JPH04325527A - Prepreg - Google Patents

Prepreg

Info

Publication number
JPH04325527A
JPH04325527A JP9701591A JP9701591A JPH04325527A JP H04325527 A JPH04325527 A JP H04325527A JP 9701591 A JP9701591 A JP 9701591A JP 9701591 A JP9701591 A JP 9701591A JP H04325527 A JPH04325527 A JP H04325527A
Authority
JP
Japan
Prior art keywords
prepreg
component
resin
thermoplastic resin
fibrous thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9701591A
Other languages
Japanese (ja)
Other versions
JP3214864B2 (en
Inventor
Kazuya Goto
和也 後藤
Toshihiro Hattori
敏裕 服部
Shigeji Hayashi
繁次 林
Masahiro Sugimori
杉森 正裕
Takeshi Kato
武 加藤
Takashi Murata
村田 多加志
Takashi Tada
多田 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14180523&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04325527(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP09701591A priority Critical patent/JP3214864B2/en
Publication of JPH04325527A publication Critical patent/JPH04325527A/en
Application granted granted Critical
Publication of JP3214864B2 publication Critical patent/JP3214864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a prepreg excellent in heat resistance, impact resistance, etc., and further in toughness by mixing a high-modulus reinforcing fiber with a fibrous thermoplastic resin and a thermosetting resin-based matrix resin and molding the mixture. CONSTITUTION:A reinforcing fiber (A) (e.g. carbon fiber) of a modulus of 200GPa or above, a fibrous thermoplastic resin (B) (e.g. multifilament of nylon 12), and a thermosetting resin-based matrix resin (C) (e.g. bisphenol A epoxy resin) in amounts to give a component A to component C ratio of 60/40-75/25 and a component B to component C ratio of 0.5-/100-20/100 are prepared. A prepreg which contains component B on the external surface and in which a separated phase of at least 90% of component B added is formed in a composite after molding is produced by preparing a unidirectional prepreg from component A and component C by, e.g. the hot melt process and winding component B around the surface of the unidirectional prepreg.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明はマトリックス樹脂の優れた熱的性
質、機械的性質を損なうことなく、それから得られる成
形物に優れた靱性を賦与出来る繊維強化複合材料用プリ
プレグに関する。本発明のプリプレグから得られる成形
物は航空機用構造材料等として好適に使用される。
TECHNICAL FIELD The present invention relates to a prepreg for fiber-reinforced composite materials that can impart excellent toughness to molded products obtained from it without impairing the excellent thermal and mechanical properties of the matrix resin. Molded products obtained from the prepreg of the present invention are suitably used as structural materials for aircraft, etc.

【0002】0002

【従来の技術および発明が解決しようとする課題】炭素
繊維等の高強度高弾性繊維を補強材とする複合材料は、
その比強度、比弾性に優れるという特徴を活かしてスポ
ーツ用途を中心に広く用いられてきている。通常マトリ
ックス樹脂として用いられるエポキシ樹脂をはじめとす
る熱硬化性樹脂は種々の特長を有する一方で靱性に乏し
いという欠点を有するためにその用途はかなり制限され
たものとなっていた。この熱硬化性樹脂の欠点を改良す
る方法としてはゴム成分や熱可塑性樹脂を添加する方法
が一般的であるが十分な靱性改良効果をあげるためには
多量に添加する必要があり、耐熱性、耐溶剤性等の低下
を招く結果となっていた。
[Prior Art and Problems to be Solved by the Invention] Composite materials using high-strength, high-modulus fibers such as carbon fibers as reinforcing materials are
It has been widely used mainly in sports applications due to its excellent specific strength and specific elasticity. Thermosetting resins such as epoxy resins, which are commonly used as matrix resins, have various features but have the disadvantage of poor toughness, which has considerably limited their use. A common method to improve the drawbacks of thermosetting resins is to add rubber components or thermoplastic resins, but in order to achieve a sufficient effect of improving toughness, it is necessary to add a large amount; This resulted in a decrease in solvent resistance, etc.

