JPH04325607A - Production of metal powder - Google Patents

Production of metal powder

Info

Publication number
JPH04325607A
JPH04325607A JP9752891A JP9752891A JPH04325607A JP H04325607 A JPH04325607 A JP H04325607A JP 9752891 A JP9752891 A JP 9752891A JP 9752891 A JP9752891 A JP 9752891A JP H04325607 A JPH04325607 A JP H04325607A
Authority
JP
Japan
Prior art keywords
cooling liquid
metal
cylinder
metal powder
liquid layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9752891A
Other languages
Japanese (ja)
Other versions
JP2672036B2 (en
Inventor
Masanori Yoshino
正規 吉野
Toshiyuki Aoki
敏行 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3097528A priority Critical patent/JP2672036B2/en
Publication of JPH04325607A publication Critical patent/JPH04325607A/en
Application granted granted Critical
Publication of JP2672036B2 publication Critical patent/JP2672036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flat-shaped metal powder having a large surface area by injecting the molten metal from the inner surface side of the liq. coolant layer formed on the inner surface of a cooling cylinder and colliding the unsolidified metal grain with the inner surface of the cylinder. CONSTITUTION:A pump 3 is operated to form a liq. coolant layer 21 which spirals down along the inner surface of a cooling cylinder 1 at high speed. An inert gas is introduced under pressure into a crucible 2 to inject the molten metal 22 in the crucible 2 against the inner surface of the coolant layer 21, and the molten metal is finely divided by the spiral flow. The finely divided metal is passed through the coolant layer 21, collided with the inner surface of the cylinder 1 or sleeve 6 and flattened. The flattened metal grain is cooled by the liq. coolant and solidified, and a flat-shaped metal powder is continuously produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融金属を旋回移動す
る冷却液層中に噴射して金属粉末を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metal powder by injecting molten metal into a swirling layer of cooling liquid.

【0002】0002

【従来の技術】急冷凝固金属粉末は、結晶粒が微細で合
金元素も過飽和に含有させることができるので、例えば
アルミニウムやその合金の急冷凝固粉末によって形成さ
れた押出材は、溶製材では具備することのない優れた材
質特性を有し、機械部品等の素材として注目されている
[Prior Art] Rapidly solidified metal powder has fine crystal grains and can contain supersaturated alloying elements. For example, an extruded material formed from rapidly solidified powder of aluminum or its alloy has It has exceptional material properties and is attracting attention as a material for mechanical parts.

【0003】前記急冷凝固金属粉末の好適な製造方法と
して、回転ドラム法がある。この方法は、図2に示すよ
うに、回転する冷却ドラム61の内周面に冷却液層62
を遠心力の作用で形成し、該冷却液層62に溶融金属流
を噴射し、微細に分断して急冷凝固した金属粉末を得る
方法である。同図において、63は溶融金属噴射手段と
しての噴射るつぼであり、その外周面には加熱用の高周
波コイル64が装着され、その下部側壁には噴射ノズル
65が開設されている。前記るつぼ63内の溶融金属6
6は、該るつぼ63に不活性ガス67を加圧注入するこ
とによって前記ノズル65から噴射される。そして、冷
却ドラム61内の金属粉末は、一定量溜まると、冷却ド
ラム61の回転を止め、冷却液と共に回収され、脱液後
、乾燥される。かかる金属粉末の製造方法は特公平1−
49769 号公報に開示されている。
[0003] A preferred method for producing the rapidly solidified metal powder is a rotating drum method. In this method, as shown in FIG. 2, a cooling liquid layer 62 is formed on the inner peripheral surface of a rotating cooling drum 61.
In this method, a molten metal flow is formed by the action of centrifugal force, and a molten metal flow is injected into the cooling liquid layer 62 to obtain finely divided metal powder that is rapidly solidified. In the figure, 63 is an injection crucible serving as a molten metal injection means, and a high frequency coil 64 for heating is attached to the outer peripheral surface of the crucible, and an injection nozzle 65 is provided on the lower side wall of the crucible. Molten metal 6 in the crucible 63
6 is injected from the nozzle 65 by injecting an inert gas 67 into the crucible 63 under pressure. When a certain amount of metal powder accumulates in the cooling drum 61, the rotation of the cooling drum 61 is stopped, the metal powder is collected together with the cooling liquid, and the metal powder is removed and dried. The method for producing such metal powder is described in Japanese Patent Publication No. 1-
It is disclosed in Japanese Patent No. 49769.

