JPH04324655A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPH04324655A
JPH04324655A JP9417491A JP9417491A JPH04324655A JP H04324655 A JPH04324655 A JP H04324655A JP 9417491 A JP9417491 A JP 9417491A JP 9417491 A JP9417491 A JP 9417491A JP H04324655 A JPH04324655 A JP H04324655A
Authority
JP
Japan
Prior art keywords
stress
film
thin film
ray diffraction
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9417491A
Other languages
Japanese (ja)
Inventor
Satoru Nishikawa
哲 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9417491A priority Critical patent/JPH04324655A/en
Publication of JPH04324655A publication Critical patent/JPH04324655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a low stress thin film having a desired stress for a semiconductor element, by calculating film stress of a thin film during film formation, from measurement results of X-ray diffraction, and controlling the film formation condition of a thin film forming equipment by using calculation results, so as to conform the film stress to a desired value. CONSTITUTION:A substrate 14 is arranged in a thin film forming equipment, X-ray diffraction caused by a thin film formed on the substrate 14 is measured, and film stress of the thin film is calculated from the measurement results of the X-ray diffraction. By using the results, the film formation condition of the thin film forming equipment is controlled, so as to obtain film stress equal to a desired value. For example, an X-ray diffraction equipment is installed in a magnetron sputtering equipment, and a tungsten film is formed while X-ray diffraction is measured. As to the X-ray diffraction equipment, X-ray is projected on the substrate 14 surface at an angle phi to the vertical direction from an X-ray source 26, and diffracted ray is measured with an X-ray detector 28. The stress of the tungsten film formed on the substrate 14 is controlled by argon output during sputtering and the output of an RF power supply 22.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体素子用の薄膜
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for manufacturing thin films for semiconductor devices.

【0002】0002

【従来技術】例えば馬来国弼「薄膜の内部応力の推定法
と発生原因」応用物理、1988年12号P1856に
示されているように半導体素子の製造プロセスで用いら
れる薄膜のなかでも、タングステンやモリブデンなどの
耐熱性金属や、WSi2 ,MoSi2 ,TaSi2
 ,TiSi2 などのシリサイド、TiNやZrNな
どのナイトライドはそれ自身で大きな内部応力をもって
いる。この大きな内部応力は、その膜にクラックを発生
させたり、その膜の剥離の原因となるばかりでなく、そ
の下のシリコンやGaAsなどの基板に欠陥を生じさせ
たり、この基板に作られたトランジスタやMOSFET
の特性を劣化させたりすることがある。
[Prior Art] For example, among the thin films used in the manufacturing process of semiconductor devices, tungsten is and heat-resistant metals such as molybdenum, WSi2, MoSi2, TaSi2
, TiSi2 and other silicides, and TiN and ZrN and other nitrides themselves have large internal stresses. This large internal stress not only causes cracks in the film and peeling of the film, but also causes defects in the underlying substrate such as silicon or GaAs, and damages the transistors fabricated on this substrate. and MOSFET
It may cause deterioration of the characteristics.

【0003】そこでその内部応力を低い値に制御する必
要が生じるがたとえばタングステン薄膜の応力は上記文
献の図5に示されるように、スパッタリング法を行なう
際のアルゴンの圧力を制御することで低い値とする事が
可能となる。
Therefore, it is necessary to control the internal stress to a low value. For example, the stress of a tungsten thin film can be reduced to a low value by controlling the argon pressure during sputtering, as shown in FIG. 5 of the above-mentioned document. It becomes possible to do this.

【0004】しかしながら、その応力はこのアルゴンの
圧力ばかりでなくスパッタリング時の投入パワーにも強
く依存するから、投入パワーの微少な変化によって大き
く変化することが知られている。従って低応力の膜を、
その応力を希望の値に制御して作製するのには、膜形成
時の形成条件を精密に制御する必要がある。
However, it is known that the stress strongly depends not only on the pressure of argon but also on the input power during sputtering, and therefore changes greatly due to minute changes in the input power. Therefore, a low stress membrane,
In order to control the stress to a desired value, it is necessary to precisely control the formation conditions during film formation.

