JPH0417605A - Method and apparatus for manufacturing rapidly solidifying metal powder - Google Patents

Method and apparatus for manufacturing rapidly solidifying metal powder

Info

Publication number
JPH0417605A
JPH0417605A JP2121962A JP12196290A JPH0417605A JP H0417605 A JPH0417605 A JP H0417605A JP 2121962 A JP2121962 A JP 2121962A JP 12196290 A JP12196290 A JP 12196290A JP H0417605 A JPH0417605 A JP H0417605A
Authority
JP
Japan
Prior art keywords
cooling liquid
cooling
liquid layer
metal powder
swirling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2121962A
Other languages
Japanese (ja)
Other versions
JPH07107167B2 (en
Inventor
Hiroshi Isaki
伊崎 博
Masanori Yoshino
正規 吉野
Yoshimitsu Tokunaga
徳永 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP12196290A priority Critical patent/JPH07107167B2/en
Priority to CA002038449A priority patent/CA2038449C/en
Priority to DE69106421T priority patent/DE69106421T2/en
Priority to EP91104228A priority patent/EP0452685B1/en
Priority to KR1019910004404A priority patent/KR0167779B1/en
Priority to US07/672,576 priority patent/US5180539A/en
Publication of JPH0417605A publication Critical patent/JPH0417605A/en
Priority to US07/950,684 priority patent/US5352267A/en
Publication of JPH07107167B2 publication Critical patent/JPH07107167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To continuously manufacture rapidly solidifying metal powder with good cooling efficiency by forming revolving cooling liquid layer along inner peripheral face of a cylindrical part in a cooling vessel and successively supplying molten metal from inner peripheral face side of the revolving cooling liquid layer. CONSTITUTION:By working a high pressure pump 13, cooling water 6 in a tank 7 is sucked and injection-supplied from upper end outer peripheral side of contracting diameter part 11 in the cooling vessel 1, and the revolving cooling liquid layer 12 is formed along the inner peripheral face of the cylindrical part 2. Successively, the molten metal 18 of the specific temp. in an injection crucible 14 is injected and splashed into the cooling vessel 1 and supplied into the cooling liquid layer 12 from the inner peripheral face side of revolving cooling liquid layer 12 and molten metal particles are quickly cooled and solidified to make the metal powder. The manufactured metal powder is shifted to lower side of inclined direction with a mesh member 8 and discharged and recovered from a guide hole 8, and the cooling water is returned back to the tank 7 and circularly used. By this method, the rapidly solidifying metal powder having high quality is obtd. with high cooling efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミ合金等、各種金属溶湯を高速移動する
冷却液層中に供給することにより、溶湯を急冷凝固させ
て金属粉末を製造する急冷凝固金属粉末の製造方法及び
製造装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention produces metal powder by rapidly cooling and solidifying the molten metal by supplying molten metal such as aluminum alloy into a cooling liquid layer that moves at high speed. The present invention relates to a method and apparatus for producing rapidly solidified metal powder.

(従来の技術) この種の製造装置としては、第4図に示される構造の装
置があり、101はコツプ状の有底回転ドラムで、上面
に開口部102が備えられている。回転ドラム101の
底部103中心下面側にはモータ等の駆動装置によって
回転駆動される回転駆動軸104が連結されており、回
転駆動軸104の回転に伴って回転ドラム101は上下
方向の軸心回りに回転駆動される。また回転ドラム10
1内には冷却液としての冷却水105が収容されている
(Prior Art) As a manufacturing apparatus of this type, there is an apparatus having the structure shown in FIG. 4, in which 101 is a bottomed rotating drum having a bottom shape, and an opening 102 is provided on the upper surface. A rotary drive shaft 104 that is rotationally driven by a drive device such as a motor is connected to the center lower surface side of the bottom 103 of the rotary drum 101, and as the rotary drive shaft 104 rotates, the rotary drum 101 rotates around the axis in the vertical direction. Rotationally driven. In addition, the rotating drum 10
1 contains cooling water 105 as a cooling liquid.

106は有底円筒状の噴射ルツボで、下端−側には噴射
ノズル107が開孔形成されており、上端部の投入口1
08には密閉用の蓋体109が着脱自在に装着されてい
る。また蓋体109には噴射ルツボlO6内に連通ずる
連通路110が形成されており、アルゴンガス等の加圧
圧媒が噴射ルツボ106内に供給できるよう構成されて
いる。
106 is a cylindrical injection crucible with a bottom, an injection nozzle 107 is formed on the lower end side, and an injection port 1 is formed on the upper end.
08 is removably attached to a sealing lid 109. Further, a communication passage 110 communicating with the injection crucible lO6 is formed in the lid body 109, and is configured so that a pressurized medium such as argon gas can be supplied into the injection crucible 106.

111は噴射ルツボ106の外周に設けられた加熱装置
としての高周波加熱コイルで、噴射ルツボ106の上下
方向略全長に亘って設置されている。
Reference numeral 111 denotes a high-frequency heating coil as a heating device provided on the outer periphery of the injection crucible 106, and is installed over substantially the entire length of the injection crucible 106 in the vertical direction.