【0004】0004

【発明が解決しようとする課題】しかしながら、回転ド
ラム法では、いわゆるバッチ式操業となり、生産性が劣
る。そのうえ、粉末回収時に溶融金属の噴射を止めなけ
ればならないため、ノズルに孔詰りが生じ易いという問
題がある。また、冷却温度を一定にするためには、冷却
液層の液面より冷却液を供給、排出して温度制御しなけ
ればならないが、この際、液面が乱れ、粉末粒度や品質
にばらつきが生じ易いという問題がある。
However, the rotating drum method involves a so-called batch operation, resulting in poor productivity. Furthermore, since the injection of molten metal must be stopped during powder recovery, there is a problem in that the nozzle is likely to become clogged. In addition, in order to keep the cooling temperature constant, the temperature must be controlled by supplying and discharging the cooling liquid from the liquid level of the cooling liquid layer, but in this case, the liquid level is disturbed and the powder particle size and quality may vary. There is a problem in that it is easy to occur.

【0005】また、触媒や合成樹脂等への添加複合材と
して用いる金属粉末は表面積が大きいことが要求される
が、回転ドラム法によって製造される粉末はかかる要求
を必ずしも満足していない。本発明は、表面積の大きい
、安定した品質の金属粉末を連続的に製造することがで
きる金属粉末の製造方法を提供することを目的とする。
[0005] Furthermore, metal powders used as composite materials added to catalysts, synthetic resins, etc. are required to have a large surface area, but powders produced by the rotating drum method do not necessarily satisfy this requirement. An object of the present invention is to provide a method for producing metal powder that can continuously produce metal powder with a large surface area and stable quality.

【0006】[0006]

【課題を解決するための手段】本発明の金属粉末の製造
方法は、冷却用筒体の内周面に沿って冷却液を噴出供給
して筒体内周面に沿って旋回しながら流下する冷却液層
を形成し、該冷却液層の内周面側より溶融金属を噴射し
、冷却液層によって分断すると共に未凝固の金属粒子を
筒体内周面に衝突変形させ、冷却凝固させて偏平形状の
金属粉末を得ることを発明の構成とするものである。 未凝固の金属粒子の偏平化に際しては、冷却用筒体の内
周面にスリーブを交換自在に設け、このスリーブに金属
粒子を衝突させることによって偏平に変形させてもよい
[Means for Solving the Problems] The method for producing metal powder of the present invention provides cooling liquid that is sprayed and supplied along the inner circumferential surface of a cooling cylinder and flows down while swirling along the inner circumferential surface of the cylinder. A liquid layer is formed, and molten metal is injected from the inner circumferential side of the coolant layer, and the coolant layer divides the metal particles. At the same time, the unsolidified metal particles are deformed by colliding with the inner circumferential surface of the cylinder, and are cooled and solidified to form a flat shape. The structure of the invention is to obtain a metal powder of . When flattening the unsolidified metal particles, a replaceable sleeve may be provided on the inner peripheral surface of the cooling cylinder, and the metal particles may be flattened by colliding with the sleeve.

