JPH04324391A - Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism - Google Patents

Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism

Info

Publication number
JPH04324391A
JPH04324391A JP3122152A JP12215291A JPH04324391A JP H04324391 A JPH04324391 A JP H04324391A JP 3122152 A JP3122152 A JP 3122152A JP 12215291 A JP12215291 A JP 12215291A JP H04324391 A JPH04324391 A JP H04324391A
Authority
JP
Japan
Prior art keywords
circuit
voltage
component
change
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3122152A
Other languages
Japanese (ja)
Inventor
Yasuharu Hosohara
靖治 細原
Kiwamu Suzuki
究 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3122152A priority Critical patent/JPH04324391A/en
Publication of JPH04324391A publication Critical patent/JPH04324391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To correct a change in the output voltage of a bridge circuit due to the temp. change around a coil by adding a correction DC component to an AC component prior to the comparison with reference voltage without using a temp. sensor. CONSTITUTION:The bias AC voltage from a bridge circuit 2 gradually falls in peak voltage with the temp. rise around coils 1a, 1b to reach reference voltage. Therefore, prior to the comparison with the reference voltage in a comparison circuit 10, a separation circuit 7 separates bias AC voltage into an AC component (Vac) and a DC component (Vdc). A correction circuit 8 generates DC correction voltage (Vdc') and an adder circuit 9 adds the DC correction voltage (Vdc') to the AC component (Vac) separated by the circuit 7. The added voltage is compared with the reference voltage by the circuit 10. By this constitution, peak voltage can be kept almost constant regardless of a temp. change and the erroneous detection due to temp. change is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、掘進機による土中の掘
削に際して、埋設管等の金属製埋設物を検知することに
より、その損傷を未然に防止するための金属検知装置の
温度補償方法並びに、温度補償機構を備えた金属検知回
路に関するものである。
[Industrial Application Field] The present invention is a temperature compensation method for a metal detection device for preventing damage to buried metal objects such as buried pipes by detecting them when excavating underground with an excavator. The present invention also relates to a metal detection circuit equipped with a temperature compensation mechanism.

【0002】0002

【従来の技術】従来、例えばガス導管工事用等の比較的
小口径の掘進機では、図5に示す掘進用ロッドの先端の
ビット11にブリッジ式金属検知回路の構成要素を成す
一対のコイル1a,1bを内蔵して、このコイルにより
形成される磁束をビットの外部に漏洩させ、ビットが金
属製埋設物13に近接した際の磁束の変化に起因するコ
イルのインダクタンスの変化をブリッジ回路の不平衡に
より検出して、この金属製埋設物の検知を行うものがあ
る。
2. Description of the Related Art Conventionally, in a relatively small-diameter excavator for use in gas pipeline work, for example, a pair of coils 1a forming a bridge type metal detection circuit are attached to a bit 11 at the tip of an excavation rod as shown in FIG. , 1b is built in, and the magnetic flux formed by this coil is leaked to the outside of the bit, and the change in coil inductance caused by the change in magnetic flux when the bit approaches the buried metal object 13 is suppressed by the bridge circuit. Some devices detect buried metal objects by detecting balance.

【0003】かかる金属検知回路は、例えば図6に示す
ように、概ね上記一対のコイルを構成要素とするブリッ
ジ回路2と、該ブリッジ回路にバランス用交流信号を供
給する発振器3と、該交流信号にバイアス用直流信号を
重畳して供給する直流バイアス回路4と、上記ブリッジ
回路の出力を増幅する増幅回路14と、その出力である
バイアス交流電圧のピーク値を基準電圧と比較する比較
回路15とから構成しており、上記ブリッジ回路の不平
衡により発生するバイアス交流電圧のピーク値の変化を
基準電圧との比較により検出して金属の近接を検知する
ものである。尚、図中符号5は直流電源、6は加算器で
ある。
[0003] Such a metal detection circuit, as shown in FIG. 6, for example, includes a bridge circuit 2 which generally includes the pair of coils described above, an oscillator 3 that supplies a balancing alternating current signal to the bridge circuit, and an oscillator 3 that supplies a balancing alternating current signal to the bridge circuit. a DC bias circuit 4 that superimposes and supplies a bias DC signal to the bridge circuit; an amplifier circuit 14 that amplifies the output of the bridge circuit; and a comparison circuit 15 that compares the peak value of the bias AC voltage output from the bridge circuit with a reference voltage. The device detects the proximity of metal by detecting a change in the peak value of the bias AC voltage caused by the unbalance of the bridge circuit by comparing it with a reference voltage. In the figure, reference numeral 5 is a DC power supply, and 6 is an adder.

