JPH04325417A - Manufacture of bi series oxide superconductor - Google Patents

Manufacture of bi series oxide superconductor

Info

Publication number
JPH04325417A
JPH04325417A JP3124995A JP12499591A JPH04325417A JP H04325417 A JPH04325417 A JP H04325417A JP 3124995 A JP3124995 A JP 3124995A JP 12499591 A JP12499591 A JP 12499591A JP H04325417 A JPH04325417 A JP H04325417A
Authority
JP
Japan
Prior art keywords
phase
oxide superconductor
low
based oxide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3124995A
Other languages
Japanese (ja)
Inventor
Yoshio Masuda
喜男 増田
Naohiro Hara
直広 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP3124995A priority Critical patent/JPH04325417A/en
Publication of JPH04325417A publication Critical patent/JPH04325417A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To offer a method for manufacturing a Bi series oxide superconductor essentially consisting of a high Tc phase, in which the compositional ratio of the metals of (Bi, Pb):Sr:Ca:Cu is regulated to 2:2:2:3 and the formation rate of the high Tc phase is high, furthermore having high forming velocity, excellent in productivity and moreover less in the generation of cracking at the time of forming it into a thick film or a formed body. CONSTITUTION:A Bi series oxide superconductor having a low Tc phase and in which the compositional ratio of the above metals is regulated to 2:2:1:2 is mixed with a soln. or a sol contg. Ca compounds, Cu compounds and Pb compounds, and this mixture is subjected to heat treatment to convert the low Tc phase into a high Tc phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はBi系酸化物超電導体の
製造方法に関するものであって、超電導転移温度(Tc
)が110K程度を示す高Tc相の生成率が高いBi系
酸化物超電導体の製造方法に関するものである。
[Field of Industrial Application] The present invention relates to a method for producing a Bi-based oxide superconductor, and relates to a method for producing a Bi-based oxide superconductor, and relates to a superconducting transition temperature (Tc
The present invention relates to a method for manufacturing a Bi-based oxide superconductor that has a high production rate of a high Tc phase with a temperature of about 110K.

【0002】0002

【従来の技術】Bi系酸化物超電導体には、超電導転移
温度(Tc)が80K程度である低Tc相と110K程
度である高Tc相が存在し、Bi,Sr,Ca,Cuの
モル比がほぼ2:2:1:2の場合には低Tc相となり
、およそ2:2:2:3の場合(但しBiの一部がPb
により置換されている)には高Tc相となることが知ら
れている。この様に高Tc相Bi系酸化物超電導体は、
低Tc相Bi系酸化物超電導体に比べてCaとCuのモ
ル比が高く、且つPbを含んでいるものである。
[Prior Art] Bi-based oxide superconductors have a low Tc phase with a superconducting transition temperature (Tc) of about 80K and a high Tc phase with a superconducting transition temperature (Tc) of about 110K, and the molar ratio of Bi, Sr, Ca, and Cu is When the ratio is approximately 2:2:1:2, it becomes a low Tc phase, and when it is approximately 2:2:2:3 (however, some of the Bi is Pb
) is known to result in a high Tc phase. In this way, the high Tc phase Bi-based oxide superconductor is
It has a higher molar ratio of Ca and Cu than the low Tc phase Bi-based oxide superconductor, and also contains Pb.

【0003】ところで酸化物超電導体粉末の製造方法と
しては、固相法や共沈法及びゾル・ゲル法等の湿式法が
あり、例えば固相法を用いて高Tc相を主体とするBi
系酸化物超電導体を得ようとする場合、Bi,Pb,S
r,Ca及びCuの酸化物または炭酸塩を用いてこれら
を上記高Tc相の金属組成比になる様に混合し、800
℃付近で仮焼と粉砕を繰り返して高Tc相成分が多い粉
末を得ることが一般的である。尚上記粉末を用いて成形
体を得るにあたっては、金型成形、CIP成形、HIP
成形またはキャスティング法などにより、800〜87
0℃で焼成し所望の形に成形すればよい。
By the way, methods for producing oxide superconductor powder include wet methods such as solid phase method, coprecipitation method, and sol-gel method.
When trying to obtain a system oxide superconductor, Bi, Pb, S
Using oxides or carbonates of r, Ca, and Cu, these were mixed so as to have the metal composition ratio of the above high Tc phase, and 800
It is common to repeat calcination and pulverization at around 0.degree. C. to obtain a powder containing a large amount of high Tc phase components. In order to obtain a molded body using the above powder, molding, CIP molding, HIP
800-87 by molding or casting method etc.
It may be fired at 0°C and molded into a desired shape.