【0003】また例えば特開昭63−162732号公
報に提案されているように熱可塑性樹脂を粉末状でマト
リックス樹脂中に添加することによっても達成可能であ
るが、熱可塑性樹脂の粉末をエポキシ樹脂中に均一に分
散あるいは溶解した場合には系全体の粘度上昇に伴なう
プリプレグ製造時の工程通過性の低下あるいはプリプレ
グのタックレベルの低下等の問題もさけれられない。
[0003] This can also be achieved by adding a thermoplastic resin in powder form to a matrix resin, as proposed in JP-A-63-162732. If it is uniformly dispersed or dissolved in the liquid, problems such as a decrease in process passability during prepreg production due to an increase in the viscosity of the entire system and a decrease in the tack level of the prepreg cannot be avoided.

【0004】更に例えば特開平1−110537号公報
には球状の微粒子をプリプレグの表面からプリプレグの
厚さの30%以内の深さに局在化させるこにより効果的
に複合材料の靱性が改善されることが開示されているが
この場合でも、プリプレグタックの大幅な低下はさけら
れないだけでなく、工程の複雑化、品質管理の複雑化等
の問題が新に発生する。又インターリーフと呼ばれる一
種の接着剤層を層間に挿入する方法も提案されているが
繊維含有率が上げられないなどの理由から広く実用化さ
れるに至っていない。
Furthermore, for example, JP-A-1-110537 discloses that the toughness of a composite material is effectively improved by localizing spherical fine particles from the surface of the prepreg to a depth within 30% of the thickness of the prepreg. However, even in this case, not only is a significant decrease in prepreg tack unavoidable, but new problems such as complication of the process and complication of quality control arise. A method of inserting a type of adhesive layer called an interleaf between layers has also been proposed, but it has not been put into widespread practical use for reasons such as the inability to increase the fiber content.

【0005】[0005]

【発明の目的】本発明の目的はマトリックス樹脂の優れ
た熱的性質、機械的性質を損なうことなく、それから得
られる成形物に優れた靱性を賦与出来更にその充分なタ
ックレベルドレープ性含浸性を特徴とし、取扱性にも優
れた繊維強化複合材料用プリプレグを提供することにあ
る。
OBJECTS OF THE INVENTION The object of the present invention is to impart excellent toughness to molded products obtained from the matrix resin without impairing its excellent thermal and mechanical properties, and to provide sufficient tack level drapability and impregnation properties. The object of the present invention is to provide a prepreg for fiber-reinforced composite materials that has the following characteristics and excellent handling properties.

【0006】[0006]

【課題を解決するための手段】本発明は(A)弾性率2
00GPa以上の補強用繊維(B)弾性率100GPa
以下の繊維状熱可塑性樹脂(C)熱硬化性樹脂系のマト
リックス樹脂からなる繊維強化複合材料用プリプレグに
おいて、(A)、(B)、(C)各成分の比率が下記範
囲内にあり、かつ(B)の繊維状熱可塑性樹脂がプリプ
レグの外表面に存在し、成形後のコンポジット中におい
て(B)を添加したことにより、(B)の添加体積の9
0%以上の分離相が形成されるプリプレグに関する。 (A)/(C)=60/40〜75/25(B)/(C
)=0.5/100〜20/100
[Means for Solving the Problems] The present invention provides (A) elastic modulus 2
00GPa or more reinforcing fiber (B) elastic modulus 100GPa
In the prepreg for fiber-reinforced composite materials made of the following fibrous thermoplastic resin (C) thermosetting resin-based matrix resin, the ratio of each component (A), (B), and (C) is within the following range, And (B) fibrous thermoplastic resin exists on the outer surface of the prepreg, and by adding (B) in the composite after molding, 9 of the added volume of (B)
The present invention relates to a prepreg in which 0% or more of a separated phase is formed. (A)/(C)=60/40~75/25(B)/(C
)=0.5/100~20/100