そして、回転ドラム101を回転させれば、回転遠心力
により内周面側に水105が層状に張り付き保持される
When the rotating drum 101 is rotated, the water 105 is stuck to the inner circumferential surface side in a layer due to centrifugal force of rotation.

一方、噴射ルツボ106内には、高周波加熱コイル11
1の作動により溶解されて所定温度に加熱された金属溶
湯112が収容され、加圧圧媒による内圧上昇によって
金属溶湯112は噴射ノズル孔107を通じて噴出飛散
され、前記高速移動する水105の層の内周面側に衝突
させることにより溶湯粒子が象、速冷却され、凝固し、
ここに金属粉末が得られる方法が採用されていた。
On the other hand, inside the injection crucible 106, there is a high frequency heating coil 11.
The molten metal 112 that has been melted and heated to a predetermined temperature by the operation of step 1 is contained, and as the internal pressure is increased by the pressurized pressure medium, the molten metal 112 is ejected and scattered through the injection nozzle hole 107, and is inside the layer of water 105 moving at high speed. By colliding with the peripheral surface, the molten metal particles are visualized, rapidly cooled, and solidified.
A method for obtaining metal powder was used here.

(発明が解決しようとする課題) しかしながら、上記方法によれば、回転ドラム101の
水105内に噴出されて冷却凝固した金属粉末が所定量
に達すれば、−旦、回転ドラム101の回転を停止して
、製造された金属粉末を回転ドラム101内より取出す
必要がある、所謂バッチ方式であるため、連続して金属
粉末を製造することができず、生産性が悪い欠点があっ
た。また回転ドラム101の回転に伴って水105が回
転され、回転ドラム101の内周面側に回転遠心力によ
って水105が層状に張り付き保持される方法であり、
従って回転ドラム101の内周面側に形成された高速移
動する水105の層は、第5図に示される如く、溶湯粒
子ないし、半凝固粒子が遠心力によりドラム内面に達す
ると水105の厚さ方向に対して相対的に静止状と考え
られる水105中内に金属溶湯112が供給された状態
と同等となり、溶湯粒子113の周囲に発生する蒸気が
離脱され難く、冷却効率が悪い欠点があった。また常に
同一面上にて溶湯粒子が供給されるため、この部分の水
温が部分的に上昇し、冷却速度がバラツク原因にもなっ
ている。
(Problem to be Solved by the Invention) However, according to the above method, once the metal powder spouted into the water 105 of the rotary drum 101 and cooled and solidified reaches a predetermined amount, the rotation of the rotary drum 101 is stopped. Since it is a so-called batch method in which the produced metal powder must be taken out from inside the rotary drum 101, metal powder cannot be produced continuously and has the disadvantage of poor productivity. In addition, the water 105 is rotated as the rotating drum 101 rotates, and the water 105 is stuck and held in a layer on the inner circumferential surface of the rotating drum 101 by centrifugal force.
Therefore, as shown in FIG. 5, when the molten metal particles or semi-solidified particles reach the inner surface of the drum due to centrifugal force, the layer of water 105 that moves at high speed and is formed on the inner peripheral surface of the rotating drum 101 becomes thicker. This is equivalent to the state in which the molten metal 112 is supplied into the water 105, which is considered to be relatively stationary in the horizontal direction, and the steam generated around the molten metal particles 113 is difficult to separate, resulting in poor cooling efficiency. there were. Furthermore, since the molten metal particles are always supplied on the same surface, the water temperature in this area partially increases, causing variations in the cooling rate.

そこで、本発明は上記問題点に鑑み、冷却効率のよい、
しかも連続して急冷凝固金属粉末の製造が可能な製造方
法及びその製造装置を提供することを目的とする。
Therefore, in view of the above-mentioned problems, the present invention provides a cooling system with high cooling efficiency.
Moreover, it is an object of the present invention to provide a manufacturing method and a manufacturing apparatus that can continuously manufacture rapidly solidified metal powder.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の方法は、高
速移動する冷却液層中に金属溶湯を供給し、急冷凝固さ
せて金属粉末を得る急冷凝固金属粉末の製造方法におい
て、内周面が下方向に円筒面とされた円筒部を有する冷
却容器の円筒部上端部外周側より、冷却液を周方向より
供給して円筒部内周面に沿って旋回させながら流下させ
ると共に、その旋回による遠心力作用で、中心側に空洞
を有する層状の旋回冷却液層を形成し、この旋回冷却液
層の内周面側より金属溶湯を供給して象冷凝固させ、金
属粉末を得る点にある。
(Means for Solving the Problems) The method of the present invention, which has been made to achieve the above object, involves supplying molten metal into a cooling liquid layer moving at high speed, and rapidly solidifying metal powder to obtain metal powder. In the manufacturing method, a cooling liquid is supplied from the outer peripheral side of the upper end of the cylindrical part of a cooling container having a cylindrical part whose inner peripheral surface is a downward cylindrical surface, and is caused to swirl along the inner peripheral surface of the cylindrical part. At the same time, the centrifugal force caused by the swirling forms a layered swirling cooling liquid layer with a cavity in the center, and the molten metal is supplied from the inner circumferential surface of this swirling cooling liquid layer to cause it to solidify. , to obtain metal powder.

