JP2011144441A - Silver-coated nickel powder and method for producing the same - Google Patents

Silver-coated nickel powder and method for producing the same Download PDF

Info

Publication number
JP2011144441A
JP2011144441A JP2010008169A JP2010008169A JP2011144441A JP 2011144441 A JP2011144441 A JP 2011144441A JP 2010008169 A JP2010008169 A JP 2010008169A JP 2010008169 A JP2010008169 A JP 2010008169A JP 2011144441 A JP2011144441 A JP 2011144441A
Authority
JP
Japan
Prior art keywords
silver
nickel powder
solution
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010008169A
Other languages
Japanese (ja)
Other versions
JP5764294B2 (en
Inventor
Takashi Sakamoto
孝史 坂本
Tomoyuki Takahashi
友之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2010008169A priority Critical patent/JP5764294B2/en
Publication of JP2011144441A publication Critical patent/JP2011144441A/en
Application granted granted Critical
Publication of JP5764294B2 publication Critical patent/JP5764294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide silver-coated nickel powder having a low powder resistivity, and to provide the silver-coated nickel powder by a simple and low-cost method. <P>SOLUTION: The silver-coated nickel powder is characterized in that silver is comprised by 5 to 15 pts.mass based on 100 pts.mass of the total of the silver and nickel, and the resistance value of the powder under pressure of 5.6 MPa is 0.1 to 0.5 Ω.mm. The silver-coated nickel powder can be produced by a process of reacting a solution (A) comprising nickel powder and a reducing agent with a solution (B) comprising a silver nitrate ammonia complex and a reaction inhibitor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性材料として用いられる銀被覆ニッケル粉末およびその製造方法に関する。特に、導電性ペースト用途に適した銀被覆ニッケル粉末およびその製造方法に関する。   The present invention relates to a silver-coated nickel powder used as a conductive material and a method for producing the same. In particular, the present invention relates to a silver-coated nickel powder suitable for conductive paste applications and a method for producing the same.

現在、導電性ペースト、メッキ代替電極等の用途で、ニッケル粉末の導電性、耐酸化性、耐環境性等を改善する目的で、銀被覆ニッケル粉末の使用が検討されている。この銀被覆ニッケル粉末は、主に無電解めっき法で作製される。   Currently, the use of silver-coated nickel powder is being studied for the purpose of improving the conductivity, oxidation resistance, environmental resistance, etc. of nickel powder in applications such as conductive paste and plating substitute electrodes. This silver-coated nickel powder is mainly produced by an electroless plating method.

無電解めっき法で銀被覆ニッケル粉末を作製するときの一般的な工程としては、ニッケル粉末の脱脂・酸洗→Snイオンによるセンシタイジング→Pdイオンによるアクチベーティング→無電解銀めっき、が挙げられる。この工程によれば、Ni粉末の脱脂・洗浄が十分でなくとも銀めっきが可能となるが、析出する銀粒子が緻密ではない、製造工程が長い上に、貴金属であるパラジウムを使用するため、高コストになる、という問題がある。   General processes for producing silver-coated nickel powder by electroless plating include degreasing and pickling of nickel powder, sensitizing with Sn ions, activating with Pd ions, and electroless silver plating. It is done. According to this process, silver plating is possible even if the Ni powder is not sufficiently degreased and washed, but the precipitated silver particles are not dense, and since the manufacturing process is long and palladium, which is a noble metal, is used, There is a problem of high costs.

無電解めっき法としては、ニッケル粉と錯化剤を含むスラリーと、この粉体表面に被覆する金属の錯体溶液とを含む混合スラリーを撹拌しながら、前記粉体表面に、前記被覆物質を温度40〜100℃で析出させる方法で、錯化剤がエチレンジアミン四酢酸、エチレンジアミン四酢酸塩等である製造方法も検討されている(特許文献1)。   In the electroless plating method, the coating substance is heated on the powder surface while stirring a mixed slurry containing a slurry containing nickel powder and a complexing agent and a complex solution of a metal coated on the powder surface. A production method in which the complexing agent is ethylenediaminetetraacetic acid, ethylenediaminetetraacetate, or the like by a method of precipitation at 40 to 100 ° C. has been studied (Patent Document 1).

しかしながら、この無電解めっき法を用いて銀被覆ニッケル粉末を作製しても、ニッケル粉上に銀粒子が均一に析出せず、粒子化してしまい、連続性のある緻密な膜にならずに被覆が不完全となる。また、析出する銀粒子が粗いため、銀被覆ニッケル粉末の粉体抵抗率が高く、かつ、ニッケル粉末が酸化されやすいという問題がある。   However, even when silver-coated nickel powder is produced using this electroless plating method, silver particles are not uniformly deposited on the nickel powder, but are formed into particles, which do not form a continuous dense film. Becomes incomplete. Moreover, since the silver particle to precipitate is coarse, there exists a problem that the powder resistivity of silver-coated nickel powder is high, and nickel powder is easy to be oxidized.

特開2009−84634号公報JP 2009-84634 A

本発明の目的は、粉体抵抗率が低い銀被覆ニッケル粉末を提供すること、およびこの銀被覆ニッケル粉末を、簡便で低コストの方法で、提供することである。   An object of the present invention is to provide a silver-coated nickel powder having a low powder resistivity, and to provide this silver-coated nickel powder in a simple and low-cost manner.