【0007】本発明
における(A)の弾性率200GPa以上の補強用繊維
としては炭素繊維、黒鉛繊維、ボロン繊維等、通常の繊
維強化複合材料に用いられる補強用繊維がそのまま用い
られるが、引張強度3500MPa以上の炭素繊維、黒
鉛繊維が好適に用いられる。中でも引張強度4500M
Pa以上、伸度1.7%以上の高強度・高伸度の炭素繊
維、黒鉛繊維が最も好適に用いられる。
[0007] As the reinforcing fiber (A) with an elastic modulus of 200 GPa or more in the present invention, reinforcing fibers used in ordinary fiber-reinforced composite materials such as carbon fiber, graphite fiber, and boron fiber can be used as they are, but the tensile strength Carbon fibers and graphite fibers having a strength of 3500 MPa or more are preferably used. Especially tensile strength 4500M
High strength and high elongation carbon fibers and graphite fibers with Pa or more and elongation of 1.7% or more are most preferably used.

【0008】本発明における(C)の熱硬化性樹脂系の
マトリックス樹脂としはアミン類、フェノール類を前駆
体とするエポキシ系の樹脂や多官能性マレイミド系の樹
脂が好ましく用いられる。具体的には例えばエポキシ系
の樹脂としてはテトラグリシジルジアミノジフェニルメ
タン、トリグリシジル−p−アミノフェノール、トリグ
リシジル−m−アミノフェノール、トリグリシジルアミ
ノクレゾールの各種異性体、ビスフェノールA型エポキ
シ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノ
ールS型エポキシ樹脂、フェノールノボラック型エポキ
シ樹脂、クレゾールノボラック型エポキシ樹脂及びこれ
らの2種以上の混合物等があげられる。
As the thermosetting resin matrix resin (C) in the present invention, epoxy resins or polyfunctional maleimide resins using amines or phenols as precursors are preferably used. Specifically, examples of epoxy resins include tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, various isomers of triglycidylaminocresol, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. Examples include epoxy resins, bisphenol S type epoxy resins, phenol novolak type epoxy resins, cresol novolak type epoxy resins, and mixtures of two or more of these.

【0009】また多官能性マレイミド系の樹脂としては
1,2−ビスマレイミドドデカン、1,6−ビスマレイ
ミド−(2,2,4−トリメチル)ヘキサン等を主成分
とする樹脂組成物などがあげられるが、もちろんこれら
の熱硬化性樹脂に限られるものではなく、プリプレグの
成形性やタック、ドレープ性等の特性あるいはマトリッ
クス樹脂の取扱い性に悪影響を与えない範囲で熱可塑性
樹脂、エラストマー成分、無機系微粒子等を添加し、マ
トリックス樹脂とすることも可能である。
[0009] Polyfunctional maleimide resins include resin compositions containing 1,2-bismaleimidododecane, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, etc. as main components. However, it is of course not limited to these thermosetting resins, and thermoplastic resins, elastomer components, and inorganic resins may be used as long as they do not adversely affect the moldability, tackiness, drapability, etc. of the prepreg or the handling properties of the matrix resin. It is also possible to add system fine particles and the like to form a matrix resin.

【0010】また(A)と(C)の比率はその目的に応
じて適宜設定することが可能であるが、重量化で(A)
/(C)=55/45〜85/15の範囲が適当であり
、より好ましい範囲は、(A)/(C)=60/40〜
75/25である。
[0010]Although the ratio of (A) and (C) can be set appropriately depending on the purpose, (A)
A suitable range is /(C)=55/45 to 85/15, and a more preferable range is (A)/(C)=60/40 to
It is 75/25.