また、上記方法を実施するための本発明の装置は、内周
面が下方向に円筒面とされた円筒部を有する冷却容器と
、前記円筒部の上端部外周側より、旋回流を形成すべく
冷却液を噴出供給すると共に、該冷却液の旋回による遠
心力作用で、円筒部の内周面に中心側が空洞とされた層
状の旋回冷却液層を形成しながら流下させる冷却液供給
機構と、前記旋回冷却液層の内周面側より該冷却液層中
に金属溶湯を供給する金属溶湯供給機構とを備えてなる
点にある。この場合、前記円筒部の下部内周面に旋回冷
却液層の層厚調整用リングを装着するとよい。
Further, the apparatus of the present invention for carrying out the above method includes a cooling container having a cylindrical part whose inner peripheral surface is a downwardly cylindrical surface, and a swirling flow formed from the outer peripheral side of the upper end of the cylindrical part. A cooling liquid supply mechanism that jets out and supplies a cooling liquid and causes it to flow down while forming a layered swirling cooling liquid layer with a hollow center on the inner circumferential surface of a cylindrical part due to the centrifugal force effect caused by the swirling of the cooling liquid. and a molten metal supply mechanism that supplies molten metal into the cooling liquid layer from the inner peripheral surface side of the swirling cooling liquid layer. In this case, a ring for adjusting the layer thickness of the swirling cooling liquid layer may be attached to the lower inner circumferential surface of the cylindrical portion.

(作 用) 本発明の製造方法によれば、冷却容器10円筒部2上端
部外周側より冷却液6を円周方向より供給することによ
って、円筒部2内周面に沿って旋回しながら流下する旋
回冷却液層12を形成し、この旋回冷却液層12の内周
面側より金属溶湯18を順次供給すれば、連続して急冷
凝固金属粉末を製造することができる。
(Function) According to the manufacturing method of the present invention, by supplying the cooling liquid 6 in the circumferential direction from the outer peripheral side of the upper end of the cylindrical part 2 of the cooling container 10, the cooling liquid 6 flows down while swirling along the inner peripheral surface of the cylindrical part 2. By forming a swirling cooling liquid layer 12 and sequentially supplying molten metal 18 from the inner peripheral surface side of this swirling cooling liquid layer 12, rapidly solidified metal powder can be continuously produced.

また旋回冷却液層12の厚さ方向の流速は旋回中心に近
づくに従ってより高速となる所謂、傾斜速度分布となっ
ているため、旋回冷却液層12中に侵入した溶湯粒子は
回転運動が付与されるとともに冷却容器内面に溶湯粒子
ないし半凝固粒子が達しても水と同様に移動するため、
溶湯粒子の周囲に発生する蒸気は良好に離脱し、冷却速
度が向上する。また水は重力により常に下に移動するた
め、常に同一条件の水の部分に溶湯粒子が供給されるの
で冷却速度のバラツキも少なくなる。
Furthermore, the flow velocity in the thickness direction of the swirling cooling liquid layer 12 has a so-called inclined velocity distribution in which the velocity increases as it approaches the center of swirling, so the molten metal particles that have entered the swirling cooling liquid layer 12 are given rotational motion. At the same time, even if molten metal particles or semi-solidified particles reach the inner surface of the cooling container, they will move in the same way as water.
The steam generated around the molten metal particles is effectively released, improving the cooling rate. Furthermore, since the water always moves downward due to gravity, molten metal particles are always supplied to the water area under the same conditions, which reduces variations in the cooling rate.

一方、本発明の製造装置によれば、冷却容器1を固定状
に設置し、冷却液供給機構の作動により円筒部2の上端
部外周側より冷却液6を円周方向より供給することによ
って高速移動する旋回冷却液層12を容易に形成でき、
装置のコンパクト化が可能となる。また、円筒部2の下
部内周面に層厚調整用リング20を設けることにより、
前記旋回冷却液層12が該リング20の内周面を越えて
流下するようになるため、該リング20の径方向の厚さ
を変えることにより旋回冷却液層12の層厚を容易に調
整することができる。
On the other hand, according to the manufacturing apparatus of the present invention, the cooling container 1 is installed in a fixed manner, and the cooling liquid 6 is supplied circumferentially from the outer circumferential side of the upper end of the cylindrical part 2 by the operation of the cooling liquid supply mechanism. A moving swirling cooling liquid layer 12 can be easily formed,
The device can be made more compact. In addition, by providing a layer thickness adjustment ring 20 on the lower inner peripheral surface of the cylindrical portion 2,
Since the swirling cooling liquid layer 12 flows down beyond the inner peripheral surface of the ring 20, the layer thickness of the swirling cooling liquid layer 12 can be easily adjusted by changing the radial thickness of the ring 20. be able to.