本発明は、以下の構成を有することによって上記問題を解決した銀被覆ニッケル粉末およびその製造方法に関する。
(1)実質的に銀とニッケルからなり、銀とニッケルの合計100質量部に対して、銀を6〜15質量部含み、圧力:5.6MPaでの粉体抵抗値が、0.1〜0.5Ω・mmであることを特徴とする、銀被覆ニッケル粉末。
(2)ニッケル粉末、および還元剤を含む溶液(A)と、硝酸銀アンモニア錯体、および反応抑制剤を含有する溶液(B)と、を反応させる工程により、ニッケル粉末に銀を被覆することを特徴とする、銀被覆ニッケル粉末の製造方法。
(3)溶液(A)中に、溶液(B)を滴下させることにより反応させる、上記(2)記載の銀被覆ニッケル粉末の製造方法
(4)溶液(B)の反応抑制剤が、酸性基を含むコポリマーを含む、上記(2)または(3)記載の銀被覆ニッケル粉末の製造方法。
(5)溶液(A)の還元剤が、ヒドラジンである、上記(2)〜(4)のいずれか記載の銀被覆ニッケル粉末の製造方法。
The present invention relates to a silver-coated nickel powder that has solved the above problems by having the following configuration and a method for producing the same.
(1) It consists essentially of silver and nickel, contains 6 to 15 parts by mass of silver with respect to a total of 100 parts by mass of silver and nickel, and has a powder resistance value of 0.1 to 0.1 at a pressure of 5.6 MPa. Silver-coated nickel powder, characterized in that it is 0.5 Ω · mm.
(2) The nickel powder is coated with silver by a step of reacting the solution (A) containing nickel powder and a reducing agent with the solution (B) containing silver nitrate ammonia complex and a reaction inhibitor. A method for producing silver-coated nickel powder.
(3) The method for producing a silver-coated nickel powder according to (2), wherein the reaction is performed by dropping the solution (B) into the solution (A). (4) The reaction inhibitor of the solution (B) is an acidic group. A method for producing a silver-coated nickel powder as described in (2) or (3) above, comprising a copolymer containing.
(5) The manufacturing method of the silver coating nickel powder in any one of said (2)-(4) whose reducing agent of solution (A) is hydrazine.

本発明(1)によれば、少量の銀の被覆であっても、導電性がよい銀被覆ニッケル粉末であるので、この粉末を用いた導電性ペースト等により、良好な導電性被膜が得られる。   According to the present invention (1), even a small amount of silver coating is a silver-coated nickel powder with good conductivity, and therefore a good conductive film can be obtained with a conductive paste using this powder. .

本発明(3)によれば、ニッケル粉末を被覆する銀粒子が均一で微細になるため、少量の銀の被覆であっても、導電性がよい銀被覆ニッケル粉末を、容易に得ることができる。   According to the present invention (3), since the silver particles covering the nickel powder become uniform and fine, even with a small amount of silver, a silver-coated nickel powder having good conductivity can be easily obtained. .

実施例2で得られた銀被覆ニッケル粉末の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the silver-coated nickel powder obtained in Example 2. FIG. 図1の一部拡大走査型電子顕微鏡写真である。2 is a partially enlarged scanning electron micrograph of FIG. 1. 実施例2で得られた銀被覆ニッケル粉末の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of the silver-coated nickel powder obtained in Example 2. FIG. 実施例で使用したニッケル粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the nickel powder used in the examples. 図4の一部拡大走査型電子顕微鏡写真である。5 is a partially enlarged scanning electron micrograph of FIG. 比較例1で得られた銀被覆ニッケル粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the silver-coated nickel powder obtained in Comparative Example 1. 図6の一部拡大走査型電子顕微鏡写真である。It is a partially expanded scanning electron micrograph of FIG.

〔銀被覆ニッケル粉末〕
本発明の銀被覆ニッケル粉末は、実質的に銀とニッケルからなり、銀とニッケルの合計100質量部に対して、銀を5〜15質量部含み、圧力:5.6MPaでの粉体抵抗値が、0.1〜0.5Ω・mmであることを特徴とする。ここで、「実質的に」とは、錫、パラジウム等の触媒を含まず、めっき工程で用いられる還元剤等の不可避不純物を含むことをいう。
[Silver-coated nickel powder]
The silver-coated nickel powder of the present invention consists essentially of silver and nickel, contains 5 to 15 parts by mass of silver with respect to a total of 100 parts by mass of silver and nickel, and has a powder resistance value at a pressure of 5.6 MPa. Is 0.1 to 0.5 Ω · mm. Here, “substantially” means containing no inevitable impurities such as a reducing agent used in the plating step without containing a catalyst such as tin and palladium.

ニッケル粉末の平均粒径は、好ましくは、5〜15μmであり、より好ましくは、7〜13μm、さらに好ましくは、9〜11μmである。ここで、平均粒径は、レーザー回折散乱法(ベックマンコールター製のLS13 320)で測定する。   The average particle diameter of the nickel powder is preferably 5 to 15 μm, more preferably 7 to 13 μm, and still more preferably 9 to 11 μm. Here, the average particle diameter is measured by a laser diffraction scattering method (LS13 320 manufactured by Beckman Coulter).

銀の被覆量は、銀とニッケルの合計100質量部に対して、銀を6〜15質量部であり、好ましくは、7〜12質量部、より好ましくは、8〜11.5質量部である。また、被覆する銀の厚さは、好ましくは、0.1〜0.3μmであり、より好ましくは、0.15〜0.2μmである。   The coating amount of silver is 6 to 15 parts by mass of silver, preferably 7 to 12 parts by mass, more preferably 8 to 11.5 parts by mass with respect to 100 parts by mass of silver and nickel in total. . Moreover, the thickness of the silver to coat | cover is preferably 0.1-0.3 micrometer, More preferably, it is 0.15-0.2 micrometer.

