JPH04324098A - Target craft attitude simulating method of fighter simulator - Google Patents

Target craft attitude simulating method of fighter simulator

Info

Publication number
JPH04324098A
JPH04324098A JP11652591A JP11652591A JPH04324098A JP H04324098 A JPH04324098 A JP H04324098A JP 11652591 A JP11652591 A JP 11652591A JP 11652591 A JP11652591 A JP 11652591A JP H04324098 A JPH04324098 A JP H04324098A
Authority
JP
Japan
Prior art keywords
angle
attitude
speed
pitch
target aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11652591A
Other languages
Japanese (ja)
Inventor
Eiji Iida
栄治 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP11652591A priority Critical patent/JPH04324098A/en
Publication of JPH04324098A publication Critical patent/JPH04324098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To permit the operation of yaw angle, pitch angle and bank angle without providing a computer with any load by a method wherein a target craft is simplified as a model having three degrees of freedom to obtain an attitude simulating method capable of controlling the attitude thereof simply, since the attitude of the target craft is not the object of evaluation. CONSTITUTION:A target craft controlling command generating and controlling means 31, operating the speed change dV/dt, yaw rate dPSI/dt and pitch rate dtheta/dt of a target craft, is provided. The speed change dV/dt, the yaw rate dPSI/dt and the pitch rate dtheta/dt are integrated by a target craft attitude angle operating means 33 to obtain a speed V, a yaw angle PSI and a pitch angle theta. The movement GY in a horizontal plane is operated by the product of the yaw rate dPSI/dt by the speed V while a movement GZ in a vertical plane is operated from the product of the pitch rate dtheta/dt by the speed V. Further, the bank angle phi=tan<-1>(GY/GZ+mgcos theta) is operated and respective data are outputted to a simulated field of vision device 34. In this case, (g) is an acceleration applied on the center of gravity and (m) is the mass of a fighter.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、戦闘機シミュレータ
の自動機動を行なう3自由度モデルの目標機に対するバ
ンク角の簡易制御方法に関するものである。 【0002】 【従来の技術】戦闘機シミュレータの目標機姿勢模擬制
御は、その結果を例えば目標戦闘機の機影を画像表示さ
せ、被訓練者が搭乗する自機の運動により相対的に変化
する目標機の姿勢変化を見て、目標機がどのような運動
をするかの予測をさせ、それに対する反応の仕方を評価
するために用いられる。従来、目標機の姿勢は、6自由
度モデルの場合、例えば次のような複雑な運動方程式を
解いた結果算出される。 【0003】   m(dU/dt+QW−RV)=−mgsinθ+
Xa           …(1)  【0004】   m(dV/dt+RU−PW)=  mgcosθ
sinφ+Ya   …(2)【0005】   m(dW/dt+PV−QU)=  mgcosθ
cosφ+Za   …(3)  【0006】   IXXdP/dt−IXXdR/dt+(IZZ−
IYY)QR−IXZPQ=L           
                         