【0004】また高Tc相酸化物超電導体の厚膜を製造
する方法としては、スプレー法とドクターブレード法が
あり、前者の方法は高Tc相の金属組成比に近い各金属
元素の硝酸塩や有機酸塩の溶液を、セラミックス製や金
属製等の基板上にスプレーし、600〜800℃の仮焼
と、800〜870℃の本焼とからなる熱処理を行ない
、超電導の膜を形成するものである。但し本方法は膜厚
に応じてスプレー、仮焼及び本焼からなる一連の工程を
何度も繰り返す必要があり、厚膜の製作には適していな
い。
[0004] Methods for producing thick films of high Tc phase oxide superconductors include the spray method and the doctor blade method. The former method uses nitrates and organic A superconducting film is formed by spraying an acid salt solution onto a substrate made of ceramics, metal, etc., and performing heat treatment consisting of calcination at 600 to 800°C and final firing at 800 to 870°C. be. However, this method requires repeating a series of steps consisting of spraying, calcination, and final firing many times depending on the film thickness, and is not suitable for producing thick films.

【0005】一方後者の方法は、前述の方法等で得られ
た酸化物超電導体粉末をスラリー化した後、ドクターブ
レードを用いて銀等の金属基板上に塗膜し、乾燥・焼成
して厚膜を形成する方法である。
On the other hand, in the latter method, the oxide superconductor powder obtained by the above-mentioned method is made into a slurry, and then coated on a metal substrate such as silver using a doctor blade, dried and fired to form a thick film. This is a method of forming a film.

【0006】しかしながら上記のいずれの方法で高Tc
相のBi系酸化物超電導体を得ようとしても、例えば8
40℃で60時間焼成しても高Tc相は30%程度しか
得られず、生成率が低いと共に生成速度が遅いので高T
c相Bi系酸化物超電導体の生産性に優れた製造方法が
要望されている。
However, in any of the above methods, high Tc
Even if you try to obtain a Bi-based oxide superconductor with a phase of 8
Even after firing at 40°C for 60 hours, only about 30% of the high Tc phase is obtained.
There is a need for a manufacturing method with excellent productivity for c-phase Bi-based oxide superconductors.

【0007】さらに厚膜を形成しようとする場合にあっ
ては、膜厚を大きくしようとすると割れが発生するとい
う問題を有している。
Furthermore, when attempting to form a thick film, there is a problem in that cracks occur when the film thickness is increased.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、高Tc相の生成率が高く
、且つ生成速度も速くて生産性に優れ、しかも膜厚とし
た際に割れの発生が少ないBi系酸化物超電導体の製造
方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a high-Tc phase that has a high production rate and a high production rate, resulting in excellent productivity and a thin film. It is an object of the present invention to provide a method for manufacturing a Bi-based oxide superconductor in which cracks are less likely to occur.

【0009】[0009]

【課題を解決するための手段】上記目的を達成した本発
明とは、(Bi,Pb):Sr:Ca:Cuの金属組成
比が2:2:2:3である高Tc相を主相とするBi系
酸化物超電導体の製造方法であって、上記金属組成比が
2:2:1:2である低Tc相のBi系酸化物超電導体
に、Ca化合物,Cu化合物及びPb化合物を含有する
溶液またはゾルを加えて熱処理を行い、低Tc相を高T
c相に転化させることを要旨とするものである。
[Means for Solving the Problems] The present invention, which achieves the above object, consists of a high Tc phase having a metal composition ratio of (Bi, Pb):Sr:Ca:Cu of 2:2:2:3. A method for producing a Bi-based oxide superconductor, which comprises adding a Ca compound, a Cu compound, and a Pb compound to a low-Tc phase Bi-based oxide superconductor having a metal composition ratio of 2:2:1:2. The low Tc phase is converted into a high Tc phase by adding the containing solution or sol and performing heat treatment.
The gist of this is to convert it into c-phase.