図1、図2に、実施例2で得られた銀被覆ニッケル粉末の走査型電子顕微鏡写真、図3に、この銀被覆ニッケル粉末の断面の走査型電子顕微鏡写真を示す。図1,図2からわかるように、銀被覆ニッケル粉末は、全体的に均一に銀で被覆されている。また、図3からわかるように、個々のニッケル粉末の表面が、均一に銀で被覆されている。図1〜図3からわかるように、本発明の銀被覆ニッケル粉末は、微細な銀粒子で均一に被覆されているため、少量の銀であっても、低い粉体抵抗値を示す。   1 and 2 show scanning electron micrographs of the silver-coated nickel powder obtained in Example 2, and FIG. 3 shows scanning electron micrographs of the cross section of the silver-coated nickel powder. As can be seen from FIGS. 1 and 2, the silver-coated nickel powder is uniformly coated with silver as a whole. As can be seen from FIG. 3, the surface of each nickel powder is uniformly coated with silver. As can be seen from FIGS. 1 to 3, since the silver-coated nickel powder of the present invention is uniformly coated with fine silver particles, even a small amount of silver exhibits a low powder resistance value.

銀被覆ニッケル粉末は、圧力:5.6MPaでの粉体抵抗値が、0.1〜0.5Ω・mmであり、一般的には、粉末を円柱状に加圧し、粉体抵抗値の測定を行う。測定方法の一例としては、半径:1.50mm(面積:7.07mm)の側面が絶縁性の型に、銀被覆ニッケル粉末を入れ、上下方向から4.00kgfで加圧し、圧粉体の厚さ、上下間の電気抵抗値を測定し、粉体抵抗値を算出する。ここで、圧力は、5.5〜5.7MPaであればよい。 The silver-coated nickel powder has a powder resistance value of 0.1 to 0.5 Ω · mm at a pressure of 5.6 MPa. Generally, the powder resistance value is measured by pressing the powder into a cylindrical shape. I do. As an example of the measuring method, silver coated nickel powder is put into an insulative mold having a radius of 1.50 mm (area: 7.07 mm 2 ) and pressed from above and below at 4.00 kgf. The electrical resistance value between the thickness and the upper and lower sides is measured, and the powder resistance value is calculated. Here, the pressure may be 5.5 to 5.7 MPa.

〔銀被覆ニッケル粉末の製造方法〕
ニッケル粉末、および還元剤を含む溶液(A)と、硝酸銀アンモニア錯体、および反応抑制剤を含有する溶液(B)と、を反応させる工程により、ニッケル粉末に銀を被覆することを特徴とする。SnイオンによるセンシタイジングやPdイオンによるアクチベーティングを必要とせず、反応抑制剤を用いることにより、微細で均一な銀粒子を析出させることを目的としている。
[Method for producing silver-coated nickel powder]
The nickel powder is coated with silver by a step of reacting a solution (A) containing nickel powder and a reducing agent with a solution (B) containing a silver nitrate ammonia complex and a reaction inhibitor. The object is to precipitate fine and uniform silver particles by using a reaction inhibitor without requiring sensitizing with Sn ions or activating with Pd ions.

ニッケル粉末としては、カルボニル法、アトマイズ法、気相反応法や湿式還元法で作製されたものが挙げられ、凝集せずに単一分散性が高い観点から、カルボニル法で作製された粉末が好ましい。ニッケル粉末の形状は、球状、フレーク状等が挙げられ、銀被覆の均一性の観点から、球状が好ましい。ここで、本製造方法においては、SnイオンによるセンシタイジングやPdイオンによるアクチベーティングを必要としないことを特徴とするため、ニッケル粉末には予め脱脂、酸洗、洗浄等を十分に行い、ニッケル粉末の表面を、清浄な金属ニッケル面にしておくことが肝要である。ニッケル粉末は、単独でも2種以上を併用してもよい。   Examples of the nickel powder include those prepared by a carbonyl method, an atomizing method, a gas phase reaction method, and a wet reduction method. From the viewpoint of high monodispersibility without agglomeration, a powder prepared by a carbonyl method is preferable. . Examples of the shape of the nickel powder include a spherical shape and a flake shape, and a spherical shape is preferable from the viewpoint of uniformity of silver coating. Here, in this manufacturing method, since it is characterized by not requiring sensitizing by Sn ions or activating by Pd ions, nickel powder is sufficiently degreased, pickled, washed, etc. in advance, It is important to keep the surface of the nickel powder a clean metallic nickel surface. The nickel powder may be used alone or in combination of two or more.

還元剤としては、ヒドラジン、ホルムアルデヒド、水素化ホウ素カリウム、水素化ホウ素ナトリウム、次亜リン酸塩、グルコース等が挙げられ、還元力の高さやハンドリング性の観点から、ヒドラジン、特にヒドラジン一水和物が好ましい。還元剤は、単独でも2種以上を併用してもよい。   Examples of the reducing agent include hydrazine, formaldehyde, potassium borohydride, sodium borohydride, hypophosphite, glucose and the like. From the viewpoint of high reducing power and handling properties, hydrazine, especially hydrazine monohydrate. Is preferred. The reducing agents may be used alone or in combination of two or more.

水としては、イオン交換水、純水等が挙げられ、純水が好ましい。   Examples of water include ion exchange water and pure water, and pure water is preferred.