【0004】この金属検知回路は、以下に示すように動
作する。まず、ビットが金属製埋設物に近接していない
ときには、ブリッジ回路は交流的にバランスしているた
め増幅回路の出力には、例えば図4のa部分に示すよう
に直流電圧のみ、または完全にバランスがしていないこ
とによる微小な交流電圧が現れており、これらの電圧は
比較回路に於ける基準電圧よりも高いため、比較回路は
金属の近接検知信号に対応する出力を発生しない。
[0004] This metal detection circuit operates as shown below. First, when the bit is not close to a buried metal object, the bridge circuit is AC balanced, so the amplifier circuit outputs only DC voltage, or completely Small AC voltages appear due to the imbalance, and since these voltages are higher than the reference voltage in the comparator circuit, the comparator circuit does not generate an output corresponding to the metal proximity detection signal.

【0005】ところがビットが金属製埋設物に近接し、
コイルを通る磁束が変化してブリッジ回路が不平衡にな
ると図4のb部分に示すように、上記直流電圧は変化せ
ず、これに重畳して交流電圧が現れる。そこでこのよう
なバイアス交流電圧のピーク値の一方側、即ち図中低電
圧側のピーク値Vpを上記基準電圧と比較して、このピ
ーク値Vpが基準電圧よりも降下した場合に金属製埋設
物の近接検知信号に対応する出力を発生する。
However, when the bit comes close to a buried metal object,
When the magnetic flux passing through the coil changes and the bridge circuit becomes unbalanced, as shown in part b of FIG. 4, the DC voltage does not change, and an AC voltage appears superimposed thereon. Therefore, the peak value Vp on one side of the peak value of the bias AC voltage, that is, the low voltage side in the figure, is compared with the reference voltage, and if this peak value Vp falls below the reference voltage, the metal buried object is detected. generates an output corresponding to the proximity detection signal.

【0006】[0006]

【発明が解決しようとする課題】コイルから発生する磁
束により、アルミニウム合金等の金属で構成されている
ビットに渦電流が流れ、この渦電流は金属検知に寄与す
る外部への漏洩磁束を減殺する。このため金属検知回路
で扱う信号レベルは極めて低いので、コイルの周囲の温
度変化によるインピーダンスの変化の影響を受け易く、
安定な検知が比較的難しい。
[Problem to be solved by the invention] The magnetic flux generated from the coil causes eddy current to flow through the bit made of metal such as aluminum alloy, and this eddy current reduces the leakage magnetic flux to the outside that contributes to metal detection. . For this reason, the signal level handled by the metal detection circuit is extremely low, so it is easily affected by impedance changes due to temperature changes around the coil.
Stable detection is relatively difficult.

【0007】上記周囲の温度の変化は、コイルの直流抵
抗の変化とインダクタンスの変化をもたらし、この直流
抵抗の変化は上記バイアス交流電圧の直流成分の変化と
して現れ、またインダクタンスの変化は上記バイアス交
流電圧の交流成分の振幅の変化として現れる。これらは
何れも上述した比較回路に於いて基準電圧と比較するバ
イアス交流電圧のピーク値Vpを変化させ、検知誤差と
なる。実際的な具体例としては、図に示すように周囲の
温度が上昇すると直流成分の電圧値が上昇すると共に交
流成分の振幅が大きくなり、前者の直流成分の電圧値の
上昇は上記ピーク値Vpの上昇に寄与すると共に後者の
交流成分の振幅の増大は該ピーク値Vpの下降に寄与す
る。
The change in the ambient temperature causes a change in the DC resistance and inductance of the coil, and this change in DC resistance appears as a change in the DC component of the bias AC voltage, and the change in inductance causes a change in the DC component of the bias AC voltage. It appears as a change in the amplitude of the alternating current component of the voltage. All of these change the peak value Vp of the bias AC voltage compared with the reference voltage in the above-mentioned comparison circuit, resulting in a detection error. As a practical example, as shown in the figure, when the ambient temperature rises, the voltage value of the DC component increases and the amplitude of the AC component increases, and the increase in the voltage value of the former DC component is at the peak value Vp. The increase in the amplitude of the latter AC component contributes to the decrease in the peak value Vp.