【0011】(B)の繊維状熱可塑性樹脂としては、成
形後のコンポジット中において繊維状、あるいは成形条
件や、繊維状熱可塑性樹脂の融点によっては繊維の形状
をとどめていなくても良いが(B)を添加したことによ
り、添加した(B)の体積に対して90%以上の体積の
分離相が形成されていなければならない。ただし、その
分離相の成分に関しては(B)単独でなくても良い。分
離相の割合が添加した(B)の90%未満であった場合
、コンポジットの靱性への影響は大きくないが、コンポ
ジットの耐熱性や機械的強度を低下させてしまうため好
ましくない。
The fibrous thermoplastic resin (B) may be fibrous in the composite after molding, or may not retain its fibrous shape depending on the molding conditions and the melting point of the fibrous thermoplastic resin ( By adding B), a separated phase must be formed with a volume of 90% or more of the volume of added (B). However, as for the component of the separated phase, (B) may not be used alone. If the ratio of the separated phase is less than 90% of the added (B), the effect on the toughness of the composite is not great, but it is not preferable because it reduces the heat resistance and mechanical strength of the composite.

【0012】具体的な評価方法としは(B)を(A)と
平行に引き揃えた特別な、プリプレグを作成し、それを
一方向に積層して一方向材を成形する。次に繊維に垂直
な面が断面となるよう5×10mmの試片を切り出す。 必要に応じて染色剤を用いて染色し適当な倍率で試片全
面の写真を撮る。相分離が確認されたらトレーシングペ
ーパー等に写し取り、切り取って重さを測ることによっ
て、試片断面内における相分離面積S1 を求める。一
方仕込み量から計算で全ての(B)がそのまま相分離し
たとしてその面積S0 を求める。このようにして、少
なくとも5ヵ所以上の断面積から求めて得られたえS1
 の平均値S1 ′とS0 が本発明においては下記式
を満足していなければならない。
[0012] As a specific evaluation method, a special prepreg is prepared by aligning (B) and (A) in parallel, and the prepregs are laminated in one direction to form a unidirectional material. Next, a 5 x 10 mm sample was cut out so that the cross section was perpendicular to the fibers. If necessary, stain the specimen using a staining agent and take a photograph of the entire surface of the specimen at an appropriate magnification. Once phase separation is confirmed, the phase separation area S1 within the cross section of the specimen is determined by copying it onto tracing paper, etc., cutting it out, and measuring its weight. On the other hand, the area S0 is determined by calculation from the amount of charge, assuming that all (B) has phase-separated as it is. In this way, the image S1 obtained from the cross-sectional areas of at least five locations
In the present invention, the average values S1' and S0 must satisfy the following formula.

【数1】S1 ′/S0 ×100≧90(%)[Math. 1] S1 ′/S0 × 100≧90 (%)

【00
13】繊維状熱可塑性樹脂の形態としてはモノフィラメ
ントあるいはそれらを束にしたものが好ましいが必ずし
もそれらに限定されるものではない。繊維の直径として
は100μ以下が好ましく、50μ以下が特に好ましい
。繊維状熱可塑性樹脂の比率としては(C)のエポキシ
系マトリックス樹脂100重量部に対し0.5〜20重
量部が好ましい。0.5重量部以下では十分な靱性改良
効果が得られない。逆に20重量部以上の繊維状熱可塑
性樹脂を用いても靱性改良効果は頭打ちになるばかりで
なく、用いる樹脂の種類によっては耐熱性、耐溶剤性等
の特性が大幅に低下するケースもあり好ましくない。
00
13] The form of the fibrous thermoplastic resin is preferably monofilaments or bundles thereof, but is not necessarily limited thereto. The fiber diameter is preferably 100μ or less, particularly preferably 50μ or less. The ratio of the fibrous thermoplastic resin is preferably 0.5 to 20 parts by weight per 100 parts by weight of the epoxy matrix resin (C). If the amount is less than 0.5 parts by weight, a sufficient toughness improvement effect cannot be obtained. On the other hand, even if 20 parts by weight or more of a fibrous thermoplastic resin is used, not only will the toughness improvement effect reach a plateau, but depending on the type of resin used, properties such as heat resistance and solvent resistance may drop significantly. Undesirable.