溶液(A):100質量部に対して、ニッケル粉末は、銀被覆の均一性、生産性、水への分散性の観点から13〜15質量部であると好ましく、還元剤は、反応性の観点から0.4〜0.6質量部であると好ましい。詳細には、ニッケル粉末が多すぎると、水への分散性が悪くなり、少なすぎると、バッチサイズに対して少量しか製造できないので、生産性が悪くなる。還元剤が多すぎると、銀の析出反応が早くなり過ぎ、水溶液中で銀単体として析出してしまい、少なすぎると水溶液に含有されるすべての硝酸アンモニウム銀錯体の還元が起こらず、硝酸アンモニウム銀錯体が残留してしまう。   Solution (A): With respect to 100 parts by mass, the nickel powder is preferably 13 to 15 parts by mass from the viewpoint of silver coating uniformity, productivity, and dispersibility in water, and the reducing agent is reactive. From a viewpoint, it is preferable in it being 0.4-0.6 mass part. In detail, when there is too much nickel powder, the dispersibility to water will worsen, and when too small, since only a small quantity can be manufactured with respect to batch size, productivity will worsen. If the amount of the reducing agent is too large, the silver precipitation reaction becomes too fast and precipitates as silver alone in the aqueous solution. If the amount is too small, the reduction of all the ammonium nitrate silver complexes contained in the aqueous solution does not occur, and the ammonium nitrate silver complex It will remain.

硝酸アンモニウム銀錯体は、銀イオンの供給源であり、低コスト、ヒドラジン等の還元剤による反応制御性の観点から好ましく、この硝酸アンモニウム銀錯体は、通常の方法で作ることができる。一例としては、水中に、硝酸銀、アンモニア水を添加し、撹拌し、硝酸アンモニウム銀錯体を含有する水溶液を製造することができる。なお、本製造方法においては、エチレンジアミン四酢酸、エチレンジアミン四酢酸塩、トリエチレンジアミン等の高価な錯化剤を使用する必要はない。   The ammonium nitrate silver complex is a supply source of silver ions, and is preferable from the viewpoint of low cost and reaction controllability by a reducing agent such as hydrazine, and this ammonium nitrate silver complex can be prepared by a usual method. As an example, silver nitrate and aqueous ammonia can be added to water and stirred to produce an aqueous solution containing an ammonium nitrate silver complex. In this production method, it is not necessary to use an expensive complexing agent such as ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid salt, or triethylenediamine.

反応抑制剤は、微細で均一な銀粒子を析出させるために添加され、銀イオンの近傍に存在させる必要があるため、溶液(B)に含まれる。この反応抑制剤としては、強アルカリ環境下での銀還元反応速度抑制性の観点から、酸性基を含むコポリマーが好ましく、製品としては、ビックケミ−・ジャパン製Disperbyk−180、同120、同106、同111、アデカ製アデカサイザーPN160等が挙げられる。反応抑制剤は、単独でも2種以上を併用してもよい。   The reaction inhibitor is added to precipitate fine and uniform silver particles and needs to be present in the vicinity of the silver ions, and thus is included in the solution (B). As this reaction inhibitor, a copolymer containing an acidic group is preferable from the viewpoint of silver reductive reaction rate inhibition in a strong alkaline environment, and as a product, Disperbyk-180, 120, 106, manufactured by Big Chemi Japan, 111, Adeka Sizer PN160 manufactured by Adeka and the like. The reaction inhibitors may be used alone or in combination of two or more.

溶液(B)は、反応速度の観点から、pHが11〜14であると好ましく、pH調整剤としては、アンモニア水、水酸化ナトリウム、水酸化カリウム等が挙げられ、水酸化銀を生成しない点や金属(Na,K)を含有すると不純物濃度が高くなる観点から、アンモニア水が好ましい。pH調整剤は、単独でも2種以上を併用してもよい。   The solution (B) preferably has a pH of 11 to 14 from the viewpoint of the reaction rate. Examples of the pH adjuster include ammonia water, sodium hydroxide, potassium hydroxide and the like, and do not produce silver hydroxide. Aqueous ammonia is preferred from the viewpoint of increasing the impurity concentration when it contains metal or metal (Na, K). The pH adjuster may be used alone or in combination of two or more.

溶液(B):100質量部に対して、硝酸銀は、Niに対する反応量の観点から8〜10質量部であると好ましく、アンモニア水は、pH調整(11以上を維持する)の観点から65〜70質量部であると好ましく、反応抑制剤は、反応スピードのコントロールの観点から0.09〜0.11質量部であると好ましい。   Solution (B): Silver nitrate is preferably 8 to 10 parts by mass with respect to 100 parts by mass, and ammonia water is 65 to 65% from the viewpoint of pH adjustment (maintaining 11 or more). The amount is preferably 70 parts by mass, and the reaction inhibitor is preferably 0.09 to 0.11 parts by mass from the viewpoint of controlling the reaction speed.

溶液(A)と溶液(B)との反応は、溶液(A)中に、溶液(B)を滴下させると、均一に微細な銀粒子を析出させる観点から好ましい。   The reaction between the solution (A) and the solution (B) is preferable from the viewpoint of uniformly depositing fine silver particles when the solution (B) is dropped into the solution (A).

溶液(A)と溶液(B)との反応は、室温付近(10〜30℃)で行うことが好ましい。10℃より低いと、溶液中の温度がばらつく場合には、水溶液が凝固する可能性があり、30℃より高いと、銀の析出速度が速くなり、均一で微細な銀粒子が析出しにくくなるためである。   The reaction between the solution (A) and the solution (B) is preferably performed at around room temperature (10 to 30 ° C.). If the temperature is lower than 10 ° C., the aqueous solution may be solidified if the temperature in the solution varies. If the temperature is higher than 30 ° C., the silver deposition rate is increased, and uniform and fine silver particles are less likely to be precipitated. Because.