(実施例) 以下、本発明の製造方法を実施するための製造装置につ
いて説明すると、第1図において、1は冷却容器で、上
部に内周面が下方向に漸次径小とされた縮径部11を有
し、縮径部11下端には内周面が下方向に円筒面とされ
た円筒部2が連成され、該円筒部2の下端には下方向に
漸次径大とされた拡径部3が延設状に備えられ、縮径部
11の上端は中心に適宜大きさの導入孔4を有する蓋部
5で閉塞状とされている。そして円筒部2の軸心を適宜
角度傾斜させた状態で、冷却容器1は固定状に設置され
ている。前記円筒部2の下部内周面には、上端から下端
に内周面に沿って流線形の曲面に形成された層厚調整用
リング20が着脱自在にねし結合されている。また冷却
容器1下端は、適宜、冷却液としての冷却水6が収容さ
れるタンク7に接続状とされている。8は拡径部3の下
部に着脱自在もしくは固定状に装着されたメツシュ部材
で、冷却水6を下方に通過可能として拡径部3下部を上
下方向に仕切ると共に、−側方に傾斜状に配設され、傾
斜方向下端側の拡径部3周壁には急冷凝固された金属粉
末の案内口9が適宜形成されている。尚、前記層厚調整
用リング20は必要により螺着すればよく、取り外した
ままでもよい。
(Example) Hereinafter, a manufacturing apparatus for carrying out the manufacturing method of the present invention will be described. In FIG. A cylindrical portion 2 having a downwardly cylindrical inner circumferential surface is connected to the lower end of the reduced diameter portion 11, and the lower end of the cylindrical portion 2 has a diameter gradually increasing downward. An enlarged diameter portion 3 is provided in an extending shape, and the upper end of the reduced diameter portion 11 is closed by a lid portion 5 having an appropriately sized introduction hole 4 in the center. The cooling container 1 is fixedly installed with the axis of the cylindrical portion 2 tilted at an appropriate angle. A layer thickness adjustment ring 20 is removably screwed to the lower inner circumferential surface of the cylindrical portion 2 and is formed into a streamlined curved surface along the inner circumferential surface from the upper end to the lower end. Further, the lower end of the cooling container 1 is connected to a tank 7 in which cooling water 6 as a cooling liquid is stored, as appropriate. Reference numeral 8 denotes a mesh member detachably or fixedly attached to the lower part of the enlarged diameter part 3, which allows the cooling water 6 to pass downwardly and partitions the lower part of the enlarged diameter part 3 in the vertical direction, and which is inclined sideways. A guide port 9 for rapidly solidified metal powder is appropriately formed in the circumferential wall of the enlarged diameter portion 3 on the lower end side in the inclined direction. The layer thickness adjustment ring 20 may be screwed on if necessary, or may remain removed.

縮径部11の上端部外周側には、接線方向もしくは若干
中心向きに傾斜(例えば接線力・向に対し、θ=0〜2
0’程度)する冷却液導入路10が設けられており、高
圧ポンプ13の吐出口と冷却液導入路10とが配管接続
されている。また高圧ポンプ13の吸込口は前記タンク
7内の冷却水6を吸引すべく配管接続されている。
The outer circumferential side of the upper end of the reduced diameter part 11 is inclined tangentially or slightly toward the center (for example, θ=0 to 2 with respect to the tangential force/direction).
0') is provided, and the discharge port of the high-pressure pump 13 and the coolant introduction path 10 are connected by piping. Further, a suction port of the high-pressure pump 13 is connected to a pipe to suck the cooling water 6 in the tank 7 .

そして、高圧ポンプ13の作動により、タンク7内に冷
却水6を吸引して縮径部11の上端外周側より噴出供給
し、旋回流を形成する。−該旋回流は縮径部11を流下
するに従って加速され、円筒部2の上端外周側より円筒
部2の内周面に周方向に供給される。旋回流は旋回によ
る遠心力の作用で、円筒部2の内周面に沿って、中心側
が空洞とされた層状の旋回冷却液層12を形成しながら
流下し、ここに冷却液供給機構を構成する。流下した冷
却水6はメツシュ部材8を通過してタンク7内に戻され
る。
Then, by operating the high-pressure pump 13, the cooling water 6 is sucked into the tank 7 and jetted out from the outer circumferential side of the upper end of the reduced diameter portion 11, thereby forming a swirling flow. - The swirling flow is accelerated as it flows down the diameter-reduced portion 11, and is supplied to the inner circumferential surface of the cylindrical portion 2 from the outer circumferential side of the upper end of the cylindrical portion 2 in the circumferential direction. The swirling flow flows down along the inner peripheral surface of the cylindrical portion 2 while forming a layered swirling cooling liquid layer 12 with a hollow center side due to the centrifugal force caused by the swirling, and a cooling liquid supply mechanism is formed here. do. The cooling water 6 that has flowed down passes through the mesh member 8 and is returned into the tank 7.

尚、タンク7から高圧ポンプ13までの配管途中に冷却
水を冷却するための冷却器を適宜介在する方式としても
よい。
Note that a cooler may be appropriately interposed in the piping from the tank 7 to the high-pressure pump 13 to cool the cooling water.