【0014】本発明における繊維状熱可塑性樹脂はプリ
プレグ外表面付近に存在していることが重要である。プ
リプレグの中心部に完全に埋没した状態では充分な靱性
改良効果が得られない。しかしながら繊維状熱可塑性樹
脂がプリプレグ表面から完全に浮き出ている状態はやは
り好ましくなく、その大半が樹脂中に埋没していること
が好ましい。
[0014] In the present invention, it is important that the fibrous thermoplastic resin be present near the outer surface of the prepreg. If it is completely buried in the center of the prepreg, a sufficient toughness improvement effect cannot be obtained. However, it is still undesirable for the fibrous thermoplastic resin to completely protrude from the surface of the prepreg, and it is preferable that most of the fibrous thermoplastic resin be buried in the resin.

【0015】引き揃え方向は特に制限がなく補強用繊維
に対してあらゆる角度で存在しうるが補強用繊維と同じ
方向に引き揃えるのがプロセス上最も容易である。補強
用繊維とマトリックス樹脂ならびに繊維状熱可塑性樹脂
からこのようなプリプレグを製造する方法に関しては特
に制限がなく、繊維状熱可塑性樹脂をあらかじめ引き揃
えて含浸した樹脂フィルムと補強用繊維とから通常のプ
リプレグを製造するのと同様の方法でプリプレグ化する
方法や、通常の方法で製造したプリプレグに繊維状熱可
塑性樹脂を引き揃えて一体化する方法等、種々の方法で
製造出来る。
[0015] There is no particular restriction on the direction in which the reinforcing fibers are drawn, and they may exist at any angle with respect to the reinforcing fibers, but it is easiest in the process to align them in the same direction as the reinforcing fibers. There are no particular restrictions on the method for manufacturing such prepregs from reinforcing fibers, matrix resins, and fibrous thermoplastic resins. It can be manufactured by various methods, such as a method of preparing prepreg using the same method as manufacturing prepreg, or a method of aligning and integrating a fibrous thermoplastic resin with a prepreg manufactured by a normal method.

【0016】[0016]

【発明の効果】本発明のプリプレグから得られる成形物
はマトリックス樹脂の優れた熱的性質、機械的性質を損
なうことなく優れた靱性が賦与されたものであり、しか
も発生したクラックを伝播させにくい特性を有するため
、航空機用構造材料等として好適に使用される。更には
、本発明のプリプレグは、十分なタックレベル、ドレー
プ性、含浸性を有し、取扱い性に優れているため、オー
トレイアップ装置での積層に十分対応し、産業用の利用
性の極めて高いものである。
[Effects of the Invention] The molded product obtained from the prepreg of the present invention is endowed with excellent toughness without impairing the excellent thermal properties and mechanical properties of the matrix resin, and is resistant to the propagation of cracks that occur. Because of these characteristics, it is suitably used as a structural material for aircraft. Furthermore, the prepreg of the present invention has sufficient tack level, drapeability, and impregnability, and is excellent in handling, so it is fully compatible with lamination in an autolayup machine and has extremely high industrial applicability. It's expensive.

【0017】[0017]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1〜2 表1に示す樹脂組成物と高強度中弾性炭素繊維(三菱レ
イヨン製、MR60P、引張強度5600MPa、弾性
率310GPa、伸度1.9%)とから一方向プリプレ
グをホットメルト法で製造した。プリプレグのCF目付
は190g/m2 、樹脂含有率は34重量%であった
。 このプリプレグにナイロン12のマルチフィラメント(
81d /36fil、弾性率約2GPa)をフィラメ
ントワインディング法でプリプレグ両面に3mmピッチ
でワインドし本発明のプリプレグを製造した。
[Examples] The present invention will be specifically explained below with reference to Examples. Examples 1 to 2 A unidirectional prepreg was made by hot melting from the resin composition shown in Table 1 and high strength and medium elastic carbon fiber (Mitsubishi Rayon, MR60P, tensile strength 5600 MPa, elastic modulus 310 GPa, elongation 1.9%). Manufactured by. The CF basis weight of the prepreg was 190 g/m2, and the resin content was 34% by weight. This prepreg is coated with nylon 12 multifilament (
81d/36fil, elastic modulus of about 2 GPa) was wound on both sides of the prepreg at a pitch of 3 mm using a filament winding method to produce the prepreg of the present invention.