溶液(A)と溶液(B)との反応は、強力に撹拌しながら行うことが、均一に微細な銀粒子を析出させる観点から好ましい。強力に撹拌するための高速攪拌型分散機としては、ディゾルバー、ポリトロン、ホモミキサー、ホモブレンダー、ケデイーミル、ジェットアジターなど、分散作用する要部が液中で高速回転(500〜15,000rpm。好ましくは1,000〜4,000rpm)するタイプの分散機が挙げられ、ジェット式アジターが好ましい。   The reaction between the solution (A) and the solution (B) is preferably carried out with strong stirring from the viewpoint of uniformly depositing fine silver particles. As a high-speed agitation type disperser for powerful stirring, essential parts such as a dissolver, a polytron, a homomixer, a homoblender, a caddy mill, and a jet agitator are rotated at a high speed (500 to 15,000 rpm, preferably in a liquid). Of 1,000 to 4,000 rpm), and a jet type agitator is preferable.

溶液(A)と溶液(B)との反応で作製された銀被覆ニッケル粉末は、作製後に速やかに洗浄し、乾燥を行うことが好ましい。   The silver-coated nickel powder produced by the reaction between the solution (A) and the solution (B) is preferably washed immediately after production and dried.

仕上げ工程として、#400メッシュ相当のステンレスメッシュ等でフィルタリングを行うと、導電性ペースト等に使用するために好ましい。   As a finishing process, filtering with a stainless mesh or the like equivalent to # 400 mesh is preferable for use in a conductive paste or the like.

なお、溶液(A)、溶液(B)には、本発明の目的を損なわない範囲で、更に必要に応じ、分散剤、消泡剤、その他の添加剤と含有させることができる。   In addition, the solution (A) and the solution (B) can be further added with a dispersant, an antifoaming agent, and other additives as necessary within a range not impairing the object of the present invention.

本発明で得られた銀被覆ニッケル粉末は、常法により、導電性ペースト等として使用することができる。   The silver-coated nickel powder obtained in the present invention can be used as a conductive paste or the like by a conventional method.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and mass% unless otherwise specified.

〔実施例1〕
(前処理工程)
200dmのステンレスタンクに、140dmの純水を入れ、カルボニル法で作製された平均粒径:7μmのnovamet製ニッケル粉末(純度:99.9%、型番:4SP−10)を投入し、ジェットアジターで撹拌した。ここに、1800cmの希硝酸を加えて、ジェットアジターでさらに撹拌し、酸洗を行った。このとき、水溶液は、ニッケルの溶解により、薄い緑色になった。この後、薄い緑色の上澄み液を除去し、純水でのデカンテーションにより、ニッケル粉末の洗浄を行い、乾燥させずに水中で保持した。なお、本実施例では、熱処理を伴うカルボニル法で作製されたニッケル粉末を使用したため、残留有機物等は残存せず、脱脂は不要と考え、行わなかった。
[Example 1]
(Pretreatment process)
Stainless tank 200 dm 3, putting pure water 140Dm 3, average particle size was made with the carbonyl method: 7 [mu] m Novamet nickel powder (purity: 99.9%, model number: 4SP-10) was charged, jet Stir with agitator. 1800 cm 3 of dilute nitric acid was added thereto, and the mixture was further stirred with a jet agitator and pickled. At this time, the aqueous solution turned light green due to dissolution of nickel. Thereafter, the pale green supernatant was removed, the nickel powder was washed by decantation with pure water, and kept in water without drying. In this example, since nickel powder produced by a carbonyl method accompanied by heat treatment was used, no residual organic matter remained and degreasing was considered unnecessary and was not performed.

(銀被覆工程)
前処理後のニッケル粉末に、100dmの純水、18dmのアンモニア水、1050gのヒドラジン一水和物を加え、ジェットアジターで撹拌し、溶液(A)を作製した。別途、12dmの純水に、4725gの硝酸銀、1dmの純水に溶解した51gの反応抑制剤(ビッグケミ−・ジャパン(株)製Disperbyk−111、36dmの純水アンモニア水を加え、撹拌し、溶液(B)を作製した。ジェットアジターで撹拌しながら、溶液(A)中に、溶液(B)を、10分間で、滴下した。この後、ジェットアジターでの撹拌を15分続けた後、上澄み液を除去した後、デカンテーションにより、銀被覆ニッケル粉末を洗浄し、濾過脱水した後、60℃で15時間の乾燥、#400メッシュ相当のステンレスメッシュにてフィルタリングを行い、実施例1の銀被覆ニッケル粉末を得た。この実施例1の銀被覆量は、銀とニッケルの合計100質量部に対して、11質量部であった。
(Silver coating process)
To the nickel powder after the pretreatment, 100 dm 3 pure water, 18 dm 3 ammonia water, and 1050 g hydrazine monohydrate were added and stirred with a jet agitator to prepare a solution (A). Separately, pure water 12 dm 3, silver nitrate 4725G, reaction inhibitor 51g dissolved in pure water 1 dm 3 (Biggukemi - the Japan Ltd. Disperbyk-111,36dm pure water aqueous ammonia 3 added, stirred The solution (B) was then added dropwise to the solution (A) over 10 minutes while stirring with the jet agitator, followed by 15 minutes of stirring with the jet agitator. Then, after removing the supernatant, the silver-coated nickel powder was washed by decantation, filtered and dehydrated, dried at 60 ° C. for 15 hours, and filtered with a stainless mesh equivalent to # 400 mesh. A silver-coated nickel powder was obtained in Example 1. The silver coating amount of Example 1 was 11 parts by mass with respect to 100 parts by mass in total of silver and nickel.

