JPH04325608A - Production of copper powder - Google Patents

Production of copper powder

Info

Publication number
JPH04325608A
JPH04325608A JP3122634A JP12263491A JPH04325608A JP H04325608 A JPH04325608 A JP H04325608A JP 3122634 A JP3122634 A JP 3122634A JP 12263491 A JP12263491 A JP 12263491A JP H04325608 A JPH04325608 A JP H04325608A
Authority
JP
Japan
Prior art keywords
copper
reducing
copper oxide
copper powder
liter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3122634A
Other languages
Japanese (ja)
Inventor
Takamasa Kawakami
川上 殷正
Takeo Kaneoka
金岡 威雄
Norio Sayama
憲郎 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3122634A priority Critical patent/JPH04325608A/en
Publication of JPH04325608A publication Critical patent/JPH04325608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a copper powder high in aspect ratio by reducing the crystallite of copper oxide in a reducing gas atmosphere while substantially maintaining its shape. CONSTITUTION:Copper is oxidized to form the needle, wedge or axeshaped crystallite of copper oxide. The crystallite is reduced in a reducing gas atmosphere while substantially maintaining its shape, and a fine copper powder having several mum length of long side and submicron thickness is formed. Hydrogen, carbon monoxide, their mixture or a reducing compd. capable of being gasified such as hydrazine are used as the reducing gas. The reduction is preferably conducted at 50-300 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、長さ或いは長辺が〜数
μmで直径或いは厚さがサブミクロン以下である新規な
銅粉の製造法であり、導電性塗料、粉末冶金、防かび、
その他種々の用途に好適に使用可能なものである。
[Industrial Application Field] The present invention is a novel method for producing copper powder having a length or long side of ~ several μm and a diameter or thickness of submicron or less, and is used in conductive coatings, powder metallurgy, and anti-fungal applications. ,
It can be suitably used for various other uses.

【0002】0002

【従来の技術】従来、銅粉の製造法としては、電解法、
アトマイズ法、機械的粉砕などが知られ、主に粉末冶金
などの用途に用いられている。これら方法による銅粉は
、粒子径が大きく、製造条件の制御や分別によってより
微細な銅粉も得られるように成ってきているが、生産性
が悪く、微細化にも自ずと限度があるものであった。 また、導電性塗料などの分野において、鱗片状或いは針
状などの高アスペクト比を有するものを通常の粉末と併
用して使用されているが、銅粉には高アスペクト比のも
のがなく、銀粉などのような良好な導電性塗料を製造す
ることが困難であった。
[Prior Art] Conventionally, methods for producing copper powder include electrolytic method,
Atomization methods, mechanical pulverization, etc. are known and are mainly used for applications such as powder metallurgy. Copper powder produced by these methods has a large particle size, and although it has become possible to obtain finer copper powder by controlling manufacturing conditions and sorting, the productivity is low and there is a limit to miniaturization. there were. In addition, in fields such as conductive paints, powders with high aspect ratios such as scales or needles are used in combination with regular powders, but copper powders do not have high aspect ratios, and silver powders It has been difficult to produce good electrically conductive paints such as these.

【0003】0003

【発明が解決しようとする課題】本発明者は、先に、多
層プリント配線板の内層板の層間接着力の向上のために
内層銅箔表面を化学的に酸化して、微細な針、クサビ、
斧などの形状の凹凸を形成し、これを気相還元してこの
凹凸を実質的に保持した金属銅とすることにより、スル
ーホールメッキ工程における「ハロー」や「ピンクリン
グ」のない多層板を製造する方法を見いだした。さらに
、この方法について検討したところ、この方法は、微細
な針、クサビ、斧などの形状の銅粉の製造に適用できる
ことを発見し、本発明に至った。
[Problems to be Solved by the Invention] The present inventor first attempted to chemically oxidize the surface of the inner layer copper foil in order to improve the interlayer adhesion of the inner layer board of a multilayer printed wiring board, thereby eliminating fine needles and wedges. ,
By forming irregularities in the shape of an axe, etc., and reducing them in a vapor phase to produce metallic copper that substantially retains these irregularities, we can create multilayer boards without "halos" or "pink rings" during the through-hole plating process. I found a way to manufacture it. Furthermore, upon studying this method, it was discovered that this method could be applied to the production of copper powder in the shape of fine needles, wedges, axes, etc., leading to the present invention.