【0008】即ち、直流成分の電圧値の上昇分をΔVd
c、交流成分の振幅の増大分をΔVacとすると、ピー
ク値の変化分ΔVp は、ΔVp=ΔVdc−ΔVac
 として表すことができる。このように上記直流成分と
交流成分の電圧値の変化は、上記比較すべきピーク値の
変化に対して互いに逆方向に作用して減殺される傾向に
あるのであるが、これらの変化率は夫々異なるので、そ
れらの差の分、即ちΔVpだけ上記検知誤差となる。例
えば図に示す具体例では、ΔVac >ΔVdc であ
るため、基準電圧と比較する上記ピーク電圧は温度の上
昇に従って次第にVpからVp’へと下降していく。
That is, the increase in the voltage value of the DC component is expressed as ΔVd
c. If the increase in the amplitude of the AC component is ΔVac, the change in the peak value ΔVp is ΔVp=ΔVdc−ΔVac
It can be expressed as In this way, the changes in the voltage values of the DC and AC components tend to act in opposite directions and cancel out the changes in the peak values to be compared, but the rates of change of these changes are respectively Since they are different, the above-mentioned detection error becomes the difference between them, that is, ΔVp. For example, in the specific example shown in the figure, since ΔVac > ΔVdc, the peak voltage compared with the reference voltage gradually decreases from Vp to Vp' as the temperature rises.

【0009】そこで上記誤差を、予め温度との対応関係
として測定して回路中に記憶させて置き、サーミスタ等
の温度センサによって測定したコイルの周囲の温度に基
づいて上記ブリッジ回路の出力を補正することも考えら
れるが、このような方法では、新たに温度センサを設置
しなければならないので、回路の構成が複雑となり、価
格が上昇したり、小型化が難しくなったりし、また消費
電力の増加により、電池を用いての長時間の検知動作が
困難となる等の課題がある。
[0009] Therefore, the above error is measured in advance as a correspondence relationship with temperature and stored in the circuit, and the output of the bridge circuit is corrected based on the temperature around the coil measured by a temperature sensor such as a thermistor. However, with this method, a new temperature sensor must be installed, which complicates the circuit configuration, increases the price, makes it difficult to downsize, and increases power consumption. This poses problems, such as making it difficult to perform long-term detection operations using batteries.

【0010】本発明は、このような課題を解決すること
を目的とし、即ちコイルの周囲の温度の変化に起因する
ブリッジ回路の出力電圧の変化を、サーミスタ等の温度
センサを用いずに補正することを目的とするものである
[0010] The present invention aims to solve such problems, namely, to correct changes in the output voltage of the bridge circuit caused by changes in the temperature around the coil without using a temperature sensor such as a thermistor. The purpose is to

【0011】[0011]

【課題を解決するための手段】上述した課題を解決する
ために、本発明は、まず掘進機の先端に内蔵した一対の
コイルを構成要素とするブリッジ回路にバランス用交流
信号とバイアス用直流信号を重畳して印加し、このブリ
ッジ回路の不平衡により発生するバイアス交流電圧のピ
ーク値の所定以上の変化を基準電圧との比較により検出
して金属の近接を検知する金属検知装置に於いて、上記
バイアス交流電圧は、上記基準電圧との比較に先立って
交流成分と直流成分とに分離し、この分離した直流成分
から、その変化分に起因する上記ピーク値の変化分と、
交流成分の変化分に起因する上記ピーク値の変化分との
差をキャンセルする補正直流成分を導出して出力し、こ
の補正直流成分と上記分離した交流成分とを加算して補
正バイアス交流電圧とした後に、上記基準電圧との比較
を行う掘進機に於ける金属検知装置の温度補償方法を提
供する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention first provides a balance AC signal and a bias DC signal to a bridge circuit whose components include a pair of coils built into the tip of an excavator. In a metal detection device that detects the proximity of metal by applying a superimposed voltage and detecting a change of more than a predetermined value in the peak value of the bias AC voltage caused by the unbalance of the bridge circuit by comparing it with a reference voltage, The bias AC voltage is separated into an AC component and a DC component prior to comparison with the reference voltage, and from the separated DC component, a change in the peak value due to the change,
A corrected direct current component that cancels the difference with the change in the peak value caused by the change in the AC component is derived and output, and the corrected direct current component and the separated AC component are added to obtain a corrected bias AC voltage. The present invention provides a temperature compensation method for a metal detection device in an excavator, which performs a comparison with the reference voltage.