〔実施例2〕
溶液(A)中に、溶液(B)を、9分間で、滴下した以外は、実施例1と同様にして、実施例2の銀被覆ニッケル粉末を得た。この実施例2の銀被覆量は、銀とニッケルの合計100質量部に対して、9質量部であった。図1、図2に、得られた銀被覆ニッケル粉末の走査型電子顕微鏡写真を、図3に、得られた銀被覆ニッケル粉末の断面の走査型電子顕微鏡写真を示す。また、参考に、図4、図5に、実施例で使用したニッケル粉末の走査型電子顕微鏡写真を示す。図1,図2からわかるように、銀被覆ニッケル粉末が、全体的に均一に銀で被覆されていることがわかった。また、図3からわかるように、個々のニッケル粉末の表面が、約100〜200nmの厚さで、均一に銀で被覆されていることがわかった。また、図2、図5の比較から、銀被覆ニッケル粉末の表面の凹凸は、使用したニッケル粉末の凹凸に起因していると考えられる。
[Example 2]
A silver-coated nickel powder of Example 2 was obtained in the same manner as in Example 1 except that the solution (B) was dropped into the solution (A) over 9 minutes. The silver coating amount of Example 2 was 9 parts by mass with respect to 100 parts by mass in total of silver and nickel. 1 and 2 show scanning electron micrographs of the obtained silver-coated nickel powder, and FIG. 3 shows scanning electron micrographs of the cross section of the obtained silver-coated nickel powder. For reference, FIGS. 4 and 5 show scanning electron micrographs of the nickel powder used in the examples. As can be seen from FIGS. 1 and 2, it was found that the silver-coated nickel powder was uniformly coated with silver as a whole. Further, as can be seen from FIG. 3, it was found that the surface of each nickel powder was uniformly coated with silver at a thickness of about 100 to 200 nm. Moreover, from the comparison of FIG. 2 and FIG. 5, it is considered that the unevenness on the surface of the silver-coated nickel powder is caused by the unevenness of the used nickel powder.

〔実施例3〕
溶液(A)中に、溶液(B)を、8分間で、滴下した以外は、実施例1と同様にして、実施例3の銀被覆ニッケル粉末を得た。この実施例3の銀被覆量は、銀とニッケルの合計100質量部に対して、8質量部であった。
Example 3
A silver-coated nickel powder of Example 3 was obtained in the same manner as in Example 1 except that the solution (B) was dropped into the solution (A) over 8 minutes. The silver coating amount of Example 3 was 8 parts by mass with respect to 100 parts by mass in total of silver and nickel.

〔比較例1〕
窒素雰囲気下、5リットルの撹拌槽に平均粒径11μmの球状ニッケル粉(純度:99.9%):160gを、イオン交換水:2900.5gに、EDTA四ナトリウム:73.5g、炭酸アンモニウム:76.2gを溶解した液と共に加えて、平板パドル2枚羽根と4枚の邪魔板で処理液量1リットル当りの所要動力:0.4kg・m/secで30分間、70℃で撹拌を行い、銀錯体溶液を1分間で添加して、さらに2時間、70℃で、同所要動力で撹拌を継続して、金属ニッケル粉表面への銀の析出を行った。ここで、銀錯体溶液は、AgNO:28.0g、EDTA四ナトリウム:162.0g、炭酸アンモニウム:84.0g、イオン交換水:756.3gを溶解して作製した。銀被覆量は、銀とニッケルの合計100質量部に対して、10質量部であった。図6、図7に、得られた銀被覆ニッケル粉末の走査型電子顕微鏡写真を示す。図6、図7から、比較例2で得られた銀被覆ニッケル粉末は、ニッケル粉末表面が、均一に銀で被覆されておらず、ニッケル粉末表面の一部に銀が付着していることがわかった。
[Comparative Example 1]
In a nitrogen atmosphere, spherical nickel powder (purity: 99.9%): 160 g, ion exchange water: 2900.5 g, tetrasodium EDTA: 73.5 g, ammonium carbonate: 76.2g is added together with the dissolved solution, and the required power per 1 liter of processing liquid volume: 0.4kg · m / sec with 2 flat paddle blades and 4 baffle plates, stirring for 30 minutes at 70 ° C Then, the silver complex solution was added in 1 minute, and stirring was continued at 70 ° C. for 2 hours with the same required power to deposit silver on the surface of the metal nickel powder. Here, the silver complex solution was prepared by dissolving AgNO 3 : 28.0 g, EDTA tetrasodium: 162.0 g, ammonium carbonate: 84.0 g, and ion-exchanged water: 756.3 g. The silver coating amount was 10 parts by mass with respect to 100 parts by mass in total of silver and nickel. 6 and 7 show scanning electron micrographs of the obtained silver-coated nickel powder. 6 and 7, the silver-coated nickel powder obtained in Comparative Example 2 is that the nickel powder surface is not uniformly coated with silver, and silver is attached to a part of the nickel powder surface. all right.

