JPH05329838A - Prepreg - Google Patents

Prepreg

Info

Publication number
JPH05329838A
JPH05329838A JP14041592A JP14041592A JPH05329838A JP H05329838 A JPH05329838 A JP H05329838A JP 14041592 A JP14041592 A JP 14041592A JP 14041592 A JP14041592 A JP 14041592A JP H05329838 A JPH05329838 A JP H05329838A
Authority
JP
Japan
Prior art keywords
core
fiber
prepreg
component
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14041592A
Other languages
Japanese (ja)
Inventor
Masahiro Sugimori
正裕 杉森
Kazuya Goto
和也 後藤
Katsuyuki Tanaka
克幸 田中
Takashi Murata
多加志 村田
Tsutomu Ibuki
努 伊吹
Tetsuya Yamaoka
哲也 山岡
Takashi Akita
隆 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14041592A priority Critical patent/JPH05329838A/en
Publication of JPH05329838A publication Critical patent/JPH05329838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To impart excellent tenacity to a prepreg for a fiber reinforced composite material consisting of a reinforcing fiber with the modulus of elasticity of 200GPa or more, a thermoplastic fiber having a core/sheath structure and a thermosetting matrix resin so that the thermoplastic fiber having a core/sheath structure is allowed to be locally present on the outer surface of the prepreg. CONSTITUTION:A prepreg for a fiber reinforced composite material is formed from a reinforcing fiber A with the modulus of elasticity of 200 GPa or more, a thermoplastic fiber B having a core/sheath structure and a thermosetting matrix resin C and the wt. ratio of A/C is set to 40/60-85/15 and the wt. ratio of B/C is set to 0.5/100-40/00. The thermoplastic fiber B is made locally present on the outer surface of the prepreg and the shear modulus of the core component of B is made larger than the modulus plasticity of the sheath component thereof and the volume ratio of core component/sheath component is set to 30/70-90/10. By this constitution, the prepreg having excellent tenacity without losing excellent handling properties, thermal properties and mechanical properties is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマトリックス樹脂の優れ
た熱的性質、機械的性質を損ねることなく、それから得
られる成形物に優れた靭性を賦与出来る繊維強化複合材
料用プリプレグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg for a fiber-reinforced composite material which can impart excellent toughness to a molded product obtained from the matrix resin without impairing the excellent thermal properties and mechanical properties of the matrix resin.

【0002】[0002]

【従来技術】炭素繊維等の高強度高弾性繊維を補強材料
とする複合材料は、その比強度、比弾性に優れるという
特徴を活かしてスポーツ用途を中心に広く用いられてき
ているが、通常マトリックス樹脂として用いられるエポ
キシ樹脂をはじめとする熱硬化性樹脂は種々の特長を有
する一方で靭性に乏しいという欠点を有するためにその
用途はかなり制限されたものとなっていた。この熱硬化
性マトリックス樹脂の欠点を改良する方法としてはゴム
成分や熱可塑性樹脂を添加する方法が一般的であるが十
分な靭性改良効果をあげるためには多量に添加する必要
があり、耐熱性、耐溶剤性、等の低下を招く結果となっ
ていた。
2. Description of the Related Art Composite materials using high-strength and high-elasticity fibers such as carbon fibers as a reinforcing material have been widely used mainly for sports applications because of their excellent specific strength and specific elasticity. Thermosetting resins such as epoxy resins used as resins have various advantages, but have a drawback of poor toughness, so that their applications have been considerably limited. As a method of improving the defects of this thermosetting matrix resin, a method of adding a rubber component or a thermoplastic resin is generally used, but it is necessary to add a large amount in order to obtain a sufficient toughness improving effect. However, the solvent resistance and the like are deteriorated.

【0003】また例えば、特開昭63−162732の
ように熱可塑性樹脂を粉末状でマトリックス樹脂中に添
加することによって、熱硬化性マトリックス樹脂の高靭
性化が達成可能であることが開示されているが、熱可塑
性樹脂の粉末をマトリックス樹脂に均一に分散した場
合、あるいは熱可塑性樹脂をマトリックス樹脂中に溶解
した場合には、系全体の粘度が上昇し、プリプレグ製造
時に含浸が困難になるばかりでなく、プリプレグのタッ
クレベルの低下等の問題もさけられない。
Further, for example, as disclosed in Japanese Patent Laid-Open No. 63-162732, it has been disclosed that by adding a thermoplastic resin in a powder form to a matrix resin, it is possible to achieve a high toughness of the thermosetting matrix resin. However, when the thermoplastic resin powder is uniformly dispersed in the matrix resin, or when the thermoplastic resin is dissolved in the matrix resin, the viscosity of the entire system increases, and impregnation becomes difficult only during prepreg production. In addition, problems such as a decrease in the tack level of the prepreg cannot be avoided.

【0004】更に、例えば、特開平1−110537に
は、球状の微粒子をプリプレグの表面付近(厚さの30
%以内の領域)に局在させることにより効果的に複合材
料の靭性が改善されることが開示されているが、この場
合でもプリプレグタックの低下はさけられないだけでな
く、工程の複雑化、品質管理の複雑化等の問題があらた
に発生する。
Further, for example, in Japanese Patent Application Laid-Open No. 1-110537, spherical fine particles are provided near the surface of a prepreg (thickness of 30).
It is disclosed that the toughness of the composite material is effectively improved by localizing the prepreg tack within the range (% or less). However, even in this case, the reduction of the prepreg tack is unavoidable, and the process becomes complicated. New problems such as complicated quality control will occur.

【0005】あるいは、インターリーフと呼ばれる一種
の接着剤層を層間に挿入する方法も提案されているが繊
維含有率が上げられないなどの理由から広く実用化され
るに至ってない。(特開昭60−231738など)
Alternatively, a method of inserting a kind of adhesive layer called interleaf between the layers has been proposed, but it has not been widely put into practical use because the fiber content cannot be increased. (JP-A-60-231738, etc.)

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は熱硬化
性マトリックス樹脂の優れた熱的性質、機械的性質を損
ねることなく、それから得られる成形物に優れた靭性を
賦与することができる、適度なタックレベル、ドレープ
性を有する、取扱性にも優れた繊維強化複合材料用プリ
プレグを提供することにある。
The object of the present invention is to impart excellent toughness to a molded product obtained from the thermosetting matrix resin without impairing the excellent thermal and mechanical properties of the thermosetting matrix resin, An object of the present invention is to provide a prepreg for a fiber-reinforced composite material, which has an appropriate tack level and drapeability and is excellent in handleability.