【0018】このプリプレグから所定の寸法の小片を切
り出し、積層後、オートクレーブ成形で衝撃後圧縮強度
測定用の試験片を成形した(硬化条件:180℃×2時
間)。試験片の断面を光学顕微鏡で観察し加えたナイロ
ンに対して99%が相分離していることを確認した。こ
の試験片を用いて270lb−in衝撃後の圧縮強度を
SACMAのSRM2−88に従い、測定した。またレ
オメトリックス社製RDA−700で周波数10rad
/sec、Temp.Step モードで動的粘弾性測
定を行い、温度に対してtan δを追跡し、Tgの目
安としてtan δのピークでの温度を調べた。結果を
表1に示す。
[0018] Small pieces of predetermined dimensions were cut out from this prepreg, and after lamination, test pieces for measuring compressive strength after impact were molded in an autoclave (curing conditions: 180°C x 2 hours). The cross section of the test piece was observed using an optical microscope, and it was confirmed that 99% of the added nylon had undergone phase separation. Using this test piece, the compressive strength after 270 lb-in impact was measured in accordance with SACMA's SRM2-88. Also, RDA-700 manufactured by Rheometrics has a frequency of 10 rad.
/sec, Temp. Dynamic viscoelasticity measurements were performed in Step mode, tan δ was tracked against temperature, and the temperature at the peak of tan δ was examined as a measure of Tg. The results are shown in Table 1.

【0019】比較例1,2 プリプレグの樹脂含有率が36重量%になるような樹脂
フィルムを用いる他は実施例1と同様にして一方向プリ
プレグを製造した。このプリプレグを用い、ナイロン1
2繊維を付着させることなしに実施例1と同様に評価し
た。結果を表1に示した。
Comparative Examples 1 and 2 A unidirectional prepreg was produced in the same manner as in Example 1, except that a resin film was used so that the resin content of the prepreg was 36% by weight. Using this prepreg, nylon 1
Evaluation was conducted in the same manner as in Example 1 without attaching the two fibers. The results are shown in Table 1.

【0020】比較例3、4 実施例1と同様にして、但しナイロン12繊維を以下に
示す組成のセミIPN化ナイロンの繊維、TR−55(
三菱化成製非晶性ナイロン)/EP828/トーマイド
#296=96/3/1重量部(81d /36fil
、弾性率約2GPa)を用いたに代えて実施例1同様に
プリプレグを製造し、試験片を成形し、評価し、試験片
断面を顕微鏡観察したところ表1に示すような結果が得
られた。表1から明らかなように、本発明のプリプレグ
から得られる成形体は、比較例に比べ衝撃後の圧縮強度
が高く、耐衝撃性に優れ、かつ、耐熱性の保持率も非常
に良好であることがわかる。
Comparative Examples 3 and 4 The procedure was carried out in the same manner as in Example 1, except that the nylon 12 fibers were replaced with semi-IPNized nylon fibers having the composition shown below, TR-55 (
Mitsubishi Kasei amorphous nylon) / EP828 / Tomide #296 = 96/3/1 part by weight (81d /36fil
, elastic modulus of about 2 GPa) was used, a prepreg was manufactured in the same manner as in Example 1, a test piece was molded and evaluated, and the cross section of the test piece was observed under a microscope, and the results shown in Table 1 were obtained. . As is clear from Table 1, the molded product obtained from the prepreg of the present invention has higher compressive strength after impact than the comparative example, has excellent impact resistance, and has a very good retention rate of heat resistance. I understand that.