                         
 …(4)  【0007】   IYYdQ/dt+(IXX−IZZ)RP+IX
Z(P2−R2)=M    …(5)  【0008
】   −IXZdP/dt+IZZdR/dt+(IYY
−IXX)PQ+IXZQR=N          
                         
                         
  …(6)  【0009】   dφ/dt=P+Qsinφtanθ+Rcosφ
tanθ      …(7)  【0010】   dθ/dt=Qcosφ−Rsinφ      
                    …(8) 
 【0011】   dψ/dt=Qsinφsecθ+Rcosφse
cθ          …(9)  【0012】こ
こで、Xa,Ya,Za;機体に働く空気力および推力
、m;質量、U,V,W;機体速度、P,Q,R;機体
角速度、φ,θ,ψ;オイラー角、L,M,N;モーメ
ント、IXX等;慣性能率である。 【0013】これらの式を解き、機体速度U,V,Wお
よび角速度P,Q,Rを算出する。さらに、座標変換お
よび積分を行ない、x,y,z,φ,θ,ψを算出する
。 【0014】上記のような複雑な運動方程式を解くので
あるが、同時に多数の目標機が存在する場合は、この6
自由度モデルの運動方程式を全目標機に対して解くこと
は、計算機処理能力に大きな負荷になってしまう。 【0015】 【発明が解決しようとする課題】この発明が解決しよう
とする課題は、目標機の姿勢は評価対象でないことから
、目標機を3自由度モデルとして簡略にしその姿勢を簡
易に制御する方法を提供することにある。 【0016】 【課題を解決するための手段】本発明に係る戦闘機シミ
ュレータの目標機姿勢模擬方法は、戦闘機シミュレータ
において自機に対して目標機の姿勢を制御する際に、目
標機の速度変化dVT/dt、ヨーレートdψ/dtお
よびピッチレートdθ/dtを算出する第1の過程と、
前記速度変化、ヨーレートおよびピッチレートを積分し
て速度V、ヨー角ψ、ピッチ角θを算出する第2の過程
と、前記ヨーレートdψ/dtと速度Vとの積から水平
面内の機動GYと前記ピッチレートdθ/dtと速度V
との積から垂直面内の機動GZとを計算する第3の過程
と、重力加速度をg、質量をmとしてバンク角φ=ta
n−1(GY/(GZ+mgcosθ))を算出する第
4の過程とから目標機のバンク角を制御することを特徴
とするものである。 【0017】 【作用】目標機の運動モデルとして速度、ヘディング、
ピッチングからなる3自由度で定義し、機動経路から逆
算して目標機のバンク角を決定する。 【0018】 【実施例】以下、この発明の一実施例を図について説明
する。図2のような3自由度モデルがあるとき、これに
X軸まわりのロール運動を与える方法として、図1のよ
うな制御フロー図に基づいて、飛行経路変化すなわちヨ
ー・レート、ピッチ・レートおよび速度からバンク角を
決定するものである。 【0019】ステップ1(P1)では、3自由度運動方
程式によりdVT/dt,dψ/dt,dθ/dtを算
出する。ここで、今回用いた3自由度簡易運動方程式は
、次式で表わされる。 【0020】   dVT/dt=(1/mT)(TT−DT−mTg
sinγ)       …(10)  【0021】   dψ/dt=(GMAX/VT)        
                        …
(11)  【0022】   dθ/dt=(GMAX/VT)        
                        …
(12)  【0023】ここで、出力において、dV
T/dt:目標機に生じた加速度、dψ/dt:目標機
のヨー・レート、dθ/dt:目標機のピッチ・レート
であり、入力において、mT:目標機の質量、TT:目
標機の推力、DT:目標機の抗力、g:重力加速度、γ
:目標機経路角、GMAX:目標機許容荷重(最大G)
、VT:目標機速度である。 【0024】上記(11)式、(12)式は直接オイラ
ー角のレートを算出するものであり、(11)式は飛行
させたい方向に対し左右(±)を制御し、(12)式は
飛行させたい方向に対し上下(±)を制御するものであ
る。 【0025】ステップ2(P2)で、dVT/dt,d
ψ/dt,dθ/dtに対する積分処理、  VT=∫
(dVT/dt)dt               
                 …(13)  【
0026】   ψ=∫(dψ/dt)dt           
                       …(
14)  【0027】   θ=∫(dθ/dt)dt           
                       …(
15)  【0028】を行なう。ただし、3自由度モ
デルのためγ=θである。 【0029】ステップ3(P3)で、水平面内の機動G
をGY、垂直面内の機動GをGZとして、【0030】   GY=m*((dψ/dt)*VT)      
                    …(16)
  【0031】   GZ=m*((dθ/dt)*VT)      
                    …(17)
  【0032】の計算をする。ここで、mは目標機体
の質量である。 【0033】ステップ4(P4)で、バンク角φを次の
ように算出する。 【0034】φ=tan−1(GY/(GZ+mgco
sθ))【0035】図3は本発明を実施する機能ブロ
ック図である。目標機制御コマンド発生制御手段31で
dψ/dt,dθ/dtを得ておく。目標機運動制御手
段32でVTを算出する。目標機姿勢角演算手段33で
は、これらdψ/dt,  dθ/dtとVTとで、θ
,φ,ψを算出して、これを模擬視界装置34に出力す
る。模擬視界装置34では入力にしたがって目標機の動
きを表示する。 【0036】 【発明の効果】以上のように、この発明によれば、3自
由度モデルでありながら、ほとんど計算機に負荷を与え
ず、ψ,θ,φの各姿勢角を算出できる。
Description: FIELD OF INDUSTRIAL APPLICATION This invention relates to a simple method for controlling the bank angle of a three-degree-of-freedom model of a target aircraft for automatic maneuvering in a fighter aircraft simulator. [0002] In the target aircraft attitude simulation control of a fighter jet simulator, the result is displayed as an image of, for example, the image of the target fighter jet, and the result is relatively changed depending on the movement of the own aircraft on which the trainee is aboard. It is used to observe changes in the target aircraft's attitude, predict what kind of movement the target aircraft will make, and evaluate how to react to it. Conventionally, in the case of a 6-degree-of-freedom model, the attitude of a target aircraft is calculated by solving the following complex equation of motion, for example. [0003] m(dU/dt+QW-RV)=-mgsinθ+
Xa...(1) m(dV/dt+RU-PW)=mgcosθ
sinφ+Ya...(2) m(dW/dt+PV-QU)=mgcosθ
cosφ+Za...(3) 0006] IXXdP/dt-IXXdR/dt+(IZZ-
IYY)QR-IXZPQ=L