【0004】0004

【課題を解決するための手段】すなわち、本発明は、銅
を酸化して針、クサビ、或いは斧状の酸化銅微細結晶と
し該酸化銅微細結晶を還元性ガス存在雰囲気で該酸化銅
微細結晶の形状を実質的に保持して気相還元することを
特徴とする銅粉の製造法であり、該還元性ガスが、水素
、一酸化炭素又はこれらの混合物であること、該還元性
ガスが、還元性の化合物ガスであることからなる銅粉の
製造法である。
[Means for Solving the Problems] That is, the present invention oxidizes copper to form needle-, wedge-, or ax-shaped copper oxide microcrystals, and converts the copper oxide microcrystals into copper oxide microcrystals in an atmosphere in the presence of a reducing gas. A method for producing copper powder, which is characterized in that the reducing gas is hydrogen, carbon monoxide, or a mixture thereof, and the reducing gas is hydrogen, carbon monoxide, or a mixture thereof. , is a method for producing copper powder using a reducing compound gas.

【0005】以下、本発明について説明する。本発明の
銅は、製造する銅粉の純度を考慮した場合、より高純度
のものが好適であるまた、その形態は特に限定されず、
シート、箔、粉末、線材など種々のものが使用でき、主
に針、クサビ、或いは斧状の酸化銅結晶の製造方法との
関係を考慮して最適なものを選択する。特に、粉末とし
てμmオーダーのものを使用して、完全に酸化させ、全
て酸化銅の結晶とする方法は、生産性が高く好ましい。
The present invention will be explained below. Considering the purity of the copper powder to be produced, the copper of the present invention is preferably of higher purity, and its form is not particularly limited,
Various materials such as sheets, foils, powders, and wires can be used, and the most suitable one is selected mainly in consideration of the relationship with the manufacturing method of needle-, wedge-, or ax-shaped copper oxide crystals. In particular, a method of using powder on the order of μm and completely oxidizing it to form all copper oxide crystals is highly productive and preferred.

【0006】銅を酸化して、酸化銅結晶に変換する方法
も公知であり、種々の方法が選択可能であるが、得られ
た酸化銅結晶の形態の点から、多層板の内層銅箔を酸化
処理してその表面に微細凹凸を形成するために使用され
ているものが高アスペクト比の酸化銅を得るものとして
好適に使用できる。これらとしては具体的には下記の如
きものが例示されるが、これらに限定されるものではな
く、公知方法が使用できる。 ■. 水酸化ナトリウム(NaOH(15g/リットル
))/次亜塩素酸ナトリウム(NaClO2(31g/
リットル))/リン酸ナトリウム(15g/リットル)
、70〜100 ℃、 0.5〜10分間。 ■. 硫酸銅(50g/リットル)/塩化ナトリウム(
200g/リットル)、40〜80℃、 3〜15分間
。 ■. 酢酸(20g/リットル)/塩化アンモニウム(
20g/リットル)/酢酸銅(10g/リットル)、3
0〜80℃、 1〜10分間。 ■. 酢酸銅(10g/リットル)/硫酸銅(24g/
リットル)/硫化バリウム(24g/リットル)/塩化
アンモニウム(24g/リットル)、40〜50℃、 
1〜10分間。 ■. 硫酸銅(25g/リットル)/硫酸ニッケル(2
5g/リットル)/塩素酸カリウム(25g/リットル
)、70〜90℃、1〜10分間。 ■. 過硫酸カリウム(20g/リットル)/水酸化ナ
トリウム(50g/リットル)、50〜80℃、 1〜
3 分間。
[0006] A method of oxidizing copper to convert it into copper oxide crystals is also known, and various methods can be selected, but from the viewpoint of the morphology of the obtained copper oxide crystals, it is difficult to use the inner layer copper foil of the multilayer board. Those used to form fine irregularities on the surface by oxidation treatment can be suitably used to obtain copper oxide with a high aspect ratio. Specific examples of these include, but are not limited to, the following, and known methods can be used. ■. Sodium hydroxide (NaOH (15g/liter))/sodium hypochlorite (NaClO2 (31g/liter))
liter))/sodium phosphate (15g/liter)
, 70-100°C, 0.5-10 minutes. ■. Copper sulfate (50g/liter)/sodium chloride (
200g/liter), 40-80℃, 3-15 minutes. ■. Acetic acid (20g/liter)/Ammonium chloride (
20g/liter)/copper acetate (10g/liter), 3
0-80℃, 1-10 minutes. ■. Copper acetate (10g/liter)/Copper sulfate (24g/liter)
liter)/barium sulfide (24g/liter)/ammonium chloride (24g/liter), 40-50℃,
1 to 10 minutes. ■. Copper sulfate (25g/liter)/Nickel sulfate (2
5g/liter)/potassium chlorate (25g/liter), 70-90°C, 1-10 minutes. ■. Potassium persulfate (20g/liter)/sodium hydroxide (50g/liter), 50-80℃, 1-
3 minutes.

