〔のと間隔や陽極
(IIの浸漬深さは問題となる。
Fig. 2 is a schematic diagram showing an example of the shape and arrangement position of the anode α, and the anode shape is a rectangular cylinder, but there are no particular restrictions on the shape or size of the anode. . However, in this case, the distance between the titanium coil (6) and the anode 0 and the immersion depth of the anode (II) are problematic.

前者については、間隔が狭いほど激しい液面反応を抑制
し易いが、あまり狭いとチタンコイル(6)が陽極α0
)に接触する危険があり、また発生した気泡が集積して
陽極α0の上部にまで溢れ出す恐れもある。一方、間隔
が広すぎると液面反応の抑制効果は小さくなる。このた
め、チタンコイル(6)と陽極αωのと間隔は、通常、
5〜50w程度に調整するのが適当である。後者の陽極
浸漬深さについても、浅すぎると液面反応を抑制する効
果が小さくなり、逆に深すぎると電気の無駄使いとなる
ので、該浸漬深さは、通常、20〜200m程度とする
のが適当である。
Regarding the former, the narrower the spacing, the easier it is to suppress a violent liquid level reaction, but if the spacing is too narrow, the titanium coil (6)
), and there is also a risk that the generated bubbles will accumulate and overflow to the upper part of the anode α0. On the other hand, if the interval is too wide, the effect of suppressing the liquid surface reaction will be reduced. Therefore, the distance between the titanium coil (6) and the anode αω is usually
It is appropriate to adjust the power to about 5 to 50W. Regarding the latter anode immersion depth, if it is too shallow, the effect of suppressing the liquid surface reaction will be small, and if it is too deep, electricity will be wasted, so the immersion depth is usually about 20 to 200 m. is appropriate.

また、陽極αωに用いる材料としては電解によって溶出
するものは好ましくなく、研究の結果、発色液を溶融硝
酸塩とする場合にはステンレス鋼やNiでは溶出が激し
くて使用できず、チタンが好適であることが分かった。
Furthermore, as a material for the anode αω, it is not preferable to use a material that is eluted by electrolysis.As a result of research, when using molten nitrate as the coloring liquid, stainless steel and Ni cannot be used because they elute too much, and titanium is preferable. That's what I found out.

陽極0ωへの電圧の印加手段についての格別な制限は無
いが、簡便には、第1図に示した如くコンダクタ−ロー
ル(5)と陽極αΦをリード線で接続するだけでも十分
である。そして、この陽極に印加する電圧も特に限定さ
れるものではないが、余り低すぎるとチタンコイルの激
しい液面反応を効果的に抑制することができず、逆に高
すぎると陽極自体の表面での電解電流が大きくなって電
気の無駄使いとなるので注意を要する。
There are no particular restrictions on the means for applying voltage to the anode 0ω, but simply connecting the conductor roll (5) and the anode αΦ with a lead wire as shown in FIG. 1 is sufficient. The voltage applied to this anode is not particularly limited either, but if it is too low, it will not be possible to effectively suppress the intense liquid level reaction of the titanium coil, and if it is too high, it will cause damage to the surface of the anode itself. Care must be taken, as the electrolytic current increases and electricity is wasted.

なお、発色液面に溜まりがちな泡の層(9)による弊害
(色ムラの原因になること等)を防止するためには、第
3図に示す如く、陽極αωの側面に開口部aυを設ける
と共に、ノズル(2)等を用いて上部より熱風や冷風を
吹付け、“発生し浮上した泡”を前記開口部αυを通し
て外へ排除する手段の採用も効果的である。
In addition, in order to prevent the harmful effects (causing color unevenness, etc.) caused by the bubble layer (9) that tends to accumulate on the surface of the coloring liquid, an opening aυ is formed on the side surface of the anode αω as shown in Figure 3. In addition to this, it is also effective to employ means for blowing hot air or cold air from above using a nozzle (2) or the like to expel the "generated and floated bubbles" to the outside through the opening αυ.

更に、発色液を攪拌してコイル表面に気泡が付着しない
ようにすることは水玉状色ムラの発生を抑制するために
有効な手段であるが、攪拌方法としては機械的なスター
ラーを用いるのが簡便で好ましい。勿論、“ポンプを用
いて発色液を循環しながらコイル面に吹付けると言った
攪拌手段”等によっても十分な色ムラ防止効果が得られ
ることとは言うまでもない。
Furthermore, stirring the coloring liquid to prevent air bubbles from adhering to the coil surface is an effective means of suppressing the occurrence of uneven coloring, but it is recommended to use a mechanical stirrer as the stirring method. It is convenient and preferable. Of course, it goes without saying that a sufficient effect of preventing color unevenness can also be obtained by using a "stirring means such as using a pump to circulate the coloring liquid and spray it onto the coil surface."