【0007】[0007]

【課題を解決するための手段】本発明は、(A)弾性率
200GPa以上の補強用繊維,(B)芯/鞘構造を有
する熱可塑性繊維,及び(C)熱硬化性マトリックス樹
脂とからなる繊維強化複合材料用プリプレグであって、
(A),(B),(C)各成分の比率が下記の範囲内に
あり、かつ(B)の芯/鞘構造を有する熱可塑性繊維が
その外表面に局在していることを特徴とするプリプレグ
を要旨とするものである。
The present invention comprises (A) a reinforcing fiber having an elastic modulus of 200 GPa or more, (B) a thermoplastic fiber having a core / sheath structure, and (C) a thermosetting matrix resin. A prepreg for fiber-reinforced composite material,
The ratio of each of the components (A), (B) and (C) is within the following range, and the thermoplastic fiber having the core / sheath structure of (B) is localized on the outer surface thereof. The main point is prepreg.

【0008】 (A)/(C)=40/60〜85/15 (重量比) (B)/(C)=0.5/100〜40/100 (重
量比) 本発明における(B)の芯/鞘構造を有する熱可塑性繊
維は本発明における最も重要な構成要素である。なぜな
ら靭性付与材として繊維状に賦形した素材を用いること
によりはじめて、補強用繊維と熱硬化性マトリックス樹
脂からなるベースプリプレグが本来有する優れた取扱い
性、熱的性質、機械的性質を大きく損なうことなく、成
形物に優れた靭性を付与できる繊維強化複合材料用プリ
プレグを提供するという本発明の目的が達成可能になる
からである。すなわち靭性付与材が繊維状であるため、
プリプレグの外表面に効果的に配置することができ、そ
れにより成形後の繊維強化複合材料の層間に効果的に位
置することが可能になるため比較的少量の靭性付与材で
充分な効果が得られる。更にプリプレグの外表面のごく
一部を熱可塑性繊維でおおうだけであり、ベースとなる
マトリックス樹脂のタックをそれほど損なうことがない
ため、従来技術で問題であったタックレベルの低下とい
う問題が起きないばかりでなく、靭性付与材の添加量の
制御、確認が容易であり、品質管理においても大きなメ
リットが得られる。加えて、プリプレグ製造に関しては
従来のプロセスをそのまま利用することが可能であり工
程上の問題も起きない。これらの効果は従来の技術では
得られない効果であり、繊維状の靭性付与材を用いるこ
とによりはじめて得られる効果である。
(A) / (C) = 40/60 to 85/15 (weight ratio) (B) / (C) = 0.5 / 100 to 40/100 (weight ratio) of (B) in the present invention Thermoplastic fibers having a core / sheath structure are the most important components in the present invention. Because the fibrous material is used as the toughness-imparting material, the excellent handling property, thermal property, and mechanical property originally possessed by the base prepreg consisting of the reinforcing fiber and the thermosetting matrix resin are significantly impaired. This is because the object of the present invention, which is to provide a prepreg for a fiber-reinforced composite material, that can impart excellent toughness to a molded article can be achieved. That is, since the toughness imparting material is fibrous,
It can be effectively placed on the outer surface of the prepreg, which allows it to be effectively located between the layers of the fiber-reinforced composite material after molding, so a relatively small amount of toughness-imparting material can provide sufficient effect. Be done. Furthermore, since only a small part of the outer surface of the prepreg is covered with the thermoplastic fiber, the tackiness of the matrix resin as the base is not significantly impaired, so the problem of lowering the tack level, which was a problem with the conventional technology, does not occur. Not only that, the addition amount of the toughness-imparting material can be easily controlled and confirmed, and a great advantage can be obtained in quality control. In addition, as for the prepreg manufacturing, it is possible to use the conventional process as it is, and there is no process problem. These effects are effects that cannot be obtained by the conventional techniques, and are effects that are obtained only by using the fibrous toughness-imparting material.

【0009】また、この繊維状靭性付与材が芯/鞘構造
をとることも重要である。一般に靭性向上の為には、弾
性率が低く、エネルギー吸収能力の大きな熱可塑性樹脂
を用いることが有利であるが、低弾性熱可塑性繊維を多
量に添加すると層間剪断強度の低下が顕著になり好まし
くない。逆に高弾性の熱可塑性繊維を用いた場合には、
層間剪断強度の低下という問題は起きないものの靭性向
上は必ずしも充分ではない。このように靭性向上と層間
剪断強度の維持という相反する傾向のある2つの特性を
ともに満足する材料を開発すべく鋭意検討した結果、高
靭性熱可塑性樹脂を鞘材として用い、芯材料に高弾性の
熱可塑性樹脂を用いることにより、高靭性材料を単独で
用いる場合と同様に靭性が向上し、しかも剪断強度の低
下も抑えることができるのである。すなわち、芯/鞘構
造の繊維を用いることにより、ベースプリプレグの特性
を損なうこと無く、成形物の靭性を効果的に向上させる
ことがはじめて可能になるのであり、従来技術では得ら
れない本発明の第2の効果である。
It is also important that the fibrous toughness imparting material has a core / sheath structure. Generally, in order to improve the toughness, it is advantageous to use a thermoplastic resin having a low elastic modulus and a large energy absorption ability, but if a large amount of low elastic thermoplastic fiber is added, the decrease in the interlaminar shear strength becomes remarkable, which is preferable. Absent. On the contrary, when using a highly elastic thermoplastic fiber,
Although the problem of reduction in interlaminar shear strength does not occur, improvement in toughness is not always sufficient. As a result of intensive studies to develop a material satisfying both of the two contradictory properties of improving toughness and maintaining interlaminar shear strength, a high toughness thermoplastic resin was used as the sheath material and the core material had high elasticity. By using the thermoplastic resin of (1), the toughness can be improved as in the case of using the high toughness material alone, and the reduction of the shear strength can be suppressed. That is, the use of the core / sheath structure fibers makes it possible for the first time to effectively improve the toughness of the molded product without impairing the properties of the base prepreg, and thus it is possible to obtain the properties of the present invention which cannot be obtained by the prior art. It is the second effect.

【0010】本発明における(B)の芯/鞘構造を有す
る繊維の鞘材料に用いる熱可塑性樹脂としては比較的低
弾性で高靭性のものが好ましく、具体例としてはポリエ
チレン、ポリプロピレン、ポリアミドなどをあげること
ができるが必ずしもこれらに限定されるものではない。
The thermoplastic resin used for the sheath material of the fiber having the core / sheath structure of (B) in the present invention is preferably one having relatively low elasticity and high toughness, and specific examples thereof include polyethylene, polypropylene and polyamide. However, the present invention is not limited to these.