【0007】上記の褐色或いは黒色の酸化銅微細凹凸皮
膜を形成する方法のなかで、実用化されている方法は得
られた酸化銅膜自体、またはこれを液相で還元処理した
ものを積層成形した場合に強い接着力を示す好適な条件
である。しかし、本発明は、これらの酸化銅膜を用いる
ものではなく、これを銅から分離した微細酸化銅結晶を
用い、気相還元して銅粉とする。従って、酸化処理膜と
しての接着強度など無関係であり、より高いアスペクト
比の分離容易な酸化銅とする条件、すなわち、より凹凸
度の大きく、剥離の容易な酸化銅結晶が生成する条件を
選択するのが好ましく、通常、より高温、より長時間な
どのより厳しい条件側を選択するのが好ましい。
[0007] Among the methods for forming the brown or black finely uneven copper oxide film described above, the method that has been put into practical use involves lamination molding of the obtained copper oxide film itself or a product that has been reduced in a liquid phase. This is a suitable condition that shows strong adhesive strength when However, the present invention does not use these copper oxide films, but uses fine copper oxide crystals separated from copper, and performs vapor phase reduction to obtain copper powder. Therefore, the adhesion strength as an oxidized film is irrelevant, and conditions are selected that produce copper oxide crystals with a higher aspect ratio that are easier to separate, that is, conditions that produce copper oxide crystals that have greater unevenness and are easier to peel off. Usually, it is preferable to select harsher conditions such as higher temperature and longer time.

【0008】上記で得た酸化銅結晶を通常、必要に応じ
て水洗などして精製し、乾燥した後本発明の気相還元を
する。本発明の還元性ガス雰囲気は、■.水素、一酸化
炭素などの還元性ガス、■.ヒドラジン、その他のガス
化可能な還元性の化合物、又は■.■と■とを同時に含
む気相雰囲気である。まず、これら還元性ガスを供給す
る方法は、特に限定されるものではなく、例えば、上記
■のガスをボンベにて供給する方法、電気分解、触媒熱
分解することにより上記■のガスを供給する方法、さら
に、非酸化性或いは還元性の気体により還元性化合物の
気化を促進させて化合物ガスを供給することなどにより
行うことが可能である。
The copper oxide crystals obtained above are usually purified by washing with water if necessary, dried, and then subjected to the gas phase reduction of the present invention. The reducing gas atmosphere of the present invention is: (1). Reducing gases such as hydrogen and carbon monoxide, ■. Hydrazine, other gasifiable reducing compounds, or ■. This is a gaseous atmosphere that simultaneously contains (1) and (2). First, the method of supplying these reducing gases is not particularly limited, and for example, the method of supplying the above gas (①) in a cylinder, the method of supplying the above gas (②) by electrolysis, catalytic pyrolysis, etc. Further, it is possible to carry out the method by supplying a compound gas by promoting the vaporization of a reducing compound with a non-oxidizing or reducing gas.