【0010】0010

【作用】Bi系酸化物超電導体の高Tc相は低Tc相を
経て生成すると考えられ、本発明者は低Tc相を用いて
これを高Tc相化する方法を研究し本発明に想到した。
[Operation] It is thought that the high Tc phase of a Bi-based oxide superconductor is generated through the low Tc phase, and the present inventors researched a method of converting this into a high Tc phase using the low Tc phase, and came up with the present invention. .

【0011】本発明方法により高Tc相を主相とする成
形体または膜を作製しようとする場合、Ca化合物,C
u化合物及びPb化合物を含有する溶液またはゾルを用
い、主として低Tc相のBi系酸化物超電導体からなる
成形体または膜上にディッピング法またはスプレー法等
により超電導の前駆体膜を形成した後、熱処理を施せば
よい。
[0011] When attempting to produce a molded body or film having a high Tc phase as a main phase by the method of the present invention, Ca compounds, C
After forming a superconducting precursor film on a molded body or film mainly consisting of a low Tc phase Bi-based oxide superconductor by dipping or spraying using a solution or sol containing a u compound and a Pb compound, Heat treatment may be performed.

【0012】本発明方法により高Tc相を主相とする膜
を作製しようとする場合、Ca化合物,Cu化合物及び
Pb化合物を含有する溶液またはゾルと、主として低T
c相のBi系酸化物超電導体からなる粉末とを混合し、
これをスクリーン印刷法等により基板上に塗布した後、
熱処理を施せばよい。
[0012] When attempting to produce a film having a high Tc phase as the main phase by the method of the present invention, a solution or sol containing a Ca compound, a Cu compound, and a Pb compound and a mainly low Tc phase are used.
Mixing with powder consisting of a c-phase Bi-based oxide superconductor,
After applying this onto the substrate by screen printing method etc.
Heat treatment may be performed.

【0013】本発明方法により高Tc相を主相とする基
板を作製しようとする場合、Ca化合物,Cu化合物及
びPb化合物を含有する溶液またはゾルと、主として低
Tc相のBi系酸化物超電導体からなる粉末とを混合し
たスラリー液を用いて、キャスティングによりシート状
に成形し、これに熱処理を施せばよく、上記スラリー液
には増粘剤,結合剤や可塑剤等を加えて調整してもよい
When a substrate having a high Tc phase as the main phase is to be produced by the method of the present invention, a solution or sol containing a Ca compound, a Cu compound, and a Pb compound and a Bi-based oxide superconductor mainly having a low Tc phase are used. It is sufficient to use a slurry liquid mixed with a powder consisting of a powder, form it into a sheet by casting, and heat-treat it. The slurry liquid may be adjusted by adding a thickener, a binder, a plasticizer, etc. Good too.

【0014】本発明方法により高Tc相を主相とする粉
末を作製しようとする場合、Ca化合物,Cu化合物及
びPb化合物を含有する溶液またはゾルと、主として低
Tc相のBi系酸化物超電導体からなる粉末とを混合し
、乾燥または仮焼して上記粉末粒子の周りに、Ca化合
物,Cu化合物及びPb化合物が均一に分散した層を形
成し、これに熱処理を施せばよい。
When a powder having a high Tc phase as the main phase is to be produced by the method of the present invention, a solution or sol containing a Ca compound, a Cu compound, and a Pb compound and a Bi-based oxide superconductor mainly having a low Tc phase are used. A layer in which a Ca compound, a Cu compound, and a Pb compound are uniformly dispersed is formed around the powder particles by drying or calcining the powder, and then heat-treating the layer.

【0015】上記の様に本発明に係る方法においては、
低Tc相のBi系酸化物超電導体とCa化合物,Cu化
合物及びPb化合物を含有する液相とが反応する為、低
Tc相の有する配向性が利用でき、a軸及びb軸のサイ
ズはほぼそのままでc軸の配向を向上させることによっ
て高Tc相のBi系酸化物超電導体を得ることができる
As described above, in the method according to the present invention,
Since the Bi-based oxide superconductor in the low Tc phase reacts with the liquid phase containing Ca compounds, Cu compounds, and Pb compounds, the orientation of the low Tc phase can be utilized, and the sizes of the a-axis and b-axis are approximately the same. A Bi-based oxide superconductor with a high Tc phase can be obtained by improving the c-axis orientation as it is.