【0005】一方応力の測定は、一定膜厚の薄膜を形成
したのち、上記文献に示されるように、基板のそりを測
定し応力を算出する方法などによって行なわれているの
が現状である。従ってスパッタ法により低応力の例えば
タングステン薄膜を形成しようとすると、あらかじめア
ルゴンの圧力と投入パワーを変化させて各条件での基準
となる膜応力を得、そのデータに従って形成条件を制御
しつつ、形成を行なうこととなる。
On the other hand, stress is currently measured by a method of forming a thin film of a constant thickness and then measuring the warpage of the substrate to calculate the stress, as shown in the above-mentioned document. Therefore, when trying to form a low-stress tungsten thin film by sputtering, for example, the argon pressure and input power are varied in advance to obtain a reference film stress under each condition, and the formation conditions are controlled according to that data. will be carried out.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな形成方法によれば、膜の応力の決定は形成後の測定
によってのみ可能であるため、形成条件の制御は実質上
あまり精密には行なうことが出来ず、またスパッタ装置
の内壁などに形成されるタングステン膜のために形成条
件が実質上変化してしまう、等の不具合が生じた場合に
もそれに対する対応が遅れてしまう。
[Problems to be Solved by the Invention] However, according to such a formation method, the stress of the film can only be determined by measurement after formation, and therefore the formation conditions cannot be controlled very precisely. Moreover, if a problem arises, such as a tungsten film being formed on the inner wall of the sputtering device, which substantially changes the formation conditions, the response to the problem will be delayed.

【0007】[0007]

【課題を解決するための手段】本発明は低応力膜形成の
際の制御性の問題点を解決するために、膜形成装置に、
成膜過程と同時に膜の応力を測定する手段およびその応
力が希望の値となるよう形成条件を自動的に制御できる
手段をもうけることで膜応力を精密に制御できる薄膜の
製造方法を提供する。
[Means for Solving the Problems] In order to solve the problem of controllability when forming a low stress film, the present invention provides a film forming apparatus with
To provide a thin film manufacturing method in which film stress can be precisely controlled by providing a means for measuring film stress simultaneously with the film forming process and a means for automatically controlling forming conditions so that the stress becomes a desired value.

【0008】[0008]

【作用】この膜応力測定手段としてX線回折を利用し、
測定値により成膜中の薄膜の応力を得、これにより成膜
パラメータを制御することにより、薄膜の応力を常時精
密制御する。
[Operation] Using X-ray diffraction as a means of measuring this membrane stress,
The stress of the thin film being formed is obtained from the measured value, and by controlling the film forming parameters based on this, the stress of the thin film can be precisely controlled at all times.

【0009】[0009]

【実施例】図1はこの発明の装置の一実施例を概略的に
示しており、これはマグネトロンスパッターによりタン
グステン薄膜を形成する場合を示してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an embodiment of the apparatus of the present invention, in which a tungsten thin film is formed by magnetron sputtering.

【0010】図1においてアルゴンを含みシールされた
チャンバ10内に回転可能に支持されるアノード電極1
2の上に半導体基板14を固定し、同じくこのチャンバ
10内にこのアノード電極12に対向させてカソート電
極16を配置し、このカソート電極16のアノード電極
に対向する面上にタングステンターゲット18を配置し
てある。カソート電極16の反対側表面に近接して永久
磁石20が配置してあり、このカソート電極には無線周
波電極22がマッチボックス24を介して高周波電力が
供給され直交電磁具による高密度プラズマをターゲット
18から発生させて基板14にタングステン薄膜を形成
する。
In FIG. 1, an anode electrode 1 is rotatably supported in a sealed chamber 10 containing argon.
2, a cathode electrode 16 is placed in the chamber 10 facing the anode electrode 12, and a tungsten target 18 is placed on the surface of the cathode electrode 16 facing the anode electrode. It has been done. A permanent magnet 20 is arranged close to the opposite surface of the cathode electrode 16, and a radio frequency electrode 22 is supplied with high frequency power through a match box 24 to this cathode electrode to target high density plasma using an orthogonal electromagnetic device. 18 to form a tungsten thin film on the substrate 14.