【0009】ここに、水素や一酸化炭素などの還元性ガ
スを触媒熱分解により発生させるために使用しうる化合
物としては、メタノール、エタノール、プロパノール、
ブタノールなどの低級アルコール類;ホルムアルデヒド
、パラホルムアルデヒド、トリオキサンなどのアルデヒ
ド或いはその誘導体;蟻酸、蟻酸エステル、酢酸などの
低級カルボン酸;アンモニア、ヒドラジン;メチルアミ
ン、エチルアミン、ジエチルアミン、メチルヒドラジン
、その他の窒素含有の低級のアミン類やヒドラジン誘導
体;カルシウムハイドライト、ボロンハイドライト、メ
チルボロンなどの金属の水素化物や有機金属化合物など
が例示され、本発明の用途においては特に限定されない
ものである。これらの中で、取り扱いの容易さ、安全性
、廃棄物の有無、価格などから低級アルコール類、低級
カルボン酸、アンモニアなどが好適である。また、還元
性化合物のガスを供給するために好適に使用しうる化合
物としては、ヒドラジン、メチルヒドラジンなどのヒド
ラジン類;蟻酸や熱分解して蟻酸を発生する化合物が挙
げられ、蟻酸ガスは酸化銅や金属銅と接触することによ
り水素と二酸化炭素に分解されるものであり有効に使用
できるものである。
Compounds that can be used to generate reducing gases such as hydrogen and carbon monoxide through catalytic thermal decomposition include methanol, ethanol, propanol,
Lower alcohols such as butanol; aldehydes or their derivatives such as formaldehyde, paraformaldehyde, and trioxane; lower carboxylic acids such as formic acid, formic acid esters, and acetic acid; ammonia, hydrazine; methylamine, ethylamine, diethylamine, methylhydrazine, and other nitrogen-containing Examples include lower amines and hydrazine derivatives; metal hydrides and organometallic compounds such as calcium hydrite, boron hydrite, and methyl boron, and are not particularly limited in use in the present invention. Among these, lower alcohols, lower carboxylic acids, ammonia and the like are preferred from the viewpoint of ease of handling, safety, presence or absence of waste, price, etc. Compounds that can be suitably used to supply reducing compound gas include hydrazines such as hydrazine and methylhydrazine; formic acid and compounds that generate formic acid by thermal decomposition, and formic acid gas is copper oxide. It decomposes into hydrogen and carbon dioxide when it comes into contact with copper or metal, so it can be used effectively.

【0010】次に、還元温度は、還元により生成した銅
のシンタリング−すなわち、酸化銅としての外観が変化
してより凝集した形態となること−の起きにくい或いは
全くおきない条件であればよく、通常、50℃〜300
 ℃、好ましくは  80℃〜200 ℃、特に 10
0〜150 ℃の範囲から選択され、処理時間 1分間
〜12時間、好ましくは2〜60分間の範囲から選択す
るのが連続生産の面から好ましい。特に、還元性化合物
ガスとしてヒドラジンを使用した場合、この化合物は常
温でも酸化銅を金属銅に還元する能力を有するものであ
ることから還元速度が大きくなりすぎることが生じやす
い。還元速度が速すぎたりすると、発熱により銅の凝縮
が起こりやすく、また、生成水が極めて微細な薄膜を形
成し、その中で還元反応が進行する場合が生じる。この
場合、酸化銅結晶の形態が破壊されるので、ヒドラジン
の濃度を低くするなど還元するのが好ましい。
[0010] Next, the reduction temperature may be selected as long as it does not cause sintering of the copper produced by the reduction, that is, the appearance of copper oxide changes and becomes more aggregated, or does not occur at all. , usually 50℃~300℃
°C, preferably 80 °C to 200 °C, especially 10 °C
From the viewpoint of continuous production, the temperature is preferably selected from the range of 0 to 150° C., and the processing time is preferably selected from the range of 1 minute to 12 hours, preferably 2 to 60 minutes. In particular, when hydrazine is used as the reducing compound gas, the reduction rate tends to become too high because this compound has the ability to reduce copper oxide to metallic copper even at room temperature. If the reduction rate is too fast, copper tends to condense due to heat generation, and the produced water may form an extremely fine thin film in which the reduction reaction may proceed. In this case, since the morphology of the copper oxide crystal is destroyed, it is preferable to reduce the concentration of hydrazine.