【0007】[0007]

【作用】冷却用筒体の内周面に沿って噴出供給された冷
却液は、筒体内周面もしくはスリーブ内周面に沿って旋
回しながら流下し、旋回時の遠心力の作用でほぼ一定層
厚の冷却液層を形成する。この冷却液層の内周面より溶
融金属を噴射供給すると、溶融金属流又は溶滴は旋回流
により分断される。冷却液層の層厚を比較的薄く形成し
ておくことにより、分断された金属粒子は噴射による運
動エネルギーや遠心力の作用で凝固する前に筒体内周面
又はスリーブ内周面に到達し、該内周面に衝突して変形
し、冷却凝固し、表面積の大きい偏平形状の金属粉末が
得られる。
[Operation] The coolant that is spouted and supplied along the inner circumferential surface of the cooling cylinder flows down while swirling along the inner circumferential surface of the cylinder or the sleeve, and is almost constant due to the action of centrifugal force during swirling. Forms a thick cooling liquid layer. When molten metal is injected and supplied from the inner peripheral surface of this cooling liquid layer, the molten metal flow or droplets are separated by a swirling flow. By forming the coolant layer to be relatively thin, the separated metal particles reach the inner circumferential surface of the cylinder or the inner circumferential surface of the sleeve before solidifying due to the action of kinetic energy and centrifugal force caused by the injection. It collides with the inner circumferential surface, deforms, cools and solidifies, yielding a flat metal powder with a large surface area.

【0008】スリーブを冷却用筒体の内周面に装着する
場合、肉厚の異なるスリーブを交換することにより、冷
却液層の層厚を容易に調整することができ、これにより
冷却液層によって分断された未凝固金属粒子の冷却状態
ひいては偏平化の程度を容易にコントロールすることが
できる。この際、冷却液層は常に新たに供給される冷却
液によって形成されるために一定の温度が容易に維持さ
れる。このため、温度制御のために液面より冷却液を排
出、供給する必要がなく、液面には乱れは生じず、安定
した状態が維持される。それ故、冷却液層に噴射された
溶融金属は常に一定状態の下で冷却液層中に注入、分断
され、一定温度の下で冷却凝固されるため、金属粉末の
品質が安定する。
When the sleeve is attached to the inner circumferential surface of the cooling cylinder, the thickness of the cooling liquid layer can be easily adjusted by replacing sleeves with different wall thicknesses. The cooling state of the fragmented unsolidified metal particles and the degree of flattening can be easily controlled. At this time, since the cooling liquid layer is always formed by newly supplied cooling liquid, a constant temperature can be easily maintained. Therefore, there is no need to drain or supply cooling liquid from the liquid surface for temperature control, and the liquid level is not disturbed and remains in a stable state. Therefore, the molten metal injected into the cooling liquid layer is always injected into the cooling liquid layer under constant conditions, is divided, and is cooled and solidified at a constant temperature, so that the quality of the metal powder is stabilized.

【0009】冷却液層中の金属粉末は冷却液と共に旋回
しながら流下し、筒体の下端より排出されるので、金属
粉末の連続生産が可能となる。
Since the metal powder in the cooling liquid layer flows down while swirling together with the cooling liquid and is discharged from the lower end of the cylinder, continuous production of metal powder becomes possible.

【0010】0010

【実施例】まず、本発明の金属粉末製造方法を実施する
ための装置について説明する。図1は実施例に係る金属
粉末製造装置を示しており、内周面に冷却液層21を形
成するための冷却用筒体1 と、冷却液層21に溶融金
属22を噴射供給するための手段である噴射るつぼ2 
と、前記筒体1 に冷却液を供給するための手段である
ポンプ3 を備えている。
EXAMPLES First, an apparatus for carrying out the method for producing metal powder of the present invention will be described. FIG. 1 shows a metal powder manufacturing apparatus according to an embodiment, which includes a cooling cylinder 1 for forming a cooling liquid layer 21 on the inner peripheral surface, and a cooling cylinder 1 for injecting and supplying molten metal 22 to the cooling liquid layer 21. Injection crucible 2
and a pump 3 which is a means for supplying cooling liquid to the cylindrical body 1.