【0011】更に、本発明における(B)の芯/鞘構造
を有する繊維の鞘材料の熱可塑性樹脂は、直接(C)の
熱硬化性マトリックス樹脂と接するため、(C)との接
着性が良好な方が好ましく、従って分子内に(C)の熱
硬化性マトリックス樹脂と反応し得る官能基を有するも
のが特に好ましい。例えば、(C)がエポキシ系の樹脂
の場合には(B)の芯/鞘構造を有する繊維の鞘材料の
熱可塑性樹脂としてはアミノ基、アミド基、フェノール
性水酸基、等のエポキシ樹脂と反応し得る官能基を有す
るものが特に好ましい。
Further, since the thermoplastic resin of the sheath material of the fiber having the core / sheath structure of (B) of the present invention is in direct contact with the thermosetting matrix resin of (C), the adhesiveness with (C) is not sufficient. The better one is preferable, and therefore, one having a functional group capable of reacting with the thermosetting matrix resin (C) in the molecule is particularly preferable. For example, when (C) is an epoxy resin, the thermoplastic resin of the sheath material of the fiber having the core / sheath structure of (B) reacts with an epoxy resin such as an amino group, an amide group or a phenolic hydroxyl group. Those having a functional group capable of controlling are particularly preferable.

【0012】(B)の芯/鞘構造を有する繊維の芯材料
としては、通常複合材料が使用される温度である程度高
弾性を維持する熱可塑性樹脂であれば特に限定はない
が、上記したように層間剪断強度の大きな低下を防ぐに
は芯成分の剪断弾性率>鞘成分の剪断弾性率であること
が好ましく、更に以下の関係を満足するものが室温及び
高温での層間剪断強度の点から特に好ましい。
The core material of the fiber having the core / sheath structure of (B) is not particularly limited as long as it is a thermoplastic resin which maintains high elasticity to some extent at the temperature at which the composite material is usually used, but as described above. In order to prevent a large decrease in the interlaminar shear strength, it is preferable that the shear elastic modulus of the core component> the shear elastic modulus of the sheath component be satisfied. Further, those satisfying the following relationship are preferable in terms of the interlaminar shear strength at room temperature and high temperature. Particularly preferred.

【0013】芯成分の室温での剪断弾性率 ≧ 6.5
×109 dyn/cm2 芯成分の100℃での剪断弾性率 ≧ 4.5×10
dyn/cm 芯成分の具体例としては非晶性のポリアミドのほか、ポ
リアセタール、ポリカーボネート、ポリアリレート、ポ
リスルホン、ポリエーテルエーテルケトン、ポリエーテ
ルイミド、ポリイミド、ポリアミドイミド、ポリフェニ
レンオキシド、ポリフェニレンスルフィド、ポリベンズ
イミダゾール、ポリアリルスルホン、などいわゆるエン
ジニアリングプラスチック、スーパーエンジニアリング
プラスチックをあげることができるが必ずしもそれらに
限定されない。
Shear modulus of elasticity of the core component at room temperature ≧ 6.5
× 10 9 dyn / cm 2 Shear elastic modulus of core component at 100 ° C. ≧ 4.5 × 10
Specific examples of the 9 dyn / cm 2 core component include amorphous polyamide, polyacetal, polycarbonate, polyarylate, polysulfone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polyphenylene oxide, polyphenylene sulfide, and polyphenylene sulfide. Examples thereof include so-called engineering plastics such as benzimidazole and polyallylsulfone, and super engineering plastics, but are not necessarily limited thereto.

【0014】本発明における剪断弾性率とは以下の様な
条件で測定される剪断弾性率である。
The shear elastic modulus in the present invention is the shear elastic modulus measured under the following conditions.

【0015】〔剪断弾性率測定方法〕 装置 :レオメトリックス製 RDS−7700
および 相当品 試験片形状:12mm幅 × 2mm厚 × 40〜50
mm長さ モード :Temperature Sweep 昇温速度 :5℃/step 保持時間 :温度が安定してから1分間 歪速度 :10RAD/SEC 初期歪 :0.1%〜0.2% 本発明における(B)の芯/鞘構造を有する熱可塑性繊
維の芯成分と鞘成分の組み合わせに関しては、例えば溶
融紡糸によって芯/鞘構造を形成させることが可能な組
み合わせであれば、いかなる組み合わせも可能である
が、前述したように 芯成分の剪断弾性率 > 鞘成分の剪断弾性率 であ
ることが好ましく、かつ、芯成分と鞘成分の接着性が良
好な組み合わせがより好ましい。芯成分と鞘成分の接着
性が著しく不良であると、(B)の芯/鞘構造を有する
熱可塑性繊維の芯成分と鞘成分の界面で破壊が起こる可
能性があり好ましくない。
[Shear Modulus Measurement Method] Device: RDS-7700 manufactured by Rheometrics
And equivalent test piece shape: 12 mm width x 2 mm thickness x 40 to 50
mm Length mode: Temperature Sweep Temperature rising rate: 5 ° C./step Holding time: 1 minute after the temperature stabilizes Strain rate: 10 RAD / SEC initial strain: 0.1% to 0.2% (B) in the present invention Regarding the combination of the core component and the sheath component of the thermoplastic fiber having the core / sheath structure, any combination is possible, for example, as long as the core / sheath structure can be formed by melt spinning. As described above, the shear modulus of the core component> the shear modulus of the sheath component is preferable, and a combination in which the core component and the sheath component have good adhesiveness is more preferable. If the adhesiveness between the core component and the sheath component is extremely poor, there is a possibility that breakage may occur at the interface between the core component and the sheath component of the thermoplastic fiber (B) having the core / sheath structure, which is not preferable.

【0016】芯成分と鞘成分の好ましい組み合わせの例
としては、ベースとなる複合材料が使用される最高温度
(エポキシ樹脂系なら120℃以下)より高いガラス転
移温度(Tg)を有する非晶性ポリマーを芯成分に用
い、類似の構造を有する室温からその複合材料が使用さ
れる最高温度の温度範囲で芯成分の非晶性ポリマーより
低い剪断弾性率を有する結晶性ポリマーの組み合わせを
挙げることが出来る。
An example of a preferable combination of the core component and the sheath component is an amorphous polymer having a glass transition temperature (Tg) higher than the maximum temperature (120 ° C. or lower in the case of an epoxy resin system) in which the base composite material is used. Can be cited as a core component, and a combination of crystalline polymers having a similar structure and having a lower shear modulus than the amorphous polymer of the core component in the temperature range from room temperature to the maximum temperature at which the composite material is used can be mentioned. ..