【0011】このように構成される通常のマグネストロ
ンスパッタ装置にX線回折装置を取り付けた構成となっ
ており、X線回折を測定しつつタングステン膜の形成を
行なう。X線回折装置はX線源26とX線検出器28で
形成される。X線源26からX線が基板14の表面に垂
線に対し角度φをもって向けられ、回折線をX線検出器
28で測定する。基板14上に形成されるタングステン
膜の応力は図2に示すように、スパッタリング中のアル
ゴン圧力及びRF電源22の出力により制御することが
できる。RF電源22の出力により制御することができ
る。RF電源22の出力を一定としアルゴン圧力を変化
させると形成されるタングステン膜の応力を圧縮応力(
−符号)から引張応力(+符号)に大きく変化させるこ
とが出来る。
An X-ray diffraction device is attached to the conventional magnetron sputtering device constructed as described above, and a tungsten film is formed while measuring X-ray diffraction. The X-ray diffraction device is formed by an X-ray source 26 and an X-ray detector 28. X-rays from an X-ray source 26 are directed at the surface of the substrate 14 at an angle φ with respect to the normal, and the diffraction lines are measured by an X-ray detector 28 . The stress of the tungsten film formed on the substrate 14 can be controlled by the argon pressure during sputtering and the output of the RF power source 22, as shown in FIG. It can be controlled by the output of the RF power source 22. When the output of the RF power source 22 is kept constant and the argon pressure is changed, the stress of the tungsten film that is formed is reduced to compressive stress (
The stress can be changed significantly from - sign) to tensile stress (+ sign).

【0012】一方成膜速度は図3に示すようにアルゴン
圧力にあまり依存せず10〜40mTorrの圧力範囲
ではほぼ一定でRF出力のみの関数となる。
On the other hand, as shown in FIG. 3, the film formation rate does not depend much on the argon pressure, is almost constant in the pressure range of 10 to 40 mTorr, and is a function only of the RF output.

【0013】一方膜の応力はX線回折の回折ピークのシ
フト量により算出される。ここでは、1つの回折面から
の回折に注目し、回折ピークの応力0のときの値からの
ずれを、X線の入射角中の関数として測定し周知の関係
On the other hand, the stress of the film is calculated from the shift amount of the diffraction peak of X-ray diffraction. Here, we focus on diffraction from one diffraction surface, and measure the deviation of the diffraction peak from the value when stress is 0 as a function of the incident angle of X-rays, using the well-known relationship.

【0014】[0014]

【数1】[Math 1]

【0015】から応力σを算出する方法を用いる。ここ
で、aφは入射角中のときの測定された格子面間隔、a
0 ,an はそれぞれ応力σが0のときの格子面間隔
、表面に垂直方向の格子面間隔、Ef 及びVf はこ
こではタングステンのヤング率及びポアリン比である。
A method of calculating the stress σ from the following equation is used. Here, aφ is the measured lattice spacing at medium incidence angle, a
0 and an are the lattice spacing when the stress σ is 0, the lattice spacing in the direction perpendicular to the surface, and Ef and Vf are the Young's modulus and Porin ratio of tungsten, respectively.

【0016】成膜は、一定の膜厚を形成後上記のように
応力を測定し成膜条件を調整後再度膜形成を行なうプロ
セスを繰り返し行なう事で平均として希望する応力をも
つタングステン膜を形成する事が可能となる。
[0016] In film formation, after forming a certain film thickness, the stress is measured as described above, the film forming conditions are adjusted, and the film is formed again. By repeating this process, a tungsten film having the desired average stress is formed. It becomes possible to do so.