【表1】[Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)弾性率200GPa以上の補強用繊維(B)繊維
状熱可塑性樹脂 (C)熱硬化性樹脂系のマトリックス樹脂からなる繊維
強化複合材料用プリプレグにおいて、(A)、(B)、
(C)の比率が下記範囲内にありかつ(B)の繊維状熱
可塑性樹脂が外表面に存在し、成形後のコンポジット中
において(B)を添加したことにより、(B)の添加体
積の90%以上の分離相が形成されることを特徴とする
プリプレグ。 (A)/(C)=60/40〜75/25(B)/(C
)=0.5/100〜20/100
Claim 1. In a prepreg for fiber reinforced composite material consisting of (A) reinforcing fibers having an elastic modulus of 200 GPa or more, (B) a fibrous thermoplastic resin, and (C) a thermosetting resin matrix resin, (A), ( B),
The ratio of (C) is within the following range and the fibrous thermoplastic resin (B) is present on the outer surface, and by adding (B) in the composite after molding, the added volume of (B) is A prepreg characterized in that 90% or more of separated phases are formed. (A)/(C)=60/40~75/25(B)/(C
)=0.5/100~20/100
【請求項2】  (
A)が引張強度3500MPa以上の炭素繊維あるいは
黒鉛繊維であることを特徴とする請求項1記載のプリプ
レグ。
[Claim 2] (
2. The prepreg according to claim 1, wherein A) is carbon fiber or graphite fiber having a tensile strength of 3500 MPa or more.
【請求項3】  (B)が熱可塑性樹脂のモノあるいは
マルチフィラメントであることを特徴とする請求項1記
載のプリプレグ。
3. The prepreg according to claim 1, wherein (B) is a mono- or multifilament of thermoplastic resin.
【請求項4】  (B)の繊維状熱可塑性樹脂が一方向
に一定間隔でその外表面に埋めこまれていることを特徴
とする請求項1記載のプリプレグ。
4. The prepreg according to claim 1, wherein the fibrous thermoplastic resin (B) is embedded in its outer surface at regular intervals in one direction.
JP09701591A 1991-04-26 1991-04-26 Prepreg Expired - Lifetime JP3214864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09701591A JP3214864B2 (en) 1991-04-26 1991-04-26 Prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09701591A JP3214864B2 (en) 1991-04-26 1991-04-26 Prepreg

Publications (2)

Publication Number Publication Date
JPH04325527A true JPH04325527A (en) 1992-11-13
JP3214864B2 JP3214864B2 (en) 2001-10-02

Family

ID=14180523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09701591A Expired - Lifetime JP3214864B2 (en) 1991-04-26 1991-04-26 Prepreg

Country Status (1)

Country Link
JP (1) JP3214864B2 (en)

Also Published As

Publication number Publication date
JP3214864B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
EP2816076B1 (en) Fiber-reinforced composite material
JP5746689B2 (en) Particle reinforced fiber reinforced polymer composite
EP2816074B1 (en) Fiber-reinforced composite material
JP5571176B2 (en) Particle reinforced polymer composition
EP2816075B1 (en) Fiber-reinforced composite material
EP0326409B1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
JPH045056B2 (en)
JPH04292634A (en) Prepreg
TW201908406A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP3065690B2 (en) Prepreg
JPH04325527A (en) Prepreg
JP3137671B2 (en) Prepreg
JP3145182B2 (en) Prepreg
JPH04325528A (en) Prepreg
TWI805651B (en) Prepregs and Fiber Reinforced Composites
JP3916264B2 (en) Prepreg
JPH0381342A (en) Manufacture of prepreg
JP3218075B2 (en) Prepreg
JPH01110536A (en) Prepreg containing fine particle of resin
JP3065684B2 (en) Prepreg
JP3145183B2 (en) Prepreg
JPH01148545A (en) Interlaminar hybrid laminated material
JPH07157577A (en) Prepreg
JPH05329838A (en) Prepreg
JPH05329837A (en) Prepreg

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10