【0011】前記筒体1 は、円筒形状であり、その上
端には、溶融金属を冷却液層21に供給するための開口
4 が中心部に形成された蓋体5 が被着されている。 下部内周面には、冷却液層21によって分断された未凝
固金属粒子を衝突変形させるためのスリーブ6 がボル
トによって着脱、交換自在に取り付けられている。上部
には冷却液噴出管7 の吐出口8 が筒体内周面に接線
方向から等間隔で複数箇所開口しており、該噴出管7 
の管軸方向は筒体軸心に直交する平面に対して0〜20
°程度斜め下方に設定されている。筒体1 の下端には
液切り用部材として円筒状の網体9 が連設されており
、該網体9 の下端には、粉末回収用の漏斗体10が取
り付けられており、網体9 の回りにはカバー11が設
けられている。
The cylinder 1 has a cylindrical shape, and a lid 5 having an opening 4 formed in the center for supplying molten metal to a cooling liquid layer 21 is attached to its upper end. A sleeve 6 for colliding and deforming the unsolidified metal particles separated by the cooling liquid layer 21 is detachably and replaceably attached to the lower inner circumferential surface with bolts. In the upper part, a plurality of discharge ports 8 of a coolant jet pipe 7 are opened at equal intervals from the tangential direction on the inner peripheral surface of the cylinder.
The tube axis direction is 0 to 20 with respect to the plane perpendicular to the cylinder axis.
It is set diagonally downward by about 1°. A cylindrical net 9 is connected to the lower end of the cylinder 1 as a liquid draining member, and a funnel 10 for collecting powder is attached to the lower end of the net 9. A cover 11 is provided around the.

【0012】前記冷却液噴出管7 は、ポンプ3 を介
してタンク12に配管接続されている。また、前記カバ
ー11の底部はタンク12に配管されており、カバー1
1によって回収された冷却液はタンク12に戻され、循
環使用される。 尚、タンク12には、図示省略の補給用の冷却液供給管
が設けられ、またタンク内や循環流路の途中に冷却器を
適宜介在させてもよい。冷却液としては一般に水が使用
されるが、油が使用される場合もある。
The coolant jetting pipe 7 is connected to a tank 12 via a pump 3. Further, the bottom of the cover 11 is piped to a tank 12, and the cover 11 is connected to a tank 12.
The coolant recovered by 1 is returned to the tank 12 and used for circulation. The tank 12 is provided with a cooling liquid supply pipe for replenishment (not shown), and a cooler may be appropriately interposed within the tank or in the middle of the circulation flow path. Water is generally used as the coolant, but oil may also be used.

【0013】前記蓋体5 の上部には、溶融金属噴射手
段としての噴射るつぼ2 が設けられており、その外周
には加熱用誘導コイル14が巻回形成され、その底部に
はノズル孔15が開設されている。噴射るつぼ2 には
ArやN2 等の不活性ガスや溶融金属が圧送され、る
つぼ2 内の溶融金属22が前記ノズル孔15より冷却
液層21に噴射される。尚、噴射るつぼ2 は黒鉛や窒
化珪素等の耐火物で形成されている。
An injection crucible 2 serving as a molten metal injection means is provided on the top of the lid 5, and a heating induction coil 14 is wound around its outer periphery, and a nozzle hole 15 is formed at its bottom. It has been established. An inert gas such as Ar or N 2 and molten metal are pumped into the injection crucible 2 , and the molten metal 22 in the crucible 2 is injected into the cooling liquid layer 21 from the nozzle hole 15 . Incidentally, the injection crucible 2 is made of a refractory material such as graphite or silicon nitride.