【0012】上記の方法は、掘進機の先端に内蔵した一
対のコイルを構成要素とするブリッジ回路と、該ブリッ
ジ回路にバランス用交流信号を供給する発振器と、該交
流信号にバイアス用直流信号を重畳して供給する直流バ
イアス回路と、上記ブリッジ回路の出力のバイアス交流
電圧から交流成分と直流成分を分離する分離回路と、分
離した直流成分に係数を乗じて出力する補正回路と、該
補正回路の出力と上記分離した交流成分を加算する加算
回路と、該加算回路の出力信号を基準電圧と比較する比
較回路とを構成した金属検知回路を用いることにより達
成することができる。
The above method includes a bridge circuit whose components include a pair of coils built into the tip of the excavator, an oscillator that supplies a balancing alternating current signal to the bridge circuit, and a biasing direct current signal to the alternating current signal. A DC bias circuit that supplies superimposed signals; a separation circuit that separates AC and DC components from the bias AC voltage output from the bridge circuit; a correction circuit that multiplies the separated DC component by a coefficient and outputs the result; and the correction circuit. This can be achieved by using a metal detection circuit comprising an adder circuit that adds the output of the above and the separated AC component, and a comparison circuit that compares the output signal of the adder circuit with a reference voltage.

【0013】[0013]

【作用】上述したようにコイルの周囲の温度の変化は、
コイルの直流抵抗の変化とインダクタンスの変化をもた
らし、この直流抵抗の変化は上記バイアス交流電圧の直
流成分の変化として現れ、またインダクタンスの変化は
上記バイアス交流電圧の交流成分の振幅の変化として現
れる。従ってこれら直流成分の変化並びに交流成分の振
幅の変化は、夫々温度の関数である。
[Function] As mentioned above, changes in the temperature around the coil
This causes a change in the DC resistance and a change in inductance of the coil, and this change in DC resistance appears as a change in the DC component of the bias AC voltage, and the change in inductance appears as a change in the amplitude of the AC component of the bias AC voltage. Therefore, the changes in the DC component and the amplitude of the AC component are each a function of temperature.

【0014】一方、温度が一定の状態に於いては、金属
製埋設物の近接によりブリッジ回路が不平衡になって出
力に交流電圧が生じてもバイアス交流電圧の直流成分は
変化しない。即ちブリッジ回路の出力の直流成分は、上
記インダクタンスの変化に影響されずに、周囲の温度の
変化に対応するコイルの直流抵抗の線形的な変化に対応
して変化し、従って直流成分は直接的にコイルの周囲の
温度に対応する関数である。このためコイルの周囲の温
度の変化に対応した交流成分の振幅の変化は、直流成分
の関数として捉え、即ちこの直流成分との対応関係とし
て導出することができる。
On the other hand, when the temperature is constant, even if the bridge circuit becomes unbalanced due to the proximity of a buried metal object and an AC voltage is generated at the output, the DC component of the bias AC voltage does not change. In other words, the DC component of the output of the bridge circuit is not affected by the change in inductance mentioned above, but changes in response to a linear change in the DC resistance of the coil that corresponds to a change in ambient temperature. is a function corresponding to the temperature around the coil. Therefore, a change in the amplitude of the AC component corresponding to a change in the temperature around the coil can be regarded as a function of the DC component, that is, it can be derived as a correspondence relationship with the DC component.