【0017】今平均応力が0となるタングステン膜を1
μmの膜厚で形成する場合を考える。あらかじめ測定し
てあるデータによれば2kWのとき21mtorr で
σ=0となる。最初に0.1μmの膜を、この条件で形
成後そのσを測定し、σ1の値を得たとする。これは何
らかの条件の変化により応力対アルゴン圧力の関係がず
れたことによる応力の変化である。従ってこれからσ=
0となるアルゴン圧力PArは予測できない。そこで単
調増加の依存性からP2 Ar(<21mtorr)を
予測し、この条件で0.1μm厚の膜をさらに形成後応
力を測定し、
Now, the tungsten film whose average stress is 0 is 1
Consider the case where the film is formed with a thickness of μm. According to data measured in advance, σ=0 at 21 mtorr at 2kW. It is assumed that a 0.1 μm film is first formed under these conditions, and then its σ is measured to obtain the value of σ1. This is a change in stress due to a shift in the relationship between stress and argon pressure due to some change in conditions. Therefore, from now on σ=
The argon pressure PAr that becomes 0 cannot be predicted. Therefore, we predicted P2 Ar (<21 mtorr) from the monotonically increasing dependence, and measured the stress after forming a 0.1 μm thick film under this condition.

【0018】[0018]

【数2】[Math 2]

【0019】応力(X線回折により得られる値)、σi
及びtiは各ステップで形成された応力及び膜厚である
。この値よりσi=σi(PAri ) を算出する事
ができる。このステップを数回くりかえすことにより現
状でのσ=σ(PAr)の関係を得る事ができ、この関
係よりバーσ=0となる条件を予測し最終的にバーσ=
0,厚み1μmのタングステン膜を得る事ができる。こ
のステップを自動的にくり返すためには、アルゴン圧力
とRF出力を自動的に制御し、又自動的にX線回折を測
定して応力を算出して応力を予測するようになった自動
制御装置が必要である。図1ではこれはX線源26,X
線検出器28およびパラメータ算出/制御装置30で構
成されている。
Stress (value obtained by X-ray diffraction), σi
and ti are the stress and film thickness formed in each step. From this value, σi=σi(PAri) can be calculated. By repeating this step several times, the current relationship σ = σ (PAr) can be obtained, and from this relationship, the conditions for bar σ = 0 are predicted, and finally bar σ =
0. A tungsten film with a thickness of 1 μm can be obtained. To repeat this step automatically, the automatic control system automatically controls the argon pressure and RF power, and also automatically measures the X-ray diffraction, calculates the stress, and predicts the stress. equipment is required. In Figure 1 this is the X-ray source 26,
It is composed of a line detector 28 and a parameter calculation/control device 30.

【0020】又X線源を強力なシンクロトン放射光とす
る事でX線回折測定の時間を極端に短縮し、実質上成膜
と同時測定による制御が可能となる。
Furthermore, by using a powerful synchroton radiation source as the X-ray source, the time for X-ray diffraction measurement can be extremely shortened, and control can be performed by substantially simultaneous measurement with film formation.

【0021】またここではスパッタ法によりタングステ
ン膜を形成する場合についてのみ述べたが、真空蒸着や
CVD法などにより成膜する場合にも、本発明は適用可
能である。
Although only the case where the tungsten film is formed by the sputtering method has been described here, the present invention is also applicable to the case where the tungsten film is formed by the vacuum evaporation method, the CVD method, or the like.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれば
薄膜の成膜装置にX線回折により膜の応力が測定できる
手段をもうけ、成膜条件を薄膜形成中に精密に制御でき
るので、所望の応力をもつ薄膜を形成することが可能と
なる。
As explained above, according to the present invention, the thin film forming apparatus is equipped with a means for measuring film stress by X-ray diffraction, and the film forming conditions can be precisely controlled during thin film formation. It becomes possible to form a thin film with a desired stress.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法を実施するための装置の概略図。FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention.

【図2】不活性ガス圧力に対する応力の関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between stress and inert gas pressure.

【図3】高周波電力に対する成膜速度の関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between high frequency power and film deposition rate.