【0016】また低Tc相Bi系酸化物超電導体は比較
的生成しやすいので、該低Tc相Bi酸化物超電導体を
からなる粉末,成形体及び膜等を利用すれば高Tc相B
i系酸化物超電導体を製造するのに必要な長い焼成時間
が短縮できる。
Furthermore, since low Tc phase Bi-based oxide superconductors are relatively easy to produce, high Tc phase B
The long firing time required to produce i-based oxide superconductors can be shortened.

【0017】さらにドクターブレード法を用いて厚膜を
形成する場合、処理溶液やゾルに低Tc相の粉末を混ぜ
ることによって塗布剤中の固形分濃度が増し、熱処理時
における膜の収縮を少なくできるために、乾燥速度を上
げることが可能であり、しかも割れの発生が抑制できる
。また固形分濃度を上げることによって塗布1回当りの
膜厚を厚くすることができ、厚膜の作製には有利である
Furthermore, when forming a thick film using the doctor blade method, by mixing a low Tc phase powder into the processing solution or sol, the solid content concentration in the coating agent can be increased and shrinkage of the film during heat treatment can be reduced. Therefore, it is possible to increase the drying speed and also suppress the occurrence of cracks. Furthermore, by increasing the solid content concentration, the film thickness per coating can be increased, which is advantageous for producing thick films.

【0018】[0018]

【実施例】【Example】

実施例1 市販品の低Tc相粉末を自動乳鉢で粉砕して、平均粒径
を3μmとした。Pb,Ca,Cuの酢酸塩をそれぞれ
2.5 ×10−2mol ずつ秤量し、酢酸水に溶解
させた後、加熱濃縮して粘調なゾル液とした。得られた
ゾル液に、最終組成が高Tc相の組成になるように上記
低Tc相粉末を加え、加温しながら均一に混合して粘度
約800cps のペーストとした。該ペーストを用い
てAg基板上にスクリーン印刷法(#250メッシュ)
で膜を形成した。上記ペーストの一回当りの塗布厚みは
約1μmとし、300℃乾燥、800℃仮焼を繰り返し
て約10μmの仮焼膜を形成した。尚300℃乾燥後、
直ちに800℃で仮焼しても割れは発生しなかった。
Example 1 A commercially available low Tc phase powder was ground in an automatic mortar to have an average particle size of 3 μm. Acetate salts of Pb, Ca, and Cu were each weighed in an amount of 2.5 x 10-2 mol, dissolved in aqueous acetic acid, and then heated and concentrated to obtain a viscous sol solution. The low Tc phase powder was added to the obtained sol solution so that the final composition would be a high Tc phase composition, and the powder was uniformly mixed while heating to form a paste with a viscosity of about 800 cps. Screen printing method (#250 mesh) on an Ag substrate using the paste
A film was formed. The thickness of each application of the above paste was about 1 μm, and drying at 300° C. and calcining at 800° C. were repeated to form a calcined film of about 10 μm. After drying at 300℃,
No cracking occurred even after immediate calcining at 800°C.

【0019】上記仮焼膜を840℃で60時間焼成する
ことにより、高Tc相が既に約45%に達した超電導膜
が得られ、Tcを測定したところTconsetは10
5K、Tcoffsetは85Kであった。
By baking the above calcined film at 840° C. for 60 hours, a superconducting film in which the high Tc phase already reached about 45% was obtained, and when Tc was measured, Tconset was 10
5K, Tcoffset was 85K.

【0020】比較例1 Bi,Sr,Ca,Cuの各酢酸塩を高Tc相の金属組
成比に配合し、Biの一部(12.5%)はPbの酢酸
塩で置換した。これらの出発原料を酢酸水に溶解させた
後、加熱濃縮してディップコーティングに適した約10
0cps の粘度に調節した。尚上記ディップコーティ
ングにおいて一回当りの膜厚が約1μm以上になると熱
処理中に割れが多発した。従って割れを押えるために一
回当りの塗布厚みを約8000Åとし、200℃乾燥、
500℃仮焼、800℃仮焼を10回繰り返して最終約
8μmの仮焼膜を形成した。
Comparative Example 1 Acetate salts of Bi, Sr, Ca, and Cu were added to the metal composition ratio of the high Tc phase, and a portion of Bi (12.5%) was replaced with acetate of Pb. After dissolving these starting materials in aqueous acetic acid, the mixture is heated and concentrated to give a solution of about 100 ml, which is suitable for dip coating.
The viscosity was adjusted to 0 cps. In the dip coating described above, when the film thickness per coating was about 1 μm or more, many cracks occurred during the heat treatment. Therefore, in order to prevent cracking, the coating thickness per coat was approximately 8000 Å, dried at 200°C,
Calcining at 500° C. and 800° C. was repeated 10 times to form a final calcined film with a thickness of about 8 μm.