14は金属溶湯供給機構としての噴射ルツボで、有底円
筒状に形成された黒鉛や窒化珪素等の耐火物よりなり、
上部には従来同様、蓋体や加圧圧媒供給部が設けられて
いる。また噴射ルツボ14の底部15には噴射ノズル孔
16が形成されている。17は噴射ルツボ14の外周に
設けられた加熱装置としての高周波加熱コイルである。
14 is an injection crucible as a molten metal supply mechanism, which is made of a refractory material such as graphite or silicon nitride, and is formed into a cylindrical shape with a bottom.
The upper part is provided with a lid and a pressurized medium supply section, as in the conventional case. Furthermore, an injection nozzle hole 16 is formed in the bottom portion 15 of the injection crucible 14 . Reference numeral 17 denotes a high-frequency heating coil as a heating device provided around the outer periphery of the injection crucible 14.

そして高周波加熱コイル17の作動により噴射ルツボ1
4内に収容されたアルミ合金等の金属塊を溶解して所定
温度に加熱されたアルミ合金等の金属溶湯18とし、ア
ルゴンガス等の不活性ガスの加圧圧媒による内圧上昇に
よって金属溶湯18は噴射ノズル孔16より噴出飛散さ
れ、導入孔4を通じて、円筒部2内周面側に張り付き状
に形成された旋回冷却液層12の内周面側より該冷却液
層12中に供給される。
Then, the injection crucible 1 is heated by the operation of the high-frequency heating coil 17.
The molten metal 18 is heated to a predetermined temperature by melting the metal lump such as aluminum alloy housed in the molten metal 18. It is ejected and scattered from the injection nozzle hole 16, and is supplied into the cooling liquid layer 12 through the introduction hole 4 from the inner peripheral surface side of the swirling cooling liquid layer 12 formed in a sticking manner on the inner peripheral surface side of the cylindrical part 2.

次に、上記装置を用いて、急冷凝固金属粉末を製造する
方法について説明する。
Next, a method for producing rapidly solidified metal powder using the above apparatus will be described.

まず、高圧ポンプ13を作動させ、冷却容器1の円筒部
2内周面に高速移動しながら流下する旋回冷却液層12
を形成する。
First, the high-pressure pump 13 is activated, and the swirling cooling liquid layer 12 flows down while moving at high speed onto the inner peripheral surface of the cylindrical part 2 of the cooling container 1.
form.

次に、噴射ルツボ14内の所定温度とされた金属溶湯1
8を噴出飛散させ、旋回冷却液層12の内周面側より該
冷却液層12中に供給する。
Next, the molten metal 1 in the injection crucible 14 is heated to a predetermined temperature.
8 is spouted and scattered and supplied into the cooling liquid layer 12 from the inner peripheral surface side of the swirling cooling liquid layer 12.

この冷却液層12中への供給により、溶湯粒子が急速冷
却され、凝固し、ここに金属粉末が得られる。
By supplying the coolant into the cooling liquid layer 12, the molten metal particles are rapidly cooled and solidified to obtain metal powder.

そして金属粉末は冷却水6と共に流下し、冷却容器1下
部のメツシュ部材8で受は止められて、メンシュ部材8
の傾斜方向下方側に移動され案内口9より排出案内され
て、適宜回収される。一方、冷却水6はメツシュ部材8
を通過してタンク7内に戻され、循環使用される。
Then, the metal powder flows down together with the cooling water 6, and is stopped by the mesh member 8 at the bottom of the cooling container 1.
It is moved downward in the direction of inclination, is discharged and guided through the guide port 9, and is collected as appropriate. On the other hand, the cooling water 6 is supplied to the mesh member 8
The water passes through the tank 7 and is returned to the tank 7 for circulation.

以上の製造方法によれば、金属溶湯18を連続状に供給
すれば、連続して急冷凝固金属粉末を順次製造すること
が可能となり、生産性が向上する。
According to the above manufacturing method, if the molten metal 18 is continuously supplied, rapidly solidified metal powder can be continuously manufactured in sequence, and productivity is improved.