【0015】以上の如くして、基準電圧と比較するバイ
アス交流電圧のピーク値の、コイルの周囲の温度の変化
に対応した変化分ΔVp=ΔVdc−ΔVac を、直
流成分との対応関係として導出することができ、従って
この変化分だけバイアス交流電圧の直流成分をシフトし
た後に上記基準電圧との比較を行えば、図2及び図3に
示すように温度の変化による上記ピーク値の変化を補償
することができる。
As described above, the variation ΔVp=ΔVdc−ΔVac of the peak value of the bias AC voltage compared with the reference voltage, which corresponds to the change in the temperature around the coil, is derived as a correspondence relationship with the DC component. Therefore, if the DC component of the bias AC voltage is shifted by this amount of change and then compared with the reference voltage, the change in the peak value due to temperature change can be compensated for as shown in FIGS. 2 and 3. be able to.

【0016】かかる直流成分のシフトは、まずブリッジ
回路の出力のバイアス交流電圧を、上記基準電圧との比
較に先立って交流成分と直流成分とに分離し、この分離
した直流成分から上記変化分ΔVpを減算して補正直流
成分を導出し、この補正直流成分を再び上記交流成分と
加算することにより行うことができる。
To shift the DC component, first, the bias AC voltage output from the bridge circuit is separated into an AC component and a DC component before being compared with the reference voltage, and the above change ΔVp is calculated from the separated DC component. This can be done by subtracting the corrected direct current component to derive a corrected direct current component, and then adding this corrected direct current component to the above-mentioned alternating current component again.

【0017】上記分離した直流成分からの補正直流成分
の導出は、上述した変化分を実質的に減算する方法であ
れば適宜の方法を適用することができるのであるが、こ
れらの直接の対応関係を、近似式、データテーブル等の
形態で補正回路の記憶手段に記憶させておき、上記分離
した直流成分に該対応関係に基づく係数を乗じることに
より直接的な導出を行うことができる。
[0017] To derive the corrected direct current component from the separated direct current component, any suitable method can be applied as long as the above-mentioned change is substantially subtracted. is stored in the storage means of the correction circuit in the form of an approximation formula, data table, etc., and direct derivation can be performed by multiplying the separated DC component by a coefficient based on the correspondence relationship.

【0018】即ち、この方法では、補正直流成分Vdc
’は、バイアス交流電圧から分離した直流電圧をVdc
とすると、Vdc’=f(Vdc)・Vdcとして導出
することができる。尚、このf(Vdc)が上記対応関
係に基づく係数を表すものであるが、これは予めの測定
によって得られた対応関係を定数や式で近似したり、デ
ータテーブルとして記憶すれば良い。
That is, in this method, the corrected direct current component Vdc
' is the DC voltage separated from the bias AC voltage, Vdc
Then, it can be derived as Vdc'=f(Vdc)·Vdc. Note that this f(Vdc) represents a coefficient based on the above-mentioned correspondence relationship, which may be obtained by approximating the correspondence relationship obtained by prior measurement using a constant or a formula, or by storing it as a data table.

【0019】[0019]

【実施例】次に本発明の実施例を図について説明する。 図1は本発明を適用した検知回路の実施例を表したもの
で、符号1a,1bは掘進機の先端のビット(図示省略
)に内蔵した一対のコイルを示すものであり、2はこの
一対のコイル1a,1bを構成要素とするブリッジ回路
である。3は、このブリッジ回路2にバランス用交流信
号を供給する発振器、4は発振器3からの交流信号に重
畳してバイアス用直流信号をブリッジ回路2に供給する
直流バイアス回路であり、符号5は直流電源、6は加算
回路である。
Embodiments Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 shows an embodiment of a detection circuit to which the present invention is applied. Reference numerals 1a and 1b indicate a pair of coils built into a bit (not shown) at the tip of an excavator, and 2 indicates this pair of coils. This is a bridge circuit whose constituent elements are coils 1a and 1b. 3 is an oscillator that supplies a balance AC signal to this bridge circuit 2; 4 is a DC bias circuit that superimposes on the AC signal from the oscillator 3 and supplies a bias DC signal to the bridge circuit 2; and 5 is a DC bias circuit. The power supply 6 is an adder circuit.