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 板厚:0,2tll、幅:300mの純チタンコイJ喧
JIS1種相当材)を準備し、KNO2とNaN0tの
混合溶融塩浴(重量比2:1.温度300℃)を発色液
として用いた“本発明に係る連続陽極酸化法(本発明法
)”と同様発色液を用いた“先に提案の連続陽極酸化法
(比較法)″とにより、種々の色調への発色試験を実施
した。
<Example> A pure titanium carp (JIS JIS Class 1 equivalent material) with a plate thickness of 0.2 tll and a width of 300 m was prepared, and a mixed molten salt bath of KNO2 and NaN0t (weight ratio 2:1, temperature 300°C) was added to the coloring liquid. Color development tests for various color tones were carried out using the "continuous anodization method according to the present invention (method of the present invention)" used as a method and the "continuous anodization method proposed previously (comparative method)" using the same coloring solution. carried out.

なお、素材のチタンコイルは予め〔1%HF+15%H
NCh(50℃)〕及び〔110%H2S0450℃)
〕の水溶液で酸洗してから試験に供した。
In addition, the titanium coil material is made of [1%HF + 15%H] in advance.
NCh (50℃)] and [110%H2S0450℃)
] and then subjected to the test.

また、本発明法では第3図に示す形式の陽極を配置した
第1図の如き装置を用い、比較法では第6図に示した装
置を用いた。
Further, in the method of the present invention, an apparatus as shown in FIG. 1 in which an anode of the type shown in FIG. 3 is arranged was used, and in the comparative method, an apparatus shown in FIG. 6 was used.

更に、水玉状色ムラの抑制効果を調べるため、本発明法
及び比較法とも、一部、電動スターラーによる発色液の
攪拌を実施した。
Furthermore, in order to investigate the effect of suppressing polka dot-like color unevenness, in both the method of the present invention and the comparative method, a part of the coloring liquid was stirred using an electric stirrer.

これら発色試験の結果を、その他の試験条件と共に第1
表に示す。
The results of these color development tests, together with other test conditions, are
Shown in the table.

第1表に示される結果からも明らかなように、所定部位
への陽極の配置や発色液の攪拌は製品の色ムラ抑制に顕
著な効果を発揮することが分かり、本発明法により色ム
ラが殆んど無い高品質の発色チタン材を得られることが
確認できる。
As is clear from the results shown in Table 1, it was found that placing the anode at a predetermined location and stirring the coloring liquid has a remarkable effect on suppressing color unevenness in products, and the method of the present invention can reduce color unevenness. It can be confirmed that a high quality colored titanium material with almost no coloring can be obtained.

なお、ここでは発色液として溶融塩を使用した例のみを
示したが、発色液が水溶液(例えば5%Na5PO,水
溶液)の場合であっても同様な効果が発揮されることは
言うまでもない。
Although only an example in which a molten salt is used as the coloring liquid is shown here, it goes without saying that similar effects can be obtained even when the coloring liquid is an aqueous solution (for example, 5% Na5PO, aqueous solution).