【0017】マトリックス樹脂がエポキシ樹脂系の場合
には芯成分に非晶性ポリアミド(例えば、TR−55
(EMS−CHEMIE AG)、Trogamid−
T(Dynamit Nobel)など)を、鞘成分に
結晶性ポリアミド(例えば、ナイロン12,ナイロン1
1,ナイロン612など)を用いる組み合わせが好まし
い例として例示出来るが必ずしもそれらに限定されるも
のではない。
When the matrix resin is an epoxy resin type, the core component is an amorphous polyamide (eg TR-55).
(EMS-CHEMIE AG), Trogamid-
T (Dynamic Nobel), etc., with crystalline polyamide (eg, nylon 12, nylon 1) as a sheath component.
1, Nylon 612, etc.) can be exemplified as a preferable example, but the combination is not necessarily limited thereto.

【0018】本発明における(B)の芯/鞘構造を有す
る熱可塑性繊維の芯成分と鞘成分の比率としては体積比
で芯成分/鞘成分=20/80〜95/5の範囲が好ま
しく、30/70〜90/10の範囲が特に好ましい。
The ratio of the core component to the sheath component of the thermoplastic fiber (B) having the core / sheath structure in the present invention is preferably in the range of core component / sheath component = 20/80 to 95/5, The range of 30/70 to 90/10 is particularly preferable.

【0019】(B)の芯/鞘構造を有する繊維の形態と
してはモノフィラメントあるいはそれらを束にしたマル
チフィラメントが好ましいが、必ずしもそれらに限定さ
れるものではない。個々のフィラメントの直径としては
100μ以下が好ましく、50μ以下が特に好ましい。
The form of the fiber having the core / sheath structure of (B) is preferably a monofilament or a multifilament in which they are bundled, but is not necessarily limited thereto. The diameter of each filament is preferably 100 μm or less, and particularly preferably 50 μm or less.

【0020】マルチフィラメントとして用いる場合には
トータルのデニールで1000デニール以下が好まし
く、500デニール以下が特に好ましい。
When used as a multifilament, the total denier is preferably 1000 denier or less, and particularly preferably 500 denier or less.

【0021】(B)の芯/鞘構造を有する繊維の比率は
(C)の熱硬化性マトリックス樹脂100重量部に対し
0.5〜40重量部が好ましい。0.5重量部未満では
十分な靭性改良効果は得られないし、逆に40重量部を
越えると靭性改良効果が頭打ちになるばかりでなく、プ
リプレグのタックレベルの低下が起こるため好ましくな
い。より好ましくは0.5〜20重量部である。
The ratio of the fiber having the core / sheath structure of (B) is preferably 0.5 to 40 parts by weight based on 100 parts by weight of the thermosetting matrix resin of (C). If it is less than 0.5 parts by weight, a sufficient toughness improving effect cannot be obtained, and if it exceeds 40 parts by weight, not only the toughness improving effect reaches its peak but also the tack level of the prepreg is lowered, which is not preferable. It is more preferably 0.5 to 20 parts by weight.

【0022】本発明における(B)の芯/鞘構造を有す
る繊維はプリプレグ外表面付近に存在していることが重
要である。プリプレグの中心部に完全に埋没した状態で
は十分な靭性改良効果は得られない。しかしながら、芯
/鞘構造を有する繊維がプリプレグ表面から完全に浮き
出ている状態はやはり好ましくなく、その大半が熱硬化
性マトリックス樹脂中に埋没していることが好ましい。
また、芯/鞘構造を有する繊維は等間隔で一方向に引揃
えられた状態で存在するのがより好ましいが必ずしもそ
れに限定されるものではない。もちろん、2つ以上の方
向に同時に引揃え、クロスさせて配置することも可能で
あり、高い効果が得られるが、工程的には煩雑になる。
引揃え方向には特に制限が無く、補強用繊維に対してあ
らゆる角度で存在し得るが補強用繊維と同じ方向に引揃
えるのがプロセス上は最も容易である。
It is important that the fiber having the core / sheath structure of (B) in the present invention is present near the outer surface of the prepreg. When it is completely buried in the center of the prepreg, sufficient toughness improving effect cannot be obtained. However, it is not preferable that the fibers having the core / sheath structure are completely raised from the surface of the prepreg, and most of the fibers are preferably embedded in the thermosetting matrix resin.
Further, it is more preferable that the fibers having the core / sheath structure are present in a state where they are evenly aligned in one direction, but the fibers are not necessarily limited thereto. Of course, it is also possible to align them in two or more directions at the same time and arrange them in a crossed manner, and a high effect can be obtained, but the process becomes complicated.
The alignment direction is not particularly limited and may be present at any angle to the reinforcing fiber, but aligning in the same direction as the reinforcing fiber is the easiest in the process.

【0023】本発明における(A)の弾性率200PG
a以上の補強用繊維としては炭素繊維、黒鉛繊維、ボロ
ン繊維等、通常の繊維強化複合材料に用いられる補強用
繊維がそのまま用いられるが、引張強度3500MPa
以上の炭素繊維、黒鉛繊維が好適に用いられる。中で
も、引張強度4500MPa以上、伸度1.7%以上の
高強度・高伸度の炭素繊維、黒鉛繊維が最も好適に用い
られる。
Elastic modulus 200PG of (A) in the present invention
As the reinforcing fiber a or more, carbon fiber, graphite fiber, boron fiber, and other reinforcing fibers used in ordinary fiber-reinforced composite materials are used as they are, but the tensile strength is 3500 MPa.
The above carbon fibers and graphite fibers are preferably used. Among them, carbon fibers and graphite fibers having a high strength and a high elongation with a tensile strength of 4500 MPa or more and an elongation of 1.7% or more are most preferably used.

【0024】本発明における(C)の熱硬化性マトリッ
クス樹脂としては、硬化して、少なくとも部分的に三次
元硬化物を形成する樹脂であればいずれも使用可能であ
る。
As the thermosetting matrix resin (C) in the present invention, any resin can be used as long as it is cured and at least partially forms a three-dimensional cured product.

【0025】代表的な例としてはエポキシ樹脂、マレイ
ミド樹脂、ポリイミド樹脂、シアン酸エステル末端を有
する樹脂、アセチレン末端を有する樹脂、ビニル末端を
有する樹脂、アリル末端を有する樹脂、ナジック酸末端
を有する樹脂があげられる。
Typical examples are epoxy resin, maleimide resin, polyimide resin, cyanate ester terminated resin, acetylene terminated resin, vinyl terminated resin, allyl terminated resin, and nadic acid terminated resin. Can be given.