【0011】[0011]

【実施例】以下、実施例などによって本発明をさらに具
体的に説明する。 実施例1 厚み70μmの圧延銅箔を用い、これを  NaOH(
15g/リットル)/次亜塩素酸ナトリウム(31g/
リットル)/リン酸ナトリウム(15g/リットル)の
水溶液で90℃、10分間処理し、水洗して両面黒色酸
化処理銅箔とし、 200℃にて乾燥した。ついで、表
面をヘラでかきとり、最大の長さ或いは幅は、約3μm
の酸化銅結晶粉末を得た。この酸化銅結晶粉末を真空吸
引可能な乾燥機中に投入し温度を上げながら乾燥機内を
減圧吸引し、窒素ガスを投入し、再び、真空吸引した後
、水素ガス 5%を含む窒素ガスを導入し 160℃、
30分間の還元を行った。この後、乾燥機内を真空吸引
し、微量の酸素を含む窒素ガスを導入して徐酸化した後
、冷却し乾燥機から還元された銅粉を取り出した。この
銅粉はやや薄い黒色であり、酸素含有量 2.7%であ
り、その形は最大の長さ或いは幅が約2μmの針、クサ
ビ、斧、鱗片などの形態の混合物からなる微細銅粉であ
った。
[Examples] The present invention will be explained in more detail below with reference to Examples. Example 1 A rolled copper foil with a thickness of 70 μm was used, and this was treated with NaOH (
15g/liter)/sodium hypochlorite (31g/liter)
The foil was treated with an aqueous solution of sodium phosphate (15 g/liter) at 90°C for 10 minutes, washed with water to obtain a double-sided black oxidized copper foil, and dried at 200°C. Next, scrape the surface with a spatula, and the maximum length or width is about 3 μm.
A copper oxide crystal powder was obtained. This copper oxide crystal powder is placed in a dryer that can be vacuum-suctioned, and the inside of the dryer is vacuumed while raising the temperature, nitrogen gas is introduced, and after vacuum suction is performed again, nitrogen gas containing 5% hydrogen gas is introduced. 160℃,
Reduction was performed for 30 minutes. Thereafter, the inside of the dryer was vacuum-suctioned, and nitrogen gas containing a trace amount of oxygen was introduced to perform gradual oxidation, and then the reduced copper powder was cooled and taken out from the dryer. This copper powder is a slightly pale black color, has an oxygen content of 2.7%, and its shape is a mixture of needles, wedges, axes, scales, etc. with a maximum length or width of about 2 μm. Met.

【0012】実施例2 実施例1において、還元性ガスとして、ヒドラジンを3
mmHg含む窒素ガスを用い、温度を 120℃、10
分間とする他は同様とした。得られた銅粉はやや薄い黒
色であり、酸素含有量 3.1%であり、その形は最大
の長さ或いは幅が約2μmの針、クサビ、斧、鱗片など
の形態の混合物からなる微細銅粉であった。
Example 2 In Example 1, hydrazine was used as the reducing gas.
Using nitrogen gas containing mmHg, the temperature was set to 120℃, 10
It was the same except that it was set to 1 minute. The obtained copper powder has a slightly pale black color, an oxygen content of 3.1%, and a fine shape consisting of a mixture of needles, wedges, axes, scales, etc., with a maximum length or width of about 2 μm. It was copper powder.