〔比較例2〕
5リットルの撹拌槽に平均粒径10μmの球状ニッケル粉(純度:99.9%):180gを、純水:1800gに、硝酸:9gを溶解した液と共に加えて、4枚撹拌羽50φで撹拌速度:400rpmにおいて15分間、25℃で撹拌を行い、デカントを3回行った。その後、硝酸銀:32gに、40%硝酸パラジウム水溶液(パラジウム含有率:約18質量%):15g、純水:60gを混合し、アンモニアで錯体化を行い、pHを11に調整した。硝酸で洗浄したニッケル粉に純水:187g、アンモニア:80g、ヒドラジン一水和物:8gを加え、撹拌スピード:500rpmで撹拌した。作製した銀錯体溶液を、添加スピード:30g/minで添加して、さらに10分間、25℃で、同所要動力で撹拌を継続して、金属ニッケル粉表面への銀の析出を行った。銀被覆量は、銀とニッケルの合計100質量部に対して、10質量部であった。
[Comparative Example 2]
180 g of spherical nickel powder having an average particle size of 10 μm (purity: 99.9%): 180 g and a solution of 9 g of nitric acid: 9 g dissolved in pure water: 1800 g are added to a 5 liter stirring tank and stirred with 4 stirring blades 50φ. Speed: Stirring was performed at 25 ° C. for 15 minutes at 400 rpm, and decanting was performed three times. Thereafter, silver nitrate: 32 g was mixed with 40% palladium nitrate aqueous solution (palladium content: about 18% by mass): 15 g and pure water: 60 g, and complexed with ammonia to adjust the pH to 11. Pure water: 187 g, ammonia: 80 g, hydrazine monohydrate: 8 g were added to nickel powder washed with nitric acid, and the mixture was stirred at a stirring speed of 500 rpm. The prepared silver complex solution was added at an addition speed of 30 g / min, and stirring was continued at 25 ° C. for 10 minutes with the same required power to deposit silver on the surface of the metal nickel powder. The silver coating amount was 10 parts by mass with respect to 100 parts by mass in total of silver and nickel.

〔圧力:5.6MPaでの粉体抵抗値の測定〕
実施例1〜3、比較例1、2で得られた粉末を円柱状に加圧し、粉体抵抗値の測定を行った。詳しくは、半径:1.50mm(面積:7.07mm)の型に入れ、上下方向から4.00kgfで加圧し、圧粉体の厚さ、上下間の電気抵抗値を測定し、粉体抵抗値を算出した。表1に、結果を示す。参考に、平均粒径:10μmのニッケル粉末と、平均粒径:10μmの銀粉末を表1に示す割合で混合したときの粉体抵抗値を示す。
[Pressure: Measurement of powder resistance value at 5.6 MPa]
The powders obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were pressed into a cylindrical shape, and the powder resistance value was measured. Specifically, it is put into a mold having a radius of 1.50 mm (area: 7.07 mm 2 ), pressed from above and below at 4.00 kgf, and the thickness of the green compact and the electric resistance value between the top and bottom are measured. The resistance value was calculated. Table 1 shows the results. For reference, the powder resistance values when nickel powder having an average particle diameter of 10 μm and silver powder having an average particle diameter of 10 μm are mixed in the ratio shown in Table 1 are shown.

実施例1〜3の粉体抵抗値は、0.15〜0.24Ω・mmと著しく低く、銀粉とほぼ同等であった。これに対して、比較例1の粉体抵抗値は、ニッケル50〜75質量部のニッケル・銀混合粉とほぼ同等であった。また、比較例2は、高コストになるパラジウムを用い、パラジウム核を付与する工程を付加したが、粉体抵抗値は、0.28Ω・mmと少し高かった。   The powder resistance values of Examples 1 to 3 were remarkably low, 0.15 to 0.24 Ω · mm, and were almost equivalent to silver powder. On the other hand, the powder resistance value of Comparative Example 1 was almost equivalent to the nickel / silver mixed powder of 50 to 75 parts by mass of nickel. Moreover, although the comparative example 2 used the palladium which becomes high cost and added the process of providing a palladium nucleus, the powder resistance value was a little as high as 0.28 ohm * mm.

以上より、本発明の銀被覆ニッケル粉末は、ニッケル粉末の表面が、銀で均一に低くされており、かつ粉体抵抗値が著しく低いことがわかる。この銀被覆ニッケル粉末は、本発明の製造方法で、容易に得ることができる。   From the above, it can be seen that the surface of the nickel-coated nickel powder of the present invention is uniformly lowered with silver and the powder resistance value is remarkably low. This silver-coated nickel powder can be easily obtained by the production method of the present invention.

Claims (5)

実質的に銀とニッケルからなり、銀とニッケルの合計100質量部に対して、銀を6〜15質量部含み、圧力:5.6MPaでの粉体抵抗値が、0.1〜0.5Ω・mmであることを特徴とする、銀被覆ニッケル粉末。   It consists essentially of silver and nickel, contains 6 to 15 parts by mass of silver with respect to a total of 100 parts by mass of silver and nickel, and has a powder resistance value of 0.1 to 0.5Ω at a pressure of 5.6 MPa. Silver coated nickel powder, characterized in that it is mm. ニッケル粉末、および還元剤を含む溶液(A)と、硝酸銀アンモニア錯体、および反応抑制剤を含有する溶液(B)と、を反応させる工程により、ニッケル粉末に銀を被覆することを特徴とする、銀被覆ニッケル粉末の製造方法。   The nickel powder is coated with silver by a step of reacting a solution containing nickel powder and a reducing agent (A) with a solution containing silver nitrate ammonia complex and a reaction inhibitor (B), A method for producing silver-coated nickel powder. 溶液(A)中に、溶液(B)を滴下させることにより反応させる、請求項2記載の銀被覆ニッケル粉末の製造方法   The method for producing a silver-coated nickel powder according to claim 2, wherein the reaction is performed by dropping the solution (B) into the solution (A). 溶液(B)の反応抑制剤が、酸性基を含むコポリマーを含む、請求項2または3記載の銀被覆ニッケル粉末の製造方法。   The method for producing a silver-coated nickel powder according to claim 2 or 3, wherein the reaction inhibitor of the solution (B) contains a copolymer containing an acidic group. 溶液(A)の還元剤が、ヒドラジンである、請求項2〜4のいずれか1項記載の銀被覆ニッケル粉末の製造方法。   The manufacturing method of the silver covering nickel powder of any one of Claims 2-4 whose reducing agent of a solution (A) is hydrazine.
JP2010008169A 2010-01-18 2010-01-18 Silver-coated nickel powder and method for producing the same Active JP5764294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008169A JP5764294B2 (en) 2010-01-18 2010-01-18 Silver-coated nickel powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008169A JP5764294B2 (en) 2010-01-18 2010-01-18 Silver-coated nickel powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011144441A true JP2011144441A (en) 2011-07-28
JP5764294B2 JP5764294B2 (en) 2015-08-19