【0026】本発明に最も適した熱硬化性マトリックス
樹脂としてエポキシ樹脂が用いられる。特に、アミン
類、フェノール類を前駆体とするエポキシ樹脂が好まし
い。具体的には、テトラグリシジルジアミノジフェニル
メタン、トリグリシジル−p−アミノフェノール、トリ
グリシジル−m−アミノフェノール、トリグリシジルア
ミノクレゾールの各種異性体、ビスフェノールA型エポ
キシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェ
ノールS型エポキシ樹脂、フェノールノボラック型エポ
キシ樹脂、クレゾールノボラック型エポキシ樹脂等が挙
げられるが、これに限定されない。またこれらのエポキ
シ樹脂をブロム化したブロム化エポキシ樹脂も用いられ
る。これらのエポキシ樹脂は単独でも用いられるが、そ
の目的に応じて適宜、2種以上の混合物として用いられ
る。
An epoxy resin is used as the thermosetting matrix resin most suitable for the present invention. In particular, epoxy resins having amines and phenols as precursors are preferable. Specifically, tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, various isomers of triglycidyl aminocresol, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type Examples thereof include, but are not limited to, an epoxy resin, a phenol novolac type epoxy resin, and a cresol novolac type epoxy resin. Brominated epoxy resins obtained by brominating these epoxy resins are also used. These epoxy resins may be used alone, but may be used as a mixture of two or more kinds depending on the purpose.

【0027】エポキシ樹脂は通常、硬化剤と組合せて用
いられるが、本発明において用いられる硬化剤にも特に
制限はなくアミノ基、酸無水物基等エポキシ樹脂と反応
しうる官能基を適宜用いることが可能であるがジアミノ
ジフェニルスルホンの各種異性体に代表される芳香族ア
ミノ類およびジシアンジアミド、アミノ安息香酸エステ
ル類が適している。
The epoxy resin is usually used in combination with a curing agent, but the curing agent used in the present invention is not particularly limited, and a functional group capable of reacting with the epoxy resin such as an amino group or an acid anhydride group is appropriately used. However, aromatic amino compounds represented by various isomers of diaminodiphenyl sulfone, dicyandiamide, and aminobenzoic acid esters are suitable.

【0028】本発明における熱硬化性マトリックス樹脂
(C)として上記熱硬化性樹脂に熱可塑性樹脂あるいは
そのオリゴマーを添加したものを用いることもできる。
特にポリイミド、ポリエーテルイミド、ポリスルホン、
ポリエーテルスルホン、ポリエーテルエーテルケトン等
のいわゆるエンジニアリングプラスチックが耐熱性の点
から好ましく、熱硬化性樹脂と反応しうる官能基を分子
末端あるいは分子鎖中に有するものがさらに好ましい。
As the thermosetting matrix resin (C) in the present invention, a thermoplastic resin or an oligomer thereof may be added to the above thermosetting resin.
Especially polyimide, polyetherimide, polysulfone,
So-called engineering plastics such as polyether sulfone and polyether ether ketone are preferable from the viewpoint of heat resistance, and those having a functional group capable of reacting with a thermosetting resin at the molecular end or in the molecular chain are more preferable.

【0029】熱硬化性樹脂成分に対する熱可塑性樹脂成
分の添加量は30重量%以下が好ましく、15重量%以
下がより好ましい。熱可塑性樹脂成分の添加量が30重
量%以上になると系の粘度が高くなりすぎてプリプレグ
化時の含浸不良の原因となるだけでなく、プリプレグの
タック特性、ドレープ特性が大幅に低下する原因ともな
る。
The amount of the thermoplastic resin component added to the thermosetting resin component is preferably 30% by weight or less, more preferably 15% by weight or less. If the amount of the thermoplastic resin component added is 30% by weight or more, the viscosity of the system becomes too high, which not only causes impregnation failure during prepreg formation, but also causes the prepreg tack property and drape property to significantly decrease. Become.

【0030】また熱硬化性樹脂に微粉末シリカなどの無
機微粒子やブタジエン/アクリロニトリル共重合体等の
エラストマー成分をプリプレグ特性、加工特性、機械的
特性、熱的特性等を犠牲にしない範囲内で少量添加する
ことも可能である。
Further, a small amount of inorganic fine particles such as fine powder silica and an elastomer component such as butadiene / acrylonitrile copolymer are added to the thermosetting resin in a small amount within a range that does not sacrifice prepreg characteristics, processing characteristics, mechanical characteristics, thermal characteristics and the like. It is also possible to add.

【0031】(A)の弾性率200GPa以上の補強用
繊維と(C)の熱硬化性マトリックス樹脂の比率はその
目的に応じて適宜設定することが可能であるが、重量比
で (A)/(C)=40/60〜85/15 の範囲が適当である。より好ましい範囲は (A)/(C)=60/40〜75/25 である。
The ratio of the reinforcing fiber (A) having a modulus of elasticity of 200 GPa or more to the thermosetting matrix resin (C) can be appropriately set according to the purpose, but the weight ratio is (A) / The range of (C) = 40/60 to 85/15 is suitable. A more preferable range is (A) / (C) = 60/40 to 75/25.

【0032】(A)の弾性率200GPa以上の補強用
繊維と(C)の熱硬化性マトリックス樹脂ならびに
(B)の芯鞘構造を有する熱可塑性繊維からプリプレグ
を製造する方法については特に制限がなく、目的とする
プリプレグを得られる方法であればいかなる方法でもさ
しつかえない。例えば、以下の方法が例示できるが必ず
しもそれらに限定されない。
There is no particular limitation on the method for producing a prepreg from the reinforcing fiber (A) having a modulus of elasticity of 200 GPa or more, the thermosetting matrix resin (C) and the thermoplastic fiber (B) having a core-sheath structure. However, any method may be used as long as the desired prepreg can be obtained. For example, the following methods can be exemplified, but not limited to them.

【0033】〔方法1〕(A)の補強用繊維と(C)の
熱硬化性マトリックス樹脂とから得られるベースプリプ
レグ上に、(B)の芯鞘構造を有する熱可塑性繊維を配
列し、加熱含浸させる方法。
[Method 1] A thermoplastic fiber having a core-sheath structure (B) is arranged on a base prepreg obtained from the reinforcing fiber (A) and the thermosetting matrix resin (C) and heated. Impregnation method.

【0034】〔方法2〕(C)の熱硬化性マトリックス
樹脂を塗布した離型紙上に(A)の補強用繊維と(B)
の芯鞘構造を有する熱可塑性繊維とを同時に供給し、含
浸せしめる方法。
[Method 2] Reinforcing fibers (A) and (B) are placed on a release paper coated with the thermosetting matrix resin (C).
And a thermoplastic fiber having a core-sheath structure are simultaneously supplied and impregnated.