【0020】そして符号7はブリッジ回路2の出力側に
接続し、このブリッジ回路2の出力電圧を、交流成分と
直流成分を分離する分離回路である。尚、この分離回路
7の入力側には適宜の増幅回路を接続しているのである
が、図示は省略している。符号8は分離回路7の直流出
力側に接続した補正回路であり、この補正回路8は上記
対応関係に基づく係数f(Vdc)を記憶しており、分
離回路7から入力された直流電圧Vdcに対して、Vd
c’=f(Vdc)・Vdcの関係を満たす補正直流電
圧Vdc’を発生する構成としている。上述したように
、この係数は予めの測定によって得られた対応関係に基
づき、係数を定数や式で近似したりデータテーブルとし
て記憶するものである。
Reference numeral 7 denotes a separation circuit connected to the output side of the bridge circuit 2 to separate the output voltage of the bridge circuit 2 into alternating current and direct current components. Note that an appropriate amplifier circuit is connected to the input side of the separation circuit 7, but is not shown. Reference numeral 8 denotes a correction circuit connected to the DC output side of the separation circuit 7. This correction circuit 8 stores a coefficient f (Vdc) based on the above-mentioned correspondence relationship, and adjusts the DC voltage Vdc input from the separation circuit 7. On the other hand, Vd
The configuration is such that a corrected direct current voltage Vdc' that satisfies the relationship c'=f(Vdc)·Vdc is generated. As described above, the coefficients are approximated by constants or formulas or stored as a data table based on the correspondence relationship obtained through previous measurements.

【0021】上記分離回路7に於いて分離された交流成
分Vacは、次いで加算回路9に入力されて上記補正直
流電圧Vdc’と加算され、次いで比較回路10に於い
て基準電圧と比較される。この基準電圧は接地電圧とす
る他、適宜の電圧を設定することができる。
The AC component Vac separated in the separation circuit 7 is then input to the addition circuit 9 where it is added to the corrected direct current voltage Vdc', and then compared with the reference voltage in the comparison circuit 10. This reference voltage can be set to a ground voltage or any other appropriate voltage.

【0022】以上の構成に於いて、例えば図に示すよう
に、温度t1の時にブリッジ回路2の出力側に、その不
平衡に起因するバイアス交流電圧が出力されているもの
の、そのピーク値が基準電圧よりも高く、従って比較回
路10が金属検知に対応する信号を出力していない状態
に於いて、コイル1a,1bの周囲の温度が上昇すると
、コイル1a,1bの直流抵抗の変化とインダクタンス
の変化をもたらし、上記ピーク電圧は温度の上昇に従っ
て次第に下降していく。従って、このままのバイアス交
流電圧を比較回路10に於いて基準電圧と比較すると、
上記ピーク電圧は温度t2に於いて基準電圧まで降下し
て、比較回路10が金属検知に対応する信号を出力して
しまう。
In the above configuration, for example, as shown in the figure, although a bias AC voltage due to the unbalance is output to the output side of the bridge circuit 2 at the temperature t1, its peak value is the reference value. If the temperature around the coils 1a and 1b rises in a state where the comparator circuit 10 is not outputting a signal corresponding to metal detection, the DC resistance of the coils 1a and 1b will change and the inductance will increase. The peak voltage gradually decreases as the temperature increases. Therefore, when the bias AC voltage as it is is compared with the reference voltage in the comparator circuit 10,
The peak voltage drops to the reference voltage at temperature t2, and the comparator circuit 10 outputs a signal corresponding to metal detection.

【0023】しかるに、上述した本発明の構成に於いて
は、基準電圧との比較に先立って、上記バイアス交流電
圧を分離回路7により分離し、補正回路8により上記周
囲の温度に対応して補正直流電圧を発生させて、この補
正直流電圧を上記分離した交流成分と加算するので、ピ
ーク電圧は図2、図3に示すように温度の変化に係らず
略一定に維持することができ、従って温度の変化による
誤検知を防止することができる。
However, in the configuration of the present invention described above, the bias AC voltage is separated by the separation circuit 7 and corrected by the correction circuit 8 in accordance with the ambient temperature before comparison with the reference voltage. Since a direct current voltage is generated and this corrected direct current voltage is added to the separated alternating current component, the peak voltage can be maintained approximately constant regardless of temperature changes, as shown in FIGS. 2 and 3. Erroneous detection due to temperature changes can be prevented.