【0014】本発明を実施するには、まずポンプ3 を
作動させて、筒体1 の内周面に高速旋回しながら流下
する冷却液層21を形成する。すなわち、筒体1 の内
周面に沿って冷却液噴出管7 より噴出された冷却液は
、筒体1 の内周面に沿って旋回しながら流下し、スリ
ーブ6 をオーバーフローして下方へ流出する。この際
、冷却液は旋回時の遠心力の作用で前記スリーブ6 の
内周面においてほぼ一定層厚の冷却液層21が容易に形
成される。冷却液層21の層厚を変えるには、冷却液の
吐出量や吐出圧を調整してもよいが、冷却液の吐出条件
を一定にしたまま、スリーブ6 を肉厚の異なったもの
と交換するだけで容易に層厚調整を行うことができる。
To carry out the present invention, first, the pump 3 is operated to form a cooling liquid layer 21 flowing down on the inner peripheral surface of the cylinder 1 while swirling at high speed. That is, the coolant jetted from the coolant jet pipe 7 along the inner circumferential surface of the cylinder 1 flows down while swirling along the inner circumferential surface of the cylinder 1, overflows the sleeve 6, and flows downward. do. At this time, the cooling liquid layer 21 having a substantially constant thickness is easily formed on the inner circumferential surface of the sleeve 6 due to the action of centrifugal force during the rotation of the cooling liquid. To change the thickness of the coolant layer 21, the discharge amount and discharge pressure of the coolant may be adjusted, but it is also possible to replace the sleeve 6 with one with a different wall thickness while keeping the coolant discharge conditions constant. You can easily adjust the layer thickness by simply doing this.

【0015】該冷却液層21は、常に新たに供給される
冷却液によって形成されるため、一定の温度が容易に維
持される。従って、温度制御のために液面より冷却液を
供給、排出する必要がなく、液面に乱れが生じにくく、
安定性に優れる。次に、筒体1 の上部に設けられた噴
射るつぼ2 にArガス等の不活性ガスを圧送して、る
つぼ2 内の溶融金属22をノズル孔15より冷却液層
21の内面に向けて噴射し、旋回流により分断すると共
に冷却液層21を通過させてスリーブ6 の内周面に衝
突させ、偏平形状に変形させる。変形の程度は、冷却液
層21の旋回速度、層厚、溶融金属の噴射温度、噴射圧
力等により調整される。但し、冷却液層21の層厚は、
冷却液層21によって分断された未凝固金属粒子がスリ
ーブ内周面に当接する前に凝固しないように、分断粒子
の大きさ、冷却液の温度等を勘案して適宜の層厚に設定
する必要がある。
Since the cooling liquid layer 21 is formed by constantly newly supplied cooling liquid, a constant temperature can be easily maintained. Therefore, there is no need to supply or discharge cooling liquid from the liquid level for temperature control, and the liquid level is less likely to be disturbed.
Excellent stability. Next, an inert gas such as Ar gas is pumped into the injection crucible 2 provided at the top of the cylinder 1, and the molten metal 22 in the crucible 2 is injected from the nozzle hole 15 toward the inner surface of the cooling liquid layer 21. The sleeve 6 is divided by the swirling flow, passes through the cooling liquid layer 21, and collides with the inner circumferential surface of the sleeve 6, thereby deforming it into a flat shape. The degree of deformation is adjusted by the rotation speed of the cooling liquid layer 21, the layer thickness, the injection temperature of the molten metal, the injection pressure, etc. However, the thickness of the cooling liquid layer 21 is
In order to prevent the unsolidified metal particles separated by the cooling liquid layer 21 from solidifying before contacting the inner circumferential surface of the sleeve, it is necessary to set the layer thickness to an appropriate value by taking into account the size of the separated particles, the temperature of the cooling liquid, etc. There is.