【0035】〔方法3〕(C)の熱硬化性マトリックス
樹脂を塗布した離型紙上に(B)の芯鞘構造を有する熱
可塑性繊維を配列固定した後、(A)の補強用繊維を重
ね合わせ含浸せしめる方法。
[Method 3] After the thermoplastic fibers having a core-sheath structure of (B) are arrayed and fixed on the release paper coated with the thermosetting matrix resin of (C), the reinforcing fibers of (A) are overlaid. Method of combined impregnation.

【0036】[0036]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明は必ずしもこれらに限定されるものではな
い。
EXAMPLES The present invention will be described in detail with reference to the following examples, but the present invention is not necessarily limited to these.

【0037】なお、実施例中の配合部数はすべて重量部
であり、用いたエポキシ樹脂は以下の通りである。
In the examples, all parts by weight are parts by weight, and the epoxy resins used are as follows.

【0038】YH434L;テトラグリシジルジアミン
型エポキシ樹脂(東都化成社製) ELM−100;トリグリシジルジアミン型エポキシ樹
脂(住友化学社製) エピコート807;ビスフェノールF型エポキシ樹脂
(油化シェル社製) 参考例1 非晶性ナイロン、TR−55(EMS−CHEMIE
AG 製:Tg=155℃)のペレットを120℃で1
2時間、真空乾燥を行った後、第1の押出機を用いて溶
融させる一方、ナイロン12(ダイセル・ヒュルズ社:
L2140:Tg=41℃)のペレットを80℃で12
時間、真空乾燥を行った後、第2の押出機を用いて溶融
させ、各々の溶融流を紡糸頭に導き、TR−55が芯成
分になり、しかも芯成分/鞘成分の比率が体積比で70
/30になるように複合流を形成させた後、紡糸温度3
05℃、紡糸速度700m/分で溶融紡糸し、トータル
デニール90d、18フィラメントの芯/鞘構造繊維を
得た。
YH434L: Tetraglycidyldiamine type epoxy resin (manufactured by Tohto Kasei Co., Ltd.) ELM-100; Triglycidyldiamine type epoxy resin (manufactured by Sumitomo Chemical Co., Ltd.) Epicoat 807; Bisphenol F type epoxy resin (manufactured by Yuka Shell Co., Ltd.) Reference Example 1 Amorphous nylon, TR-55 (EMS-CHEMIE
AG: Tg = 155 ° C.) pellets at 120 ° C.
After vacuum drying for 2 hours, it was melted using the first extruder, while nylon 12 (Daicel Huls Company:
L2140: Tg = 41 ° C) pellets at 80 ° C for 12
After vacuum drying for a period of time, it is melted using a second extruder and each melt stream is guided to the spinning head, TR-55 becomes the core component, and the ratio of the core component / the sheath component is the volume ratio. At 70
After forming a composite flow so that it becomes / 30, the spinning temperature is 3
Melt spinning was performed at 05 ° C. and a spinning speed of 700 m / min to obtain a core / sheath structure fiber having a total denier of 90 d and 18 filaments.

【0039】参考例2 芯成分(TR−55)/鞘成分(ナイロン12)の比率
が体積比で90/10になるように各々の吐出量を調節
する以外は参考例1と同様にしてトータルデニール90
d、18フィラメントの芯/鞘構造繊維を得た。
Reference Example 2 A total was obtained in the same manner as in Reference Example 1 except that each discharge amount was adjusted so that the volume ratio of the core component (TR-55) / the sheath component (nylon 12) was 90/10. Denier 90
A d / 18 filament core / sheath structure fiber was obtained.

【0040】参考例3 非晶性ナイロンをTR−55からTrogamid−T
(ダイセル・ヒュルズ社:Tg=148℃)に変更し、
芯成分(Trogamid−T)/鞘成分(ナイロン1
2)の比率が体積比で50/50になるように各々の吐
出量を調節する以外は参考例1と同様にしてトータルデ
ニール90d、18フィラメントの芯/鞘構造繊維を得
た。
Reference Example 3 Amorphous nylon was converted from TR-55 to Trogamid-T.
(Daicel Huls Company: Tg = 148 ℃),
Core component (Trogamid-T) / Sheath component (nylon 1
A core / sheath structure fiber having a total denier of 90 d and 18 filaments was obtained in the same manner as in Reference Example 1 except that each discharge amount was adjusted so that the ratio of 2) was 50/50 in volume ratio.

【0041】実施例1 エピコート807,680g、ELM−100,477
g、テトラメチルビスフェノールA,426gを反応容
器に仕込み120℃で8時間反応させて、これらの予備
反応物を得た。この予備反応物35重量部にエピコート
807,25重量部とYH434L,40重量部および
硬化剤としてジアミノジフェニルスルホン 50重量部
とを配合し、全体が均一になるまで十分に混合した。
Example 1 Epicoat 807,680 g, ELM-100,477
g, tetramethylbisphenol A, 426 g were charged into a reaction vessel and reacted at 120 ° C. for 8 hours to obtain these preliminary reaction products. 35 parts by weight of this preliminary reaction product were mixed with 25 parts by weight of Epicoat 807, 40 parts by weight of YH434L, and 50 parts by weight of diaminodiphenyl sulfone as a curing agent, and they were sufficiently mixed until the whole became uniform.

【0042】得られた樹脂組成物と三菱レイヨン(株)
製、高強度中弾性炭素繊維、MR60Pとから一方向プ
リプレグをホットメルト法で製造した。プリプレグのC
F目付は190g/m2、樹脂含有率34重量%であっ
た。
The resin composition obtained and Mitsubishi Rayon Co., Ltd.
A unidirectional prepreg was manufactured from a high strength medium elastic carbon fiber, MR60P manufactured by the hot melt method. C of prepreg
The F areal weight was 190 g / m 2 , and the resin content was 34% by weight.

【0043】このプリプレグの両面に参考例1で製造し
た芯/鞘構造繊維を2mm間隔でワインドし、本発明のプ
リプレグを製造した。
The prepreg of the present invention was produced by winding the core / sheath structure fibers produced in Reference Example 1 on both sides of this prepreg at 2 mm intervals.

【0044】このプリプレグから所定の寸法の小片を切
り出し、積層後、オートクレーブ成形で衝撃後圧縮強度
測定用の試験片を成形した。(硬化条件:180℃×2
時間)この試験片を用いて、SACMA(Suppli
ers of Advanced Composite
Materials Association)のR
ecommended Method SRM2−88
に従って、270 lb−in衝撃後の圧縮強度を測定
した。得られた衝撃後の圧縮強度は357MPaであっ
た。
A small piece having a predetermined size was cut out from this prepreg, laminated, and then a test piece for measuring post-impact compression strength was formed by autoclave molding. (Curing conditions: 180 ° C x 2
Time) Using this test piece, SACMA (Suppli
ers of Advanced Composite
R of Materials Association)
economed method SRM2-88
According to the above, the compressive strength after 270 lb-in impact was measured. The obtained compressive strength after impact was 357 MPa.