【0013】[0013]

【発明の効果】以上、詳細な説明および実施例から本発
明の製造法による銅粉は、従来にないアスペクト比の銅
粉である。そして、この製造方法は、従来公知の方法に
、本発明者らが開発した気相還元を併用することにより
達成されるものであり容易に実施可能であり、その工業
的な意義は極めて高いものである。
[Effects of the Invention] From the above detailed description and examples, the copper powder produced by the production method of the present invention has an aspect ratio that is unprecedented. This production method is achieved by combining a conventionally known method with the gas phase reduction developed by the present inventors, and is easily implemented, and has extremely high industrial significance. It is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  銅を酸化して針、クサビ、或いは斧状
の酸化銅微細結晶とし該酸化銅微細結晶を、還元性ガス
存在雰囲気で該酸化銅微細結晶の形状を実質的に保持し
て気相還元することを特徴とする銅粉の製造法【請求項
2】  該還元性ガスが、水素、一酸化炭素又はこれら
の混合物である請求項1記載の銅粉の製造法【請求項3
】  該還元性ガスが、還元性の化合物ガスである請求
項1記載の銅粉の製造法
Claim 1: Copper is oxidized to produce needle-, wedge-, or ax-shaped copper oxide microcrystals, and the copper oxide microcrystals are substantially maintained in the shape of the copper oxide microcrystals in an atmosphere in the presence of a reducing gas. A method for producing copper powder characterized by gas phase reduction.Claim 2. A method for producing copper powder according to claim 1, wherein the reducing gas is hydrogen, carbon monoxide, or a mixture thereof.Claim 3
The method for producing copper powder according to claim 1, wherein the reducing gas is a reducing compound gas.
JP3122634A 1991-04-25 1991-04-25 Production of copper powder Pending JPH04325608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122634A JPH04325608A (en) 1991-04-25 1991-04-25 Production of copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122634A JPH04325608A (en) 1991-04-25 1991-04-25 Production of copper powder

Publications (1)

Publication Number Publication Date
JPH04325608A true JPH04325608A (en) 1992-11-16

Family

ID=14840829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122634A Pending JPH04325608A (en) 1991-04-25 1991-04-25 Production of copper powder

Country Status (1)

Country Link
JP (1) JPH04325608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
CN106424751A (en) * 2016-11-18 2017-02-22 南昌大学 Preparation method of nano copper powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
CN106424751A (en) * 2016-11-18 2017-02-22 南昌大学 Preparation method of nano copper powder

Similar Documents

Publication Publication Date Title
JPH0485024A (en) Manufacture of copper-clad laminated sheet
US5178909A (en) Production of silver-coated copper-based powders
TWI220872B (en) Metallic nickel powder and process for production thereof
US5382333A (en) Process for producing copper clad laminate
CA2570216C (en) Nickel powder and production method therefor
CN109666915B (en) Preparation method of composite metal layer plated carbon nanotube/graphene composite material
CN103752842A (en) Preparation of nano silver-coated copper powder by replacement and chemical deposition composite method
CN102732863A (en) Method for preparing magnetic-field-assisted graphite carbon material chemical plating magnetic metal
JP2004162164A (en) Copper powder for conductive paste and its production method
JPH04325608A (en) Production of copper powder
CN101513675A (en) Preparation method of ultrafine copper powder for conductive paste
JP2010043339A (en) Nickel powder and its method for manufacturing
JP4602238B2 (en) Surface treatment method of nickel particles using acid solution
US3779842A (en) Method of and composition for dissolving metallic copper
JP2011144441A (en) Silver-coated nickel powder and method for producing the same
JPS6299406A (en) Production of copper powder
Niazi et al. Parameters optimization of electroless deposition of Cu on Cr-coated diamond
TWI482878B (en) Acidic electroless copper plating system and copper plating method using the same
JP2000319016A (en) Production of gold sodium sulfite solution
CN116140615B (en) Silver graphite electrical contact material with high electrical wear resistance and preparation method thereof
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
WO2024009522A1 (en) Copper powder
Cho et al. Synthesis and characterization of C/Cu core–shell particles by hydrogen-free spray pyrolysis assisted with citric acid and sucrose
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JPH028398A (en) Formation of porous metal film