【0016】スリーブ6 によって変形された金属粒子
は冷却液によって冷却凝固され、偏平形状の金属粉末が
連続製造される。この粉末は、温度や液面状態が安定な
冷却液層によって形成されるため、品質の安定性に優れ
る。冷却液層21中の金属粉末は、冷却液と共に旋回し
ながらスリーブ6 を越えて流下し、筒体1 の下端よ
り液切り用網体9 に入る。ここで、冷却液は遠心力の
作用で網体9 より放射状に外方へ飛散排出され、一次
的に脱液される液分の少ない金属粉末が得られる。
The metal particles deformed by the sleeve 6 are cooled and solidified by a cooling liquid, and flat metal powder is continuously manufactured. This powder has excellent quality stability because it is formed by a cooling liquid layer whose temperature and liquid level are stable. The metal powder in the cooling liquid layer 21 flows down over the sleeve 6 while swirling together with the cooling liquid, and enters the liquid draining net 9 from the lower end of the cylindrical body 1 . Here, the cooling liquid is scattered and discharged radially outward from the mesh body 9 by the action of centrifugal force, and metal powder with a small liquid content that is primarily removed is obtained.

【0017】前記網体9 により一次脱液され、漏斗体
10から排出された金属粉末は、液分が少ないので、順
次遠心分離機等の適宜の脱液装置にかけることにより短
時間で液分がほとんどなくなり、容易に乾燥され、製品
粉末となる。上記実施例においては、冷却用筒体1 の
内周面にスリーブ6 を設け、冷却液層21を通過して
きた未凝固金属粒子をスリーブ6の内周面に衝突させて
変形させたが、スリーブ6 は必ずしも必要ではなく、
未凝固粒子を筒体内周面に直接衝突させてもよい。この
場合、冷却液層の層厚調整は冷却液の吐出量、吐出圧に
よって調整される。
Since the metal powder that has been primarily deliquified by the mesh body 9 and discharged from the funnel body 10 has a small liquid content, it is sequentially passed through a suitable deliquid device such as a centrifuge to quickly remove the liquid. is almost completely eliminated and is easily dried to form a product powder. In the above embodiment, the sleeve 6 was provided on the inner peripheral surface of the cooling cylinder 1, and the unsolidified metal particles that had passed through the cooling liquid layer 21 collided with the inner peripheral surface of the sleeve 6 and were deformed. 6 is not necessarily necessary,
The unsolidified particles may directly collide with the inner peripheral surface of the cylinder. In this case, the thickness of the coolant layer is adjusted by the discharge amount and discharge pressure of the coolant.

【0018】また、冷却用筒体の形状としては、図例の
ような円筒形状に限らず、例えば、内周面が上拡き回転
放物面で形成された横断面円形の漏斗形状や切頭逆円錐
形状としてもよい。上記実施例においては、噴射るつぼ
2 内の溶融金属22は、圧媒を作用させて加圧するこ
とによりノズル孔15から噴射したが、圧媒を作用させ
ることなく、溶融金属22自体に作用する重力(自重)
 により噴射るつぼ2 内の下部の溶融金属を加圧状態
とし、ノズル孔15から噴射(噴出) してもよい。こ
の場合、筒体1 の軸心を鉛直方向に対して若干傾斜さ
せ、鉛直下方に指向するノズル孔15より溶融金属を噴
出させ、重力落下する溶融金属を筒体内周面に形成され
た冷却液層に供給するようにするとよい。
The shape of the cooling cylinder is not limited to the cylindrical shape as shown in the figure, but may also be, for example, a funnel shape with a circular cross section whose inner peripheral surface is an upwardly expanding paraboloid of revolution, or a truncated shape. The head may have an inverted conical shape. In the above embodiment, the molten metal 22 in the injection crucible 2 is injected from the nozzle hole 15 by applying a pressure medium to the nozzle hole 15, but without applying a pressure medium, the molten metal 22 itself is (self-weight)
The molten metal in the lower part of the injection crucible 2 may be pressurized by this method, and may be injected (spouted) from the nozzle hole 15. In this case, the axis of the cylinder 1 is slightly inclined with respect to the vertical direction, and the molten metal is spouted from the nozzle hole 15 directed vertically downward, and the molten metal falling by gravity is mixed with the cooling liquid formed on the circumferential surface of the cylinder. It is better to supply it to layers.