【0021】仮焼膜を840℃で60時間焼成したが、
高Tc相の生成率は約10%であり、実施例1で得られ
た超電導膜に比べて劣っていた。またこの膜のTcon
setは105Kであったが、Tcoffsetは50
Kと低かった。
[0021] The calcined film was fired at 840°C for 60 hours, but
The generation rate of the high Tc phase was about 10%, which was inferior to the superconducting film obtained in Example 1. Also, the Tcon of this film
set was 105K, but Tcoffset was 50
It was as low as K.

【0022】実施例2 実施例1と同様にして作製した低Tc相の粉末とゾルと
の混合物に、アルコールに溶解させたPVAを1%加え
よく混合してスラリー液とした。該スラリー液を離型紙
の上にキャスティングし、一昼夜室温にて乾燥したのち
、80℃で乾燥させて離型した。得られたグリーンシー
トから3cm×3cm×0.3μmの成形体を切り取り
、さらに200℃で乾燥させ、500℃で仮焼後840
℃で60時間焼成してセラミックス基板とした。
Example 2 To a mixture of low Tc phase powder and sol prepared in the same manner as in Example 1, 1% of PVA dissolved in alcohol was added and thoroughly mixed to obtain a slurry liquid. The slurry liquid was cast onto release paper, dried at room temperature for a day and night, and then dried at 80° C. and released from the mold. A 3 cm x 3 cm x 0.3 μm molded body was cut from the obtained green sheet, further dried at 200°C, and after calcined at 500°C, it was heated to 840°C.
It was fired at ℃ for 60 hours to obtain a ceramic substrate.

【0023】X線回折法で同定したところ高Tc相は約
40%に達しており、C軸の配向性も優れていた。また
この超電導セラミックス基板のTcを測定したところT
consetは105K、Tcoffsetは80Kで
あった。
Identification by X-ray diffraction revealed that the high Tc phase accounted for approximately 40%, and the C-axis orientation was excellent. Also, when Tc of this superconducting ceramic substrate was measured, T
Conset was 105K and Tcoffset was 80K.

【0024】比較例2 Bi,Sr,Ca,Cuの各酢酸塩を高Tc相の金属組
成比に配合し、Biの一部(12.5%)はPbの酢酸
塩で置換した。これらの出発原料を酢酸水に溶解させた
後、加熱濃縮して約400cps の粘度とし、水に溶
解させたPVAを1%加えてキャスティング可能なゾル
とした。 このゾルを用いて、実施例2と同様に離型紙の上にキャ
スティングし、離型、切断後、200℃で乾燥させた。 しかしながら多くの割れが発生し基板の形で焼成するこ
とはできなかった。
Comparative Example 2 Acetate salts of Bi, Sr, Ca, and Cu were added to the metal composition ratio of the high Tc phase, and a portion of Bi (12.5%) was replaced with acetate of Pb. These starting materials were dissolved in aqueous acetic acid, heated and concentrated to a viscosity of about 400 cps, and 1% of PVA dissolved in water was added to form a castable sol. Using this sol, it was cast onto release paper in the same manner as in Example 2, released, cut, and dried at 200°C. However, many cracks occurred and it was not possible to sinter it in the form of a substrate.

【0025】そこで、200℃乾燥後、粉末状に粉砕し
、840℃での焼成時間と高Tc相の生成量との関係に
ついて、実施例1のペーストを乾燥の後同条件で焼成し
たものと比較した。結果は図1に示す。明らかに、低T
c相を混合させたペーストを用いた方が高Tc相の生成
速度が速いことが分かる。
Therefore, after drying at 200°C, the paste was pulverized into powder, and the relationship between the firing time at 840°C and the amount of high Tc phase produced was compared with that of the paste of Example 1, which was dried and then fired under the same conditions. compared. The results are shown in Figure 1. Obviously, low T
It can be seen that the rate of generation of the high Tc phase is faster when the paste containing the c phase is used.