また、固定状に設置された冷却容器1の円筒部2上端部
外周側より、冷却水6を周方向に供給して高速移動する
旋回冷却液層12を形成する方法であるため、流速は旋
回中心からの距離に反比例し、第2図に示される如く、
旋回冷却液層12の厚さ方向の速度V+、Vz、v3.
Vs、−−−−−は旋回中心側がより高速となる所謂傾
斜速度分布となり、この傾斜速度分布の流れの旋回冷却
液層12中にその内周面側より溶湯粒子19が供給され
た状態となる。従って旋回冷却液層12が厚さ方向に流
速が異なるため、溶湯粒子19は回転運動を付与される
とともに冷却容器内面に溶湯粒子ないし、半凝固粒子が
達しても水と同様に移動するため、溶湯粒子19の周囲
に発生する蒸気は溶湯粒子19の回転により良好に離脱
し、ここに溶湯粒子19の冷却速度が向上し、熱伝達率
がより大きくなり冷却効率の向上が図れ、冷却能の高い
高品質の急冷凝固金属粉末が得られる。
In addition, since this is a method of supplying cooling water 6 in the circumferential direction from the outer circumferential side of the upper end of the cylindrical part 2 of the cooling container 1 installed in a fixed manner to form a swirling cooling liquid layer 12 that moves at high speed, the flow velocity is It is inversely proportional to the distance from the center, as shown in Figure 2,
Velocities in the thickness direction of the swirling cooling liquid layer 12 V+, Vz, v3.
Vs, ----- has a so-called inclined velocity distribution in which the speed is higher on the swirling center side, and the molten metal particles 19 are supplied from the inner peripheral surface side into the swirling cooling liquid layer 12 of the flow with this inclined velocity distribution. Become. Therefore, since the flow velocity of the swirling cooling liquid layer 12 differs in the thickness direction, the molten metal particles 19 are given rotational motion, and even if the molten metal particles or semi-solid particles reach the inner surface of the cooling container, they move in the same way as water. The steam generated around the molten metal particles 19 is easily separated by the rotation of the molten metal particles 19, which improves the cooling rate of the molten metal particles 19, increases the heat transfer coefficient, improves the cooling efficiency, and improves the cooling capacity. High quality rapidly solidified metal powder can be obtained.

また本装置によれば、冷却容器1を固定状に設置し、冷
却水6を噴出供給して旋回冷却液層12を形成する方式
であり、従来の如く、回転ドラム101内に冷却水を収
容し、回転ドラム101自体を回転させて冷却液層を形
成する方式と比較して、装置自体をコンパクトに構成で
きる利点がある。また、冷却液導入路10の穴径や冷却
液の流量を調節することにより、旋回冷却液層12の層
厚や流速を変化させることも容易である。
Further, according to this device, the cooling container 1 is installed in a fixed manner, and the cooling water 6 is jet-supplied to form the swirling cooling liquid layer 12. As in the conventional system, the cooling water is stored in the rotating drum 101. However, compared to a method in which the cooling liquid layer is formed by rotating the rotary drum 101 itself, this method has the advantage that the device itself can be configured more compactly. Furthermore, by adjusting the hole diameter of the coolant introduction path 10 and the flow rate of the coolant, it is also easy to change the layer thickness and flow rate of the swirling coolant layer 12.

尚、上記実施例において、噴射ルツボ14より金属溶湯
18を噴出飛散させる構造を示しているが、ルツボ下端
の孔部より金属溶湯18を旋回冷却液層12中に落下さ
せる重力落下方式としてもよい。また円筒部2の軸心を
傾斜状に設置したものを示しているが、前記軸心を上下
方向として設置し、金属溶湯18を傾斜方向から噴出飛
散させる方式としてもよい。さらに高圧ポンプ13の吐
出量や吐出圧、漏斗部2の形状、大きさ等は適宜決定す
ればよい。
Although the above embodiment shows a structure in which the molten metal 18 is ejected and scattered from the injection crucible 14, a gravity fall method may be used in which the molten metal 18 is dropped into the swirling cooling liquid layer 12 from the hole at the bottom end of the crucible. . Furthermore, although the cylindrical portion 2 is shown with its axis set in an inclined manner, it may be arranged such that the axis is set in the vertical direction and the molten metal 18 is ejected and scattered from the inclined direction. Furthermore, the discharge amount and discharge pressure of the high-pressure pump 13, the shape and size of the funnel portion 2, etc. may be determined as appropriate.

上記実施例は、冷却容器1として、蓋部5より縮径部1
1を介して円筒部2が形成され、その下端に拡径部3が
連成されているが、縮径部11や拡径部3は必ずしも必
要ではなく、第3図に示すように蓋部5の下方に冷却液
導入路10を隔てて直接円筒部2を形成してもよい。該
実施例では、層厚調整リング20は円筒部2の下部内周
面に形成された拡径段部21に着脱自在に嵌合され、同
郡21下端に螺合された固定リング22によって支持さ
れている。
In the above embodiment, as the cooling container 1, the reduced diameter part 1 is smaller than the lid part 5.
A cylindrical part 2 is formed through the cylindrical part 1, and an enlarged diameter part 3 is connected to the lower end of the cylindrical part 2. However, the reduced diameter part 11 and the enlarged diameter part 3 are not necessarily necessary, and as shown in FIG. The cylindrical portion 2 may be directly formed below the cooling liquid introduction path 10 with the coolant introduction path 10 interposed therebetween. In this embodiment, the layer thickness adjustment ring 20 is removably fitted into an enlarged diameter stepped portion 21 formed on the inner peripheral surface of the lower part of the cylindrical portion 2, and is supported by a fixing ring 22 screwed onto the lower end of the group 21. has been done.