【0019】尚、本発明は、Al合金やMg合金等の軽
量金属粉末の製造に限らず、鉄やその合金等の金属粉末
の製造に適用できることは勿論である。
The present invention is of course applicable not only to the production of lightweight metal powders such as Al alloys and Mg alloys, but also to the production of metal powders such as iron and its alloys.

【0020】[0020]

【発明の効果】以上説明した通り、本発明の金属粉末の
製造方法によると、筒体の内周面に沿って冷却液を噴出
供給して、筒体内周面もしくはスリーブ内周面に沿って
旋回しながら流下する冷却液層を形成するので、溶融金
属が噴射供給される冷却液層のの内周面は安定し、温度
も均一に保持される。そして、該冷却液層中に溶融金属
を噴射供給し、凝固前に金属粒子を筒体内周面もしくは
スリーブ内周面に衝突変形させるので、品質の安定した
表面積の大きい偏平形状の急冷凝固粉末が連続的に生産
され、噴射ノズルに孔詰りも生じない。
[Effects of the Invention] As explained above, according to the method for producing metal powder of the present invention, the cooling liquid is jetted and supplied along the inner peripheral surface of the cylinder, and the cooling liquid is supplied along the inner peripheral surface of the cylinder or the sleeve. Since a cooling liquid layer is formed that flows downward while swirling, the inner peripheral surface of the cooling liquid layer to which molten metal is injected is stabilized and the temperature is maintained uniformly. Then, molten metal is injected into the cooling liquid layer, and the metal particles are deformed by colliding with the inner circumferential surface of the cylinder or the inner circumferential surface of the sleeve before solidification, so that rapidly solidified powder with stable quality and a flat shape with a large surface area is produced. It is produced continuously and there is no clogging of the injection nozzle.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例に係る金属粉末製造装置の要部断面説明
図である。
FIG. 1 is an explanatory cross-sectional view of a main part of a metal powder manufacturing apparatus according to an example.

【図2】従来の金属粉末製造装置の要部断面説明図であ
る。
FIG. 2 is an explanatory cross-sectional view of a main part of a conventional metal powder manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1  冷却用筒体 2  噴射るつぼ(溶融金属噴射手段)3  ポンプ(
冷却液供給手段) 6  スリーブ 7  冷却液噴出管 9  液切り用網体 21  冷却液層 22  溶融金属
1 Cooling cylinder 2 Injection crucible (molten metal injection means) 3 Pump (
Coolant supply means) 6 Sleeve 7 Coolant jet pipe 9 Liquid draining net 21 Coolant layer 22 Molten metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  冷却用筒体の内周面に沿って旋回しな
がら流下する冷却液層を形成し、該冷却液層の内周面側
より溶融金属を噴射し、冷却液層によって分断すると共
に未凝固の金属粒子を筒体内周面に衝突変形させ、冷却
凝固させて偏平形状の金属粉末を得ることを特徴とする
金属粉末の製造方法。
Claim 1: Forming a cooling liquid layer that flows down while swirling along the inner circumferential surface of a cooling cylinder, injecting molten metal from the inner circumferential side of the cooling liquid layer, and dividing the metal by the cooling liquid layer. A method for producing metal powder, characterized in that unsolidified metal particles are deformed by colliding against the inner peripheral surface of a cylinder, and then cooled and solidified to obtain flat-shaped metal powder.
【請求項2】  冷却用筒体の内周面にスリーブを交換
自在に設け、該スリーブの内周面に沿って旋回しながら
流下する冷却液層を形成し、該冷却液層の内周面側より
溶融金属を噴射し、冷却液層によって分断すると共に未
凝固の金属粒子をスリーブ内周面に衝突変形させ、冷却
凝固させて偏平形状の金属粉末を得ることを特徴とする
金属粉末の製造方法。
2. A replaceable sleeve is provided on the inner circumferential surface of the cooling cylinder, a cooling liquid layer is formed that flows downward while swirling along the inner circumferential surface of the sleeve, and the inner circumferential surface of the cooling liquid layer is formed. Production of metal powder characterized by injecting molten metal from the side, dividing it by a cooling liquid layer, colliding and deforming unsolidified metal particles against the inner peripheral surface of a sleeve, cooling and solidifying them to obtain flat-shaped metal powder. Method.
JP3097528A 1991-04-26 1991-04-26 Method and apparatus for producing metal powder Expired - Lifetime JP2672036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097528A JP2672036B2 (en) 1991-04-26 1991-04-26 Method and apparatus for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097528A JP2672036B2 (en) 1991-04-26 1991-04-26 Method and apparatus for producing metal powder