【0024】[0024]

【発明の効果】本発明は以上の通りであるので、コイル
の周囲の温度の変化に起因するブリッジ回路の出力電圧
の変化を、サーミスタ等の温度センサを用いず、コイル
自体の直流抵抗の変化を利用して補正することができ、
従って上述したサーミスタ等の温度センサを用いる場合
と比較して回路の構成が簡単であり、確実な検知動作の
金属検知回路を安価に、そして小型に構成することがで
き、また消費電力も増大させないので電池での長時間の
検知動作も可能となるという効果がある。
Effects of the Invention Since the present invention is as described above, changes in the output voltage of the bridge circuit caused by changes in the temperature around the coil can be detected by changes in the direct current resistance of the coil itself without using a temperature sensor such as a thermistor. It can be corrected using
Therefore, the circuit configuration is simpler than when using a temperature sensor such as a thermistor as described above, and a metal detection circuit with reliable detection operation can be constructed at low cost and in a small size, and power consumption does not increase. This has the effect of enabling long-term detection operation using batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を適用する金属検知回路の構成を表した
系統説明図である。
FIG. 1 is a system explanatory diagram showing the configuration of a metal detection circuit to which the present invention is applied.

【図2】本発明の方法の動作を温度と電圧値の関係で表
した説明図である。
FIG. 2 is an explanatory diagram showing the operation of the method of the present invention in terms of the relationship between temperature and voltage values.

【図3】本発明の方法の動作をバイアス交流電圧の状態
で表した説明図である。
FIG. 3 is an explanatory diagram showing the operation of the method of the present invention in the state of bias AC voltage.

【図4】従来の方法の動作をバイアス交流電圧の状態で
表した説明図である。
FIG. 4 is an explanatory diagram showing the operation of the conventional method in the state of bias AC voltage.

【図5】掘進機に於ける金属検知の概念を表した説明図
である。
FIG. 5 is an explanatory diagram showing the concept of metal detection in an excavator.

【図6】従来の金属検知回路の構成を表した系統説明図
である。
FIG. 6 is a system explanatory diagram showing the configuration of a conventional metal detection circuit.

【符号の説明】[Explanation of symbols]