【符号の説明】[Explanation of symbols]

10    チャンバ 12    アノード電極 14    半導体基板 16    カソート電極 18    ターゲット 20    永久磁石 22    高周波電源 24    マッチングボックス 26    X線源 28    X線検出器 10 Chamber 12 Anode electrode 14 Semiconductor substrate 16 Cathode electrode 18 Target 20 Permanent magnet 22 High frequency power supply 24 Matching box 26 X-ray source 28 X-ray detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  薄膜形成装置内に基板を配置し、前記
基板上に形成される薄膜によるX線回折を測定し、その
X線回折の測定結果より該薄膜の膜応力を算出し、その
結果を用いて膜応力が所望の値となるように薄膜形成装
置の形成条件を制御する事を特徴とする薄膜の製造方法
1. A substrate is placed in a thin film forming apparatus, X-ray diffraction due to the thin film formed on the substrate is measured, and the film stress of the thin film is calculated from the measurement results of the X-ray diffraction. 1. A method for producing a thin film, which comprises controlling the forming conditions of a thin film forming apparatus using a method such that the film stress reaches a desired value.
【請求項2】  前記薄膜の形成はマグネトロンスパッ
タリングにより行い、前記形成条件は不活性ガスの圧力
そしてまたは高周波電力である請求項1記載の方法。
2. The method according to claim 1, wherein the thin film is formed by magnetron sputtering, and the forming conditions are inert gas pressure and/or high frequency power.
JP9417491A 1991-04-24 1991-04-24 Manufacture of thin film Pending JPH04324655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9417491A JPH04324655A (en) 1991-04-24 1991-04-24 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9417491A JPH04324655A (en) 1991-04-24 1991-04-24 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPH04324655A true JPH04324655A (en) 1992-11-13

Family

ID=14102978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9417491A Pending JPH04324655A (en) 1991-04-24 1991-04-24 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPH04324655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960039456A (en) * 1995-04-28 1996-11-25 알. 제이. 보토스 Stress Reduction Tungsten Deposition Method
JP2005020032A (en) * 2004-10-15 2005-01-20 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
KR101310548B1 (en) * 2011-11-04 2013-09-23 포항공과대학교 산학협력단 Apparatus for Sputtering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960039456A (en) * 1995-04-28 1996-11-25 알. 제이. 보토스 Stress Reduction Tungsten Deposition Method
JP2005020032A (en) * 2004-10-15 2005-01-20 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
KR101310548B1 (en) * 2011-11-04 2013-09-23 포항공과대학교 산학협력단 Apparatus for Sputtering

Similar Documents

Publication Publication Date Title
JP2823276B2 (en) Method for manufacturing X-ray mask and apparatus for controlling internal stress of thin film
US5500312A (en) Masks with low stress multilayer films and a process for controlling the stress of multilayer films
TW201036100A (en) Semiconductor manufacturing method and apparatus
JPH04324655A (en) Manufacture of thin film
WO2017028467A1 (en) Semiconductor silicon-germanium thin film preparation method
JP2877190B2 (en) X-ray mask and manufacturing method thereof
US5082695A (en) Method of fabricating an x-ray exposure mask
US5541023A (en) X-ray mask, method of manufacturing the x-ray mask and exposure method using the x-ray mask
US7075094B2 (en) System, method, and apparatus for ion beam etching process stability using a reference for time scaling subsequent steps
JP3119237B2 (en) X-ray mask, method of manufacturing the same, semiconductor device and method of manufacturing the same
JP3391699B2 (en) X-ray mask manufacturing method
JPH07180055A (en) Vacuum film forming device
JPH0878791A (en) Thin-film forming device
JPH0689860A (en) Method of semiconductor crystal growth and molecular beam epitaxy device
JP2883400B2 (en) X-ray mask manufacturing method
JPH1093160A (en) Film-forming method and film-forming device
JP2844779B2 (en) Film formation method
JPH0915831A (en) Manufacture of exposing mask
JP2599730B2 (en) Method of manufacturing mask for X-ray exposure
JPH05311429A (en) Thin film forming device
JP2909087B2 (en) Thin film forming equipment
JPS58153775A (en) Preparation of thin film
JPH0715880B2 (en) SiC film for X-ray lithography, its manufacturing method and mask for X-ray lithography
JPH0222810A (en) Formation of thin film
JPH10261575A (en) Sputter film-formation method