Publications (2)

Publication Number Publication Date
JPH04325607A true JPH04325607A (en) 1992-11-16
JP2672036B2 JP2672036B2 (en) 1997-11-05

Family

ID=14194754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097528A Expired - Lifetime JP2672036B2 (en) 1991-04-26 1991-04-26 Method and apparatus for producing metal powder

Country Status (1)

Country Link
JP (1) JP2672036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329807A (en) * 1991-05-02 1992-11-18 Kubota Corp Production of metallic powder
US5738705A (en) * 1995-11-20 1998-04-14 Iowa State University Research Foundation, Inc. Atomizer with liquid spray quenching
CN103769596A (en) * 2013-11-26 2014-05-07 王利民 Method for preparing high-stacking-density oblate powder material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207102A (en) * 1981-06-16 1982-12-18 Nippon Atomaizu Kako Kk Producing device for metallic powder
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPH07103408A (en) * 1993-10-04 1995-04-18 Miura Kenkyusho:Kk Catalytic combustion boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207102A (en) * 1981-06-16 1982-12-18 Nippon Atomaizu Kako Kk Producing device for metallic powder
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPH07103408A (en) * 1993-10-04 1995-04-18 Miura Kenkyusho:Kk Catalytic combustion boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329807A (en) * 1991-05-02 1992-11-18 Kubota Corp Production of metallic powder
US5738705A (en) * 1995-11-20 1998-04-14 Iowa State University Research Foundation, Inc. Atomizer with liquid spray quenching
CN103769596A (en) * 2013-11-26 2014-05-07 王利民 Method for preparing high-stacking-density oblate powder material

Also Published As

Publication number Publication date
JP2672036B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP2719074B2 (en) Method and apparatus for producing metal powder
US5352267A (en) Method of producing metal powder
US5482532A (en) Method of and apparatus for producing metal powder
JP2672042B2 (en) Metal powder manufacturing equipment
EP0543017B1 (en) Method and device for making metallic powder
JPH04325607A (en) Production of metal powder
JP2672043B2 (en) Metal powder manufacturing equipment
JP2774711B2 (en) Method and apparatus for producing metal powder
JP2672056B2 (en) Method and apparatus for producing metal powder
JP2618108B2 (en) Metal powder production equipment
JP2618109B2 (en) Method for producing metal powder and apparatus for producing the same
JPH0417605A (en) Method and apparatus for manufacturing rapidly solidifying metal powder
JP2672035B2 (en) Method and apparatus for producing metal powder
JP2719053B2 (en) Metal powder manufacturing method
JP2818532B2 (en) Metal powder manufacturing method
JP2672044B2 (en) Method for producing metal powder
JPH04337016A (en) Apparatus for producing metallic powder
JPH07103408B2 (en) Metal powder manufacturing equipment
JPH04228507A (en) Device for producing metal powder
JPH01136909A (en) Manufacture of solidified metal powder by rapid cooling
JPH07100804B2 (en) Metal powder manufacturing equipment
JP2655950B2 (en) Manufacturing method of metal wire
JP2672039B2 (en) Metal powder manufacturing method
JPH04337013A (en) Apparatus for producing metallic powder
JPH08209208A (en) Production of rapidly cooled and solidified metal power and production apparatus therefor