1a          コイル 1b          コイル 2            ブリッジ回路3     
       発振器 4            直流バイアス回路5   
         直流電源 6            加算回路 7            分離回路 8            補正回路 9            加算回路 10          比較回路 11          掘進用ロッド12     
     ビット 13          金属製埋設物14     
     増幅回路 15          比較回路
1a Coil 1b Coil 2 Bridge circuit 3
Oscillator 4 DC bias circuit 5
DC power supply 6 Addition circuit 7 Separation circuit 8 Correction circuit 9 Addition circuit 10 Comparison circuit 11 Excavation rod 12
Bit 13 Metal buried object 14
Amplifier circuit 15 Comparison circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  掘進機の先端に内蔵した一対のコイル
を構成要素とするブリッジ回路にバランス用交流信号と
バイアス用直流信号を重畳して印加し、このブリッジ回
路の不平衡により発生するバイアス交流電圧のピーク値
の所定以上の変化を基準電圧との比較により検出して金
属の近接を検知する金属検知装置に於いて、上記バイア
ス交流電圧は、上記基準電圧との比較に先立って交流成
分と直流成分とに分離し、この分離した直流成分から、
その変化分に起因する上記ピーク値の変化分と、交流成
分の変化分に起因する上記ピーク値の変化分との差をキ
ャンセルする補正直流成分を導出して出力し、この補正
直流成分と上記分離した交流成分とを加算して補正バイ
アス交流電圧とした後に、上記基準電圧との比較を行う
構成としたことを特徴とする掘進機に於ける金属検知装
置の温度補償方法
Claim 1: A balance alternating current signal and a bias direct current signal are applied in a superimposed manner to a bridge circuit consisting of a pair of coils built into the tip of the excavator, and the bias alternating current generated by the unbalance of this bridge circuit is applied. In a metal detection device that detects the proximity of metal by detecting a change in the peak value of the voltage by comparing it with a reference voltage, the bias AC voltage is detected as an AC component before being compared with the reference voltage. The DC component is separated from the DC component, and from this separated DC component,
A corrected normal current component that cancels the difference between the change in the peak value caused by the change and the change in the peak value caused by the change in the AC component is derived and output, and this corrected normal current component and the above A temperature compensation method for a metal detection device in an excavator, characterized in that the separated AC components are added together to obtain a corrected bias AC voltage, and then compared with the reference voltage.
【請求項2】  掘進機の先端に内蔵した一対のコイル
を構成要素とするブリッジ回路と、該ブリッジ回路にバ
ランス用交流信号を供給する発振器と、該交流信号にバ
イアス用直流信号を重畳して供給する直流バイアス回路
と、上記ブリッジ回路の出力のバイアス交流電圧から交
流成分と直流成分を分離する分離回路と、分離した直流
成分に係数を乗じて出力する補正回路と、該補正回路の
出力と上記分離した交流成分を加算する加算回路と、該
加算回路の出力信号を基準電圧と比較する比較回路とを
構成したことを特徴とする温度補償機構を備えた金属検
知回路
2. A bridge circuit comprising a pair of coils built into the tip of the excavator, an oscillator supplying a balancing alternating current signal to the bridge circuit, and a biasing direct current signal superimposed on the alternating current signal. a DC bias circuit to supply, a separation circuit that separates an AC component and a DC component from the bias AC voltage output from the bridge circuit, a correction circuit that multiplies the separated DC component by a coefficient and outputs the result, and an output of the correction circuit. A metal detection circuit equipped with a temperature compensation mechanism, comprising an addition circuit that adds the separated AC components, and a comparison circuit that compares the output signal of the addition circuit with a reference voltage.
JP3122152A 1991-04-24 1991-04-24 Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism Pending JPH04324391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122152A JPH04324391A (en) 1991-04-24 1991-04-24 Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122152A JPH04324391A (en) 1991-04-24 1991-04-24 Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism

Publications (1)

Publication Number Publication Date
JPH04324391A true JPH04324391A (en) 1992-11-13

Family

ID=14828895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122152A Pending JPH04324391A (en) 1991-04-24 1991-04-24 Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism

Country Status (1)

Country Link
JP (1) JPH04324391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109469A (en) * 2014-12-03 2016-06-20 株式会社水道技術開発機構 Joint position inspection device and joint position inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109469A (en) * 2014-12-03 2016-06-20 株式会社水道技術開発機構 Joint position inspection device and joint position inspection method

Similar Documents

Publication Publication Date Title
US9350162B2 (en) Determination of the fault current component of a differential current
JPS6114501A (en) Eddy current type range finder
US20110298478A1 (en) Method for determining residual coupling of an inductive conductivity sensor
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
KR101207995B1 (en) Standard apparatus for calibration of low frequency AC magnetometers
CA2157679C (en) Rapid turn-on source for fiber optic gyroscope
JPH04324391A (en) Compensating method for temperature of metal detector in excavator and metal detection circuit equipped with temperature compensating mechanism
JP3501401B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP2019092290A (en) Open phase detection device and open phase detection system
US20130300428A1 (en) Determination of a Stray Capacitance of an AC Current Generator
US7084622B2 (en) Methods for eliminating magnetic field and temperature related errors in magnetic sensors used for the measurement of coating thickness
JPH08271204A (en) Eddy current type displacement sensor
US11022630B2 (en) Measurement of current within a conductor
JP3835874B2 (en) Earth leakage detector
JP6441604B2 (en) High frequency measuring device and calibration method of high frequency measuring device
JP2012154701A (en) Carrier wave type dynamic strain measuring instrument
JPS6018701A (en) Displacement measuring device
JPH0322585B2 (en)
JP2005057905A (en) Direct-current ground-fault current detector and direct current detector
JP2633125B2 (en) Compensation device for temperature characteristics of torque sensor
US20150130445A1 (en) Remote sensing system
JPH0739974B2 (en) Temperature compensation device for torque measuring device
JPS5834331A (en) Temperature measuring device
JPH11223565A (en) Load sensor
KR101091449B1 (en) Line voltage fluctuation detection method of single-phase circuit