【0045】また、同じ積層構成の成形板から幅6.4
mm,長さ30mmの試験片を切り出し、L/D=4,クロ
スヘッドスピード=1mm/min の条件で82℃における
層間剪断強度を測定した。得られた層間剪断強度は56
MPaであった。
A width of 6.4 from a forming plate having the same laminated structure
A test piece having a length of 30 mm and a length of 30 mm was cut out and the interlaminar shear strength at 82 ° C. was measured under the conditions of L / D = 4 and crosshead speed = 1 mm / min. The interlaminar shear strength obtained is 56.
It was MPa.

【0046】比較例1 プリプレグの樹脂含有率が36重量%になるような樹脂
フィルムを用いる他は実施例1と同様にして一方向プリ
プレグを製造した。このプリプレグを用い芯/鞘構造繊
維を付着させることなしに実施例1と同様に衝撃後の圧
縮強度、層間剪断強度を測定した。
Comparative Example 1 A unidirectional prepreg was produced in the same manner as in Example 1 except that a resin film having a resin content of prepreg of 36% by weight was used. Using this prepreg, the compressive strength after impact and the interlaminar shear strength were measured in the same manner as in Example 1 without attaching core / sheath structure fibers.

【0047】得られた衝撃後の圧縮強度は274MP
a、82℃における層間剪断強度は62MPaであっ
た。
The resulting compressive strength after impact is 274MP.
a, the interlaminar shear strength at 82 ° C. was 62 MPa.

【0048】実施例2 参考例1の芯/鞘構造繊維の代わりに、参考例2の芯/
鞘構造繊維を用いる以外は実施例1と同様にプリプレグ
を製造し、衝撃後の圧縮強度、層間剪断強度を測定し
た。
Example 2 Instead of the core / sheath structure fiber of Reference Example 1, the core / sheath structure of Reference Example 2 was used.
A prepreg was produced in the same manner as in Example 1 except that the sheath structure fiber was used, and the compressive strength after impact and the interlaminar shear strength were measured.

【0049】得られた衝撃後の圧縮強度は355MP
a、82℃における層間剪断強度は58MPaであっ
た。
The resulting compressive strength after impact is 355 MP
a, the interlaminar shear strength at 82 ° C. was 58 MPa.

【0050】比較例2 参考例1の芯/鞘構造繊維の代わりに、ナイロン12の
マルチフィラメント(トータルデニール90d、フィラ
メント数18fil)を用いる以外は実施例1と同様に
プリプレグを製造し、衝撃後の圧縮強度、層間剪断強度
を測定した。得られた衝撃後の圧縮強度は353MP
a、82℃における層間剪断強度は39MPaであっ
た。
Comparative Example 2 A prepreg was produced in the same manner as in Example 1 except that a nylon 12 multifilament (total denier 90d, filament number 18 fil) was used in place of the core / sheath structure fiber of Reference Example 1, and after impact. The compressive strength and interlaminar shear strength were measured. The resulting compressive strength after impact is 353MP
a, the interlaminar shear strength at 82 ° C. was 39 MPa.

【0051】実施例3 参考例1の芯/鞘構造繊維の代わりに、参考例3の芯/
鞘構造繊維を用いる以外は実施例1と同様にプリプレグ
を製造し、衝撃後の圧縮強度、層間剪断強度を測定し
た。
Example 3 Instead of the core / sheath structure fiber of Reference Example 1, the core / sheath structure of Reference Example 3 was used.
A prepreg was produced in the same manner as in Example 1 except that the sheath structure fiber was used, and the compressive strength after impact and the interlaminar shear strength were measured.

【0052】得られた衝撃後の圧縮強度は351MP
a、82℃における層間剪断強度は52MPaであっ
た。
The resulting compressive strength after impact is 351 MP
a, the interlaminar shear strength at 82 ° C. was 52 MPa.

【0053】[0053]

【発明の効果】本発明のプリプレグは従来の熱硬化性樹
脂をマトリックスとするプリプレグと同等の取扱い性を
有するだけでなく、熱的性質及び機械的性質を損なうこ
となく、得られる成形物に優れた靭性を賦与できるもの
であり、特に衝撃を受けたときの層間剥離に対する抵抗
力が高いので航空機用構造材料等として好適に使用され
る。
INDUSTRIAL APPLICABILITY The prepreg of the present invention has not only handling properties equivalent to those of conventional prepregs having a thermosetting resin as a matrix, but also excellent moldings obtained without impairing thermal properties and mechanical properties. It can impart toughness and has a high resistance to delamination especially when it is subjected to an impact, so that it is suitably used as a structural material for aircraft and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 多加志 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 伊吹 努 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 山岡 哲也 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 (72)発明者 秋田 隆 愛知県豊橋市牛川通四丁目1番地の2 三 菱レイヨン株式会社豊橋事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Murata 4-chome, Sunadabashi, Higashi-ku, Aichi Prefecture, Aichi Prefecture 60-61, Product Development Laboratory, Mitsubishi Rayon Co., Ltd. No. 60, Product Development Laboratory, Mitsubishi Rayon Co., Ltd. (72) Inventor Tetsuya Yamaoka, 2-1, 4-1, Ushikawa-dori, Toyohashi-shi, Aichi Sanryo Rayon Co., Ltd., Toyohashi Plant (72) Takashi Akita Ushikawa, Toyohashi-shi, Aichi 2 at Sanchome Rayon Co., Ltd., Toyohashi Works