く効果の総括〉 以上に説明した如く、この発明によれば、色ムラの殆ん
ど無い優れた外観の発色チタン材を工業的に安定して量
産することが可能となるなど、産業上極めて有用な効果
がもたらされる。
Summary of Effects> As explained above, according to the present invention, it is possible to industrially stably mass-produce colored titanium materials with an excellent appearance with almost no color unevenness, which is an extremely important feature in industry. Useful effects are produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るチタン連続発色法の説明図であ
る。 第2図及び第3図は、本発明法に適用される陽極のそれ
ぞれ別の例を示した概略模式図である。 第4図は、連続式陽極酸化法によって得られる発色チタ
ン材に見られる色ムラ状態の説明図であり、第4図(a
)及び第4図(b)はそれぞれ別の例を示したものであ
る。 第5図は、バッチ式陽極酸化法によるチタン発色法の説
明図である。 第6図は、連続式陽極酸化法によ乙チタン発色法の説明
図である。 第7図は、色ムラ発生の一因を説明した概念図である。 第8図は、チタンの陽極酸化における電解電流の経時変
化例を示すグラフである。 図面において、 1・・・チタン材、     2・・・処理槽。 3・・・発色液、      4・・・対極。 5・・・コンダクタ−ロール。 6・・・チタンコイル 8・・・気泡 10・・・陽極。 12・・・ノズル。 7・・・浸漬ロール 9・・・泡の層。 11・・・開口部 出願人 日本ステンレス株式会社
FIG. 1 is an explanatory diagram of the titanium continuous coloring method according to the present invention. FIGS. 2 and 3 are schematic diagrams showing different examples of anodes applied to the method of the present invention. FIG. 4 is an explanatory diagram of color unevenness observed in a colored titanium material obtained by continuous anodic oxidation.
) and FIG. 4(b) show different examples. FIG. 5 is an explanatory diagram of a titanium coloring method using a batch type anodic oxidation method. FIG. 6 is an explanatory diagram of a titanium coloring method using a continuous anodic oxidation method. FIG. 7 is a conceptual diagram illustrating the cause of color unevenness. FIG. 8 is a graph showing an example of changes in electrolytic current over time in anodizing titanium. In the drawings: 1... Titanium material, 2... Treatment tank. 3...Coloring liquid, 4...Counter electrode. 5... Conductor roll. 6...Titanium coil 8...Bubble 10...Anode. 12... Nozzle. 7...Immersion roll 9...Layer of foam. 11...Opening applicant Nippon Stainless Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)発色液中での陽極酸化処理によってチタン又はチ
タン合金帯板を連続的に発色させる際に、当該帯板が発
色液の中へ侵入する位置の近傍に陽極を配置し、発色液
中侵入と同時に起きる陽極酸化反応を抑制することを特
徴とする、チタンの連続発色方法。
(1) When continuously coloring a titanium or titanium alloy strip by anodizing in a coloring solution, an anode is placed near the position where the strip enters the coloring solution. A continuous coloring method for titanium that is characterized by suppressing the anodic oxidation reaction that occurs simultaneously with invasion.
(2)発色液が硝酸塩、亜硝酸塩及び重クロム酸塩の1
種以上を主成分とした溶融物である、請求項1に記載の
チタンの連続発色方法。
(2) The coloring liquid is nitrate, nitrite, and dichromate.
2. The continuous coloring method for titanium according to claim 1, wherein the method is a molten material containing at least one species as a main component.
(3)発色液を攪拌しながら陽極酸化処理を行うことを
特徴とする、請求項1又は2に記載のチタンの連続発色
方法。
(3) The continuous coloring method for titanium according to claim 1 or 2, wherein the anodizing treatment is performed while stirring the coloring liquid.
(4)液面上部より気体を吹付けてコイルの侵入部に発
生した泡を排除しながら陽極酸化処理を行う、請求項1
乃至3の何れかに記載のチタンの連続発色方法。
(4) Claim 1, wherein the anodizing treatment is performed while blowing gas from above the liquid level to eliminate bubbles generated at the entry portion of the coil.
4. The method for continuously coloring titanium according to any one of 3 to 3.
JP13805090A 1990-05-28 1990-05-28 Method for continuously coloring titanium Pending JPH0432596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13805090A JPH0432596A (en) 1990-05-28 1990-05-28 Method for continuously coloring titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13805090A JPH0432596A (en) 1990-05-28 1990-05-28 Method for continuously coloring titanium

Publications (1)

Publication Number Publication Date
JPH0432596A true JPH0432596A (en) 1992-02-04

Family

ID=15212824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13805090A Pending JPH0432596A (en) 1990-05-28 1990-05-28 Method for continuously coloring titanium

Country Status (1)

Country Link
JP (1) JPH0432596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702461A (en) * 2016-12-28 2017-05-24 佛山市铠斯钛科技有限公司 Titanium-magnesium alloy anodic oxidation solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702461A (en) * 2016-12-28 2017-05-24 佛山市铠斯钛科技有限公司 Titanium-magnesium alloy anodic oxidation solution

Similar Documents

Publication Publication Date Title
US3989605A (en) Method for continuous electrolytic coloring of aluminum articles
JPH0432596A (en) Method for continuously coloring titanium
CA1061280A (en) Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles
US4002549A (en) Apparatus and method for continuous electrolytic coloring of aluminum articles
US4180443A (en) Method for coloring aluminum
US4059494A (en) Process for continuous electrolytic coloring of aluminum or aluminum base alloy strip and wire
US4097351A (en) Preparation of metal alloy coatings on iron substrates
US4179342A (en) Coating system method for coloring aluminum
US3977948A (en) Process for coloring, by electrolysis, an anodized aluminum or aluminum alloy piece
EP0015279B1 (en) Coating system
JP2006138002A (en) Coloring electrolysis apparatus, coloring electrolysis method, and method for producing colored titanium
JPH04128398A (en) Method for multicoloring titanium in stripes
JPS59226197A (en) Surface treatment of aluminum alloy for patterning
JPS5827997A (en) Pretreatment of stainless steel for color formation
CA1060838A (en) Process for continuous electrolytic coloring of aluminum or aluminum base alloy strip and wire
JPH09279393A (en) Method for electrolytically coloring one surface of stainless steel strip, method for electrolytically decoloring one surface and device therefor
US20020096434A1 (en) Continuous anodizing and coloring process
JPH03240998A (en) Method for continuously coloring titanium coil
JP3171995B2 (en) Electrolytic coloring of metal materials
JP3239828B2 (en) Method for electrolytic coloring of aluminum or aluminum alloy
JPH03115597A (en) Method for continuously anodizing titanium coil
JPS5511184A (en) Surface treating method of copper or copper alloy or plated product by these metals
JPH06272082A (en) Colored film formed on surface of aluminum material and electrolytic coloring method
JPH028373A (en) Chromate treatment liquid, its preparation and chromate treatment
JPS6263667A (en) Manufacture of colored metallic wire