Family

ID=44459539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008169A Active JP5764294B2 (en) 2010-01-18 2010-01-18 Silver-coated nickel powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5764294B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181486A1 (en) * 2013-05-08 2014-11-13 三井金属鉱業株式会社 Silver-coated nickel particles and method for producing same
CN106378448A (en) * 2016-09-20 2017-02-08 杨海波 Silver coating surface modification method of nickel powder for circuit protection device material
JP2017186661A (en) * 2016-03-31 2017-10-12 Dowaエレクトロニクス株式会社 Silver coated nickel powder and manufacturing method therefor
CN108296478A (en) * 2018-01-11 2018-07-20 宁波广新纳米材料有限公司 Silver-nickel powder and preparation method thereof and electrocondution slurry containing the silver-nickel powder
WO2018180190A1 (en) * 2017-03-30 2018-10-04 タツタ電線株式会社 Silver chloride coated particle
JP2020023743A (en) * 2018-08-06 2020-02-13 三菱電機株式会社 Manufacturing method of silver-nickel-tin oxide composite powder and silver-nickel-tin oxide electrical contact material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837166A (en) * 1981-08-27 1983-03-04 Shinroku Kawakado Production of noble metal coated powder
JPH01201486A (en) * 1988-02-05 1989-08-14 Kobe Steel Ltd Ag plated powder for electrically conductive paint having superior migration resistance
JPH04149906A (en) * 1990-10-11 1992-05-22 Fuji Kobunshi Kogyo Kk Conductive rubber composition and rubber connector
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837166A (en) * 1981-08-27 1983-03-04 Shinroku Kawakado Production of noble metal coated powder
JPH01201486A (en) * 1988-02-05 1989-08-14 Kobe Steel Ltd Ag plated powder for electrically conductive paint having superior migration resistance
JPH04149906A (en) * 1990-10-11 1992-05-22 Fuji Kobunshi Kogyo Kk Conductive rubber composition and rubber connector
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181486A1 (en) * 2013-05-08 2014-11-13 三井金属鉱業株式会社 Silver-coated nickel particles and method for producing same
JP2014218701A (en) * 2013-05-08 2014-11-20 三井金属鉱業株式会社 Silver-coated nickel particles and method of manufacturing the same
TWI626098B (en) * 2013-05-08 2018-06-11 三井金屬鑛業股份有限公司 Silver-coated nickel particles and method of producing the same
JP2017186661A (en) * 2016-03-31 2017-10-12 Dowaエレクトロニクス株式会社 Silver coated nickel powder and manufacturing method therefor
CN106378448A (en) * 2016-09-20 2017-02-08 杨海波 Silver coating surface modification method of nickel powder for circuit protection device material
WO2018180190A1 (en) * 2017-03-30 2018-10-04 タツタ電線株式会社 Silver chloride coated particle
JP2018168445A (en) * 2017-03-30 2018-11-01 タツタ電線株式会社 Silver chloride-coated particle
CN110366460A (en) * 2017-03-30 2019-10-22 拓自达电线株式会社 Silver chlorate is coated particle
CN108296478A (en) * 2018-01-11 2018-07-20 宁波广新纳米材料有限公司 Silver-nickel powder and preparation method thereof and electrocondution slurry containing the silver-nickel powder
JP2020023743A (en) * 2018-08-06 2020-02-13 三菱電機株式会社 Manufacturing method of silver-nickel-tin oxide composite powder and silver-nickel-tin oxide electrical contact material
CN110802224A (en) * 2018-08-06 2020-02-18 三菱电机株式会社 Preparation method of silver-nickel-tin oxide composite powder and silver-nickel-tin oxide electrical contact material

Also Published As

Publication number Publication date
JP5764294B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5764294B2 (en) Silver-coated nickel powder and method for producing the same
JP2022116130A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP6536581B2 (en) Fine metal particle dispersion
JP4821014B2 (en) Copper powder manufacturing method
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
KR20120115298A (en) Compositions and methods for growing copper nanowires
Huang et al. Effects of simplified pretreatment process on the morphology of W–Cu composite powder prepared by electroless plating and its sintering characterization
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP5847511B2 (en) Conductive silver-coated glass powder, method for producing the same, and conductive paste
JP2014164994A (en) Silver-coated glass powder for electrical conduction and production method thereof, and conductive paste and conductive film
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
Wang et al. Preparation and characterization of nanodiamond cores coated with a thin Ni–Zn–P alloy film
JP5925556B2 (en) Silver-coated flaky glass powder and method for producing the same
JP2017082263A (en) Metal composite powder and manufacturing method thereof
JP5912663B2 (en) Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder
JP2018141180A (en) Nickel-coated copper powder, method for producing the same and conductive paste
JP2018204047A (en) Method for producing a nickel-coated copper powder and method for producing a conductive paste
TWI763637B (en) Metal composite powder and method for producing same
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure
JP5311148B2 (en) Manufacturing method of conductive film, conductive film manufactured by the same, and manufacturing method of conductive wiring and conductive wiring manufactured by the same
JP2019206760A (en) Metal composite powder and manufacturing method thereof
JP6110464B2 (en) Silver-coated flaky glass powder and method for producing the same
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP4247039B2 (en) Method for producing conductive electroless plating powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5764294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250