【0026】[0026]

【発明の効果】本発明は以上の様に構成されているので
、高Tc相の生成率が高く、且つ生成速度も速くて生産
性に優れ、しかも厚膜や成形体とした際に割れの発生が
少ないBi系酸化物超電導体の製造方法が提供できるこ
ととなった。
[Effects of the Invention] Since the present invention is constructed as described above, the production rate of the high Tc phase is high, the production speed is also fast, and the productivity is excellent. Moreover, when it is made into a thick film or a molded product, it is possible to prevent cracking. It is now possible to provide a method for producing a Bi-based oxide superconductor that generates little generation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係るBi系酸化物超電導体及び比較例
における高Tc相の生成速度を示すグラフである。
FIG. 1 is a graph showing the formation rate of a high Tc phase in a Bi-based oxide superconductor according to the present invention and a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (Bi,Pb):Sr:Ca:Cuの
金属組成比が2:2:2:3である高Tc相を主相とす
るBi系酸化物超電導体の製造方法であって、上記金属
組成比が2:2:1:2である低Tc相のBi系酸化物
超電導体に、Ca化合物,Cu化合物及びPb化合物を
含有する溶液またはゾルを加えて熱処理を行い、低Tc
相を高Tc相に転化させることを特徴とするBi系酸化
物超電導体の製造方法。
1. A method for producing a Bi-based oxide superconductor having a high Tc phase as a main phase in which the metal composition ratio of (Bi, Pb):Sr:Ca:Cu is 2:2:2:3, , a solution or sol containing a Ca compound, a Cu compound, and a Pb compound is added to the low Tc phase Bi-based oxide superconductor having a metal composition ratio of 2:2:1:2, and heat treatment is performed to obtain a low Tc phase.
A method for producing a Bi-based oxide superconductor, the method comprising converting a phase into a high Tc phase.
JP3124995A 1991-04-26 1991-04-26 Manufacture of bi series oxide superconductor Withdrawn JPH04325417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124995A JPH04325417A (en) 1991-04-26 1991-04-26 Manufacture of bi series oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124995A JPH04325417A (en) 1991-04-26 1991-04-26 Manufacture of bi series oxide superconductor

Publications (1)

Publication Number Publication Date
JPH04325417A true JPH04325417A (en) 1992-11-13

Family

ID=14899291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124995A Withdrawn JPH04325417A (en) 1991-04-26 1991-04-26 Manufacture of bi series oxide superconductor

Country Status (1)

Country Link
JP (1) JPH04325417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022799A1 (en) * 1992-04-27 1993-11-11 Unisearch Limited Silver clad superconductor composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022799A1 (en) * 1992-04-27 1993-11-11 Unisearch Limited Silver clad superconductor composite

Similar Documents

Publication Publication Date Title
JPH01119502A (en) Production of thin film composed of superconductive oxide
WO1988008609A1 (en) Manufacture of high purity superconducting ceramic
JPH04325417A (en) Manufacture of bi series oxide superconductor
US5182255A (en) Shaped and fired articles of YBa2 Cu3 O7
JPH04325418A (en) Manufacture of bi series oxide superconductor
US6559103B1 (en) Method for producing superconducting oxide compounds
JPH01131025A (en) Production of oxide based superconducting material
JPH02107560A (en) Molded baked article of yba2cu307 and its production
JPS63233070A (en) Preparation of superconductive ceramic
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPH0248458A (en) Ceramic superconductor and production thereof
JPH07509686A (en) Superconducting oxides by coprecipitation at constant pH
JPH0574528B2 (en)
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JPH04164820A (en) Solution for producing high-temperature phase bi-based oxide superconductor and precursor of high-temperature phase bi-based oxide superconductor
JP5087785B2 (en) Method for forming oxide superconductor thick film
JP2817199B2 (en) Method for producing sintered body of B ▲ i superconducting oxide with high critical current density
JPS60235768A (en) Manufacture of silicon nitride-base sintering raw material
Sun et al. Synthesis of high purity 110 K phase in the Bi (Pb)-Sr-Ca-Cu-O superconductor by the sol-gel method
JPH0476322B2 (en)
JPH03115157A (en) Production of bi-based oxide superconductor
JPH04132616A (en) Production of bismuth-based oxide superconductor
JPH0288406A (en) Ceramic superconducting powder and its production and production of ceramic superconducting sintered body
JP2822328B2 (en) Superconductor manufacturing method
JPS60239356A (en) Highly sinterable powder composition containing zirconium asmajor component, manufacture and manufacture of zirconia sintered body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711