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】(A)弾性率200GPa以上の補強用繊
維,(B)芯/鞘構造を有する熱可塑性繊維及び(C)
熱硬化性マトリックス樹脂とからなる繊維強化複合材料
用プリプレグであって、(A),(B),(C)各成分
の比率が下記の範囲内にあり、かつ(B)の芯/鞘構造
を有する熱可塑性繊維がその外表面に局在していること
を特徴とするプリプレグ。 (A)/(C)=40/60〜85/15 (重量比) (B)/(C)=0.5/100〜40/100 (重
量比)
1. A reinforcing fiber having an elastic modulus of 200 GPa or more, (B) a thermoplastic fiber having a core / sheath structure, and (C).
A prepreg for a fiber-reinforced composite material comprising a thermosetting matrix resin, wherein the ratio of each of the components (A), (B), (C) is within the following range, and the core / sheath structure of (B) A prepreg characterized in that a thermoplastic fiber having a is localized on its outer surface. (A) / (C) = 40/60 to 85/15 (weight ratio) (B) / (C) = 0.5 / 100 to 40/100 (weight ratio)
【請求項2】 (A),(B),(C)各成分の比率が
下記の範囲内にある請求項1記載のプリプレグ。 (A)/(C)=60/40〜75/25 (重量比) (B)/(C)=0.5/100〜20/100 (重
量比)
2. The prepreg according to claim 1, wherein the ratio of each of the components (A), (B) and (C) is within the following range. (A) / (C) = 60/40 to 75/25 (weight ratio) (B) / (C) = 0.5 / 100 to 20/100 (weight ratio)
【請求項3】 (B)が下記の条件を満足する芯/鞘構
造を有する熱可塑性繊維である請求項1記載のプリプレ
グ。 芯成分の剪断弾性率 > 鞘成分の剪断弾性率
3. The prepreg according to claim 1, wherein (B) is a thermoplastic fiber having a core / sheath structure satisfying the following conditions. Shear modulus of core component> Shear modulus of sheath component
【請求項4】 (B)が下記の条件を満足する芯/鞘構
造を有する熱可塑性繊維である請求項1記載のプリプレ
グ。 芯成分の室温での剪断弾性率 ≧ 6.5×109 dyn/
cm2 芯成分の100℃での剪断弾性率 ≧ 4.5×109
dyn/cm2
4. The prepreg according to claim 1, wherein (B) is a thermoplastic fiber having a core / sheath structure satisfying the following conditions. Shear modulus at room temperature of core component ≧ 6.5 × 10 9 dyn /
cm 2 Core component's shear modulus at 100 ° C ≧ 4.5 × 10 9
dyn / cm 2
【請求項5】 (B)が下記の条件を満足する芯/鞘構
造を有する熱可塑性繊維である請求項1記載のプリプレ
グ。 芯成分:非晶性ポリマー 鞘成分:結晶性ポリマー
5. The prepreg according to claim 1, wherein (B) is a thermoplastic fiber having a core / sheath structure satisfying the following conditions. Core component: amorphous polymer Sheath component: crystalline polymer
【請求項6】 (B)が下記の条件を満足する芯/鞘構
造を有する熱可塑性繊維である請求項1記載のプリプレ
グ。 芯成分/鞘成分=30/70〜90/10 (体積
比)
6. The prepreg according to claim 1, wherein (B) is a thermoplastic fiber having a core / sheath structure satisfying the following conditions. Core component / sheath component = 30/70 to 90/10 (volume ratio)
【請求項7】 (A)が引張強度3500MPa以上の
炭素繊維あるいは黒鉛繊維である請求項1記載のプリプ
レグ。
7. The prepreg according to claim 1, wherein (A) is carbon fiber or graphite fiber having a tensile strength of 3500 MPa or more.
【請求項8】 (C)がエポキシ樹脂を主成分とする熱
硬化性樹脂である請求項1記載のプリプレグ。
8. The prepreg according to claim 1, wherein (C) is a thermosetting resin containing an epoxy resin as a main component.
【請求項9】 (B)の鞘成分がアミノ基、アミド基、
フェノール性水酸基等のエポキシ樹脂と反応しうる官能
基を有する熱可塑性樹脂からなる請求項8記載のプリプ
レグ。
9. The (B) sheath component is an amino group, an amide group,
The prepreg according to claim 8, comprising a thermoplastic resin having a functional group capable of reacting with an epoxy resin such as a phenolic hydroxyl group.
【請求項10】 (B)が下記の条件を満足する芯/鞘
構造を有する熱可塑性繊維である請求項4記載のプリプ
レグ。 芯成分:非晶性ポリアミド 鞘成分:結晶性ポリアミド
10. The prepreg according to claim 4, wherein (B) is a thermoplastic fiber having a core / sheath structure satisfying the following conditions. Core component: Amorphous polyamide Sheath component: Crystalline polyamide
JP14041592A 1992-06-01 1992-06-01 Prepreg Pending JPH05329838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14041592A JPH05329838A (en) 1992-06-01 1992-06-01 Prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14041592A JPH05329838A (en) 1992-06-01 1992-06-01 Prepreg

Publications (1)

Publication Number Publication Date
JPH05329838A true JPH05329838A (en) 1993-12-14

Family

ID=15268195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14041592A Pending JPH05329838A (en) 1992-06-01 1992-06-01 Prepreg

Country Status (1)

Country Link
JP (1) JPH05329838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024165A (en) * 2019-08-02 2021-02-22 株式会社Subaru Preform, fiber-reinforced resin composite material, and methods for manufacturing fiber-reinforced resin composite material
JP2021024918A (en) * 2019-08-02 2021-02-22 株式会社Subaru Fiber-reinforced resin composite material, and method for manufacturing fiber-reinforced resin composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024165A (en) * 2019-08-02 2021-02-22 株式会社Subaru Preform, fiber-reinforced resin composite material, and methods for manufacturing fiber-reinforced resin composite material
JP2021024918A (en) * 2019-08-02 2021-02-22 株式会社Subaru Fiber-reinforced resin composite material, and method for manufacturing fiber-reinforced resin composite material
US12030295B2 (en) 2019-08-02 2024-07-09 Subaru Corporation Fiber-reinforced resin composite material and method of manufacturing fiber-reinforced resin composite material

Similar Documents

Publication Publication Date Title
JP3505754B2 (en) Prepreg and manufacturing method thereof
EP0488389B1 (en) Prepregs, process for producing the same and laminates produced with the same
JPH045055B2 (en)
JPS63170428A (en) Production of prepreg
JP3312470B2 (en) Prepreg and laminate
JP3065686B2 (en) Prepreg
JPH05239317A (en) Epoxy resin composition, prepreg and production of prepreg
US5075356A (en) Bisphenol and neopentyl glycol diglycidyl ethers with glycidyl methacrylate copolymer
JPH0834864A (en) Impact-resistant prepreg
JPH05329838A (en) Prepreg
JP3145182B2 (en) Prepreg
JP3065690B2 (en) Prepreg
JP3137733B2 (en) Prepreg
JPH09176347A (en) Tubular long article produced from fiber-reinforced resin
JPH0633329A (en) Blended fiber for reinforcement and prepreg containing the fiber
JP3065683B2 (en) Prepreg
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP3145183B2 (en) Prepreg
JP2591519B2 (en) Prepreg
JPH07157577A (en) Prepreg
JP3065685B2 (en) Manufacturing method of prepreg
JPH0381342A (en) Manufacture of prepreg
JP3154516B2 (en) Prepreg manufacturing method
JPH01110537A (en) Prepreg containing spherical fine particle of resin
JP3916264B2 (en) Prepreg