(発明の効果) 以上説明した通り、本発明の製造方法によれば、内周面
が下方向に円筒面とされた円筒部を有する冷却容器の円
筒部上端部外周側より、冷却液を周方向に供給して円筒
部内周面に沿って旋回させながら流下させると共に、そ
の旋回による遠心力作用で、中心側に空洞を有する層状
の旋回冷却液層を形成し、この旋回冷却液層の内周面側
より金属溶湯を供給して急冷凝固させ、金属粉末を得る
ものであり、冷却効率がよく、冷却能の高い高品質の急
冷凝固金属粉末が得られると共に、連続して製造するこ
とが可能となり、生産性に優れる利点がある。
(Effects of the Invention) As explained above, according to the manufacturing method of the present invention, the cooling liquid is supplied from the outer peripheral side of the upper end of the cylindrical part of the cooling container having the cylindrical part whose inner peripheral surface is a downward cylindrical surface. The cooling liquid is supplied in the direction of the cylinder and is caused to flow down while swirling along the inner peripheral surface of the cylinder, and due to the centrifugal force effect of the swirling, a layered swirling cooling liquid layer with a cavity on the center side is formed, and the inside of this swirling cooling liquid layer is Metal powder is obtained by supplying molten metal from the peripheral side and rapidly solidifying it.It has good cooling efficiency and high quality rapidly solidified metal powder with high cooling ability, and it can be manufactured continuously. This has the advantage of being highly productive.

また、本発明の製造装置によれば、冷却容器自体を高速
回転させる必要がなく、容易に高速移動する旋回冷却液
層が得られ、装置のコンパクト化が図れる。また、旋回
冷却液層が形成される円筒部の下部内周面に層厚調整用
リングを装着することにより、旋回冷却液層の厚さを容
易に調整することができる。
Further, according to the manufacturing apparatus of the present invention, there is no need to rotate the cooling container itself at high speed, and a swirling cooling liquid layer that moves at high speed can be easily obtained, and the apparatus can be made more compact. Further, by attaching a layer thickness adjustment ring to the lower inner peripheral surface of the cylindrical portion where the swirling cooling liquid layer is formed, the thickness of the swirling cooling liquid layer can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための製造装置の一例を示す
全体概略説明図、第2図は旋回冷却液層の一部説明図、
第3図は他の実施例に係る冷却容器の断面図、第4図は
従来例の装置の断面説明図、第5図は従来例の旋回冷却
液層の一部説明図である。 1・・−冷却容器、2−円筒部、6−冷却水、12旋回
冷却液層、14・−噴射ルツボ、18−金属溶湯、20
−層厚調整用リング。 第 図
FIG. 1 is an overall schematic explanatory diagram showing an example of a manufacturing apparatus for carrying out the present invention, FIG. 2 is a partial explanatory diagram of a swirling cooling liquid layer,
FIG. 3 is a cross-sectional view of a cooling container according to another embodiment, FIG. 4 is a cross-sectional explanatory view of a conventional device, and FIG. 5 is a partial explanatory view of a swirling cooling liquid layer of a conventional example. 1...-cooling container, 2-cylindrical part, 6-cooling water, 12 swirling cooling liquid layer, 14--injection crucible, 18-molten metal, 20
- Ring for layer thickness adjustment. Diagram

Claims (3)

【特許請求の範囲】[Claims] (1)高速移動する冷却液層(12)中に金属溶湯(1
8)を供給し、急冷凝固させて金属粉末を得る急冷凝固
金属粉末の製造方法において、内周面が円筒面とされた
円筒部(2)を有する冷却容器(1)の円筒部(2)上
端部外周側より、冷却液(6)を周方向より供給して円
筒部(2)内周面に沿って旋回させながら流下させると
共に、その旋回による遠心力作用で、中心側に空洞を有
する層状の旋回冷却液層(12)を形成し、この旋回冷
却液層(12)の内周面側より金属溶湯(18)を供給
して急冷凝固させ、金属粉末を得ることを特徴とする急
冷凝固金属粉末の製造方法。
(1) Molten metal (1
8) in a method for producing a rapidly solidified metal powder in which metal powder is obtained by supplying and rapidly solidifying metal powder, the cylindrical part (2) of a cooling container (1) having a cylindrical part (2) whose inner peripheral surface is a cylindrical surface. The cooling liquid (6) is supplied from the outer circumferential side of the upper end in the circumferential direction and flows down while swirling along the inner circumferential surface of the cylindrical part (2), and the centrifugal force of the swirl creates a cavity on the center side. Rapid cooling characterized by forming a layered swirling cooling liquid layer (12), supplying molten metal (18) from the inner circumferential side of this swirling cooling liquid layer (12) and rapidly solidifying it to obtain metal powder. A method for producing solidified metal powder.
(2)内周面が下方向に円筒面とされた円筒部(2)を
有する冷却容器(1)と、前記円筒部(2)の上端部外
周側より、旋回流を形成すべく冷却液(6)を周方向よ
り供給すると共に、該冷却液(6)の旋回による遠心力
作用で、円筒部(2)の内周面に中心側が空洞とされた
層状の旋回冷却液層(12)を形成しながら流下させる
冷却液供給機構と、前記旋回冷却液層(12)の内周面
側より該冷却液層(12)中に金属溶湯(18)を供給
する金属溶湯供給機構とを備えてなることを特徴とする
急冷凝固金属粉末製造装置。
(2) A cooling container (1) having a cylindrical part (2) whose inner peripheral surface is a downwardly cylindrical surface, and a cooling liquid flowing from the outer peripheral side of the upper end of the cylindrical part (2) to form a swirling flow. (6) is supplied from the circumferential direction, and due to centrifugal force due to the swirling of the cooling liquid (6), a layered swirling cooling liquid layer (12) with a hollow center side formed on the inner circumferential surface of the cylindrical portion (2) is created. and a molten metal supply mechanism that supplies molten metal (18) into the cooling liquid layer (12) from the inner peripheral surface side of the swirling cooling liquid layer (12). Rapid solidification metal powder manufacturing equipment characterized by:
(3)円筒部の下部内周面に旋回冷却液層(12)の層
厚調整用リング(20)が装着されている請求項(2)
の急冷凝固金属粉末製造装置。
(3) Claim (2), wherein a ring (20) for adjusting the layer thickness of the swirling cooling liquid layer (12) is attached to the inner peripheral surface of the lower part of the cylindrical portion.
rapid solidification metal powder production equipment.
JP12196290A 1990-03-20 1990-05-10 Method and apparatus for producing rapidly solidified metal powder Expired - Lifetime JPH07107167B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12196290A JPH07107167B2 (en) 1990-05-10 1990-05-10 Method and apparatus for producing rapidly solidified metal powder
CA002038449A CA2038449C (en) 1990-03-20 1991-03-18 Method of and apparatus for producing metal powder
DE69106421T DE69106421T2 (en) 1990-03-20 1991-03-19 Method and device for producing metal powder.
EP91104228A EP0452685B1 (en) 1990-03-20 1991-03-19 Method of and apparatus for producing metal powder
KR1019910004404A KR0167779B1 (en) 1990-03-20 1991-03-20 Method and apparatus for producing metal powder
US07/672,576 US5180539A (en) 1990-03-20 1991-03-20 Method of and apparatus for producing metal powder
US07/950,684 US5352267A (en) 1990-03-20 1992-09-25 Method of producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12196290A JPH07107167B2 (en) 1990-05-10 1990-05-10 Method and apparatus for producing rapidly solidified metal powder

Publications (2)

Publication Number Publication Date
JPH0417605A true JPH0417605A (en) 1992-01-22
JPH07107167B2 JPH07107167B2 (en) 1995-11-15

Family

ID=14824207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12196290A Expired - Lifetime JPH07107167B2 (en) 1990-03-20 1990-05-10 Method and apparatus for producing rapidly solidified metal powder

Country Status (1)

Country Link
JP (1) JPH07107167B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658883B (en) * 2017-08-08 2019-05-11 日商Tdk股份有限公司 Metal powder manufacturing device and metal powder manufacturing method
US11084094B1 (en) 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542606C2 (en) 2014-03-31 2020-06-16 Jfe Steel Corp Method for producing atomized metal powder
WO2016157762A1 (en) 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for manufacturing water-atomized metal powder
US20200316688A1 (en) 2017-12-07 2020-10-08 Jfe Steel Corporation Method for manufacturing atomized metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658883B (en) * 2017-08-08 2019-05-11 日商Tdk股份有限公司 Metal powder manufacturing device and metal powder manufacturing method
US11084094B1 (en) 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
US11628500B2 (en) 2017-08-08 2023-04-18 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07107167B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
CN109877299A (en) One kind getting rid of casting device and gets rid of casting centrifugal pan
JPH0417605A (en) Method and apparatus for manufacturing rapidly solidifying metal powder
JP2672042B2 (en) Metal powder manufacturing equipment
US5482532A (en) Method of and apparatus for producing metal powder
EP0543017A1 (en) Method and device for making metallic powder
JP2672043B2 (en) Metal powder manufacturing equipment
JP2877742B2 (en) Method and apparatus for producing rapidly solidified metal powder
JP2672056B2 (en) Method and apparatus for producing metal powder
EP0078272A1 (en) Apparatus for spraying metal or other material
JPH03271306A (en) Method and apparatus for manufacturing rapidly cooled and solidified metal powder
JP2672041B2 (en) Metal powder manufacturing equipment
JP2672036B2 (en) Method and apparatus for producing metal powder
JPH0543920A (en) Production of metallic powder and equipment therefor
JP2672035B2 (en) Method and apparatus for producing metal powder
JP2672038B2 (en) Metal powder manufacturing equipment
JP2618109B2 (en) Method for producing metal powder and apparatus for producing the same
JPH07100804B2 (en) Metal powder manufacturing equipment
JP3403608B2 (en) Production method of metal powder
JP2719053B2 (en) Metal powder manufacturing method
JPH0317206A (en) Apparatus for manufacturing rapidly cooling solidified metal powder
JP2655950B2 (en) Manufacturing method of metal wire
JPH04329806A (en) Apparatus for producing metallic powder
JP2672039B2 (en) Metal powder manufacturing method
JPH0317205A (en) Apparatus for manufacturing rapidly cooling solidified metal powder
JPH01139708A (en) Apparatus for manufacturing rapid cooling type metal powder

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15