...(4) 0007] IYYdQ/dt+(IXX-IZZ)RP+IX
Z(P2-R2)=M...(5) 0008
] -IXZdP/dt+IZZdR/dt+(IYY
-IXX)PQ+IXZQR=N


...(6) dφ/dt=P+Qsinφtanθ+Rcosφ
tanθ...(7) dθ/dt=Qcosφ−Rsinφ
…(8)
dψ/dt=Qsinφsecθ+Rcosφse
cθ...(9) where, , ψ: Euler angle, L, M, N: moment, IXX, etc.; coefficient of inertia. [0013] These equations are solved to calculate the aircraft speeds U, V, W and angular velocities P, Q, R. Furthermore, coordinate transformation and integration are performed to calculate x, y, z, φ, θ, and ψ. [0014] The complicated equation of motion as described above is solved, but if there are many target aircraft at the same time, this 6
Solving the equations of motion of the degree-of-freedom model for all target machines places a large burden on computer processing power. [0015] The problem to be solved by the present invention is to simplify the target aircraft as a three-degree-of-freedom model and easily control its attitude, since the attitude of the target aircraft is not an object of evaluation. The purpose is to provide a method. Means for Solving the Problems [0016] A method for simulating the attitude of a target aircraft in a fighter jet simulator according to the present invention is to A first process of calculating a change dVT/dt, a yaw rate dψ/dt, and a pitch rate dθ/dt;
A second process of integrating the speed change, yaw rate, and pitch rate to calculate the speed V, yaw angle ψ, and pitch angle θ, and calculating the maneuver GY in the horizontal plane from the product of the yaw rate dψ/dt and the speed V. Pitch rate dθ/dt and speed V
The third process is to calculate the maneuver GZ in the vertical plane from the product of
This method is characterized in that the bank angle of the target aircraft is controlled from the fourth step of calculating n-1(GY/(GZ+mgcosθ)). [Operation] As a motion model of the target aircraft, speed, heading,
It is defined by three degrees of freedom consisting of pitching, and the bank angle of the target aircraft is determined by calculating backwards from the maneuver path. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. When you have a three-degree-of-freedom model as shown in Figure 2, one way to give it roll motion around the The bank angle is determined from the speed. In step 1 (P1), dVT/dt, dψ/dt, and dθ/dt are calculated using a three-degree-of-freedom equation of motion. Here, the simple equation of motion with three degrees of freedom used this time is expressed by the following equation. dVT/dt=(1/mT)(TT-DT-mTg
sinγ) …(10) 0021] dψ/dt=(GMAX/VT)

(11) dθ/dt=(GMAX/VT)

(12) Here, at the output, dV
T/dt: acceleration generated in the target aircraft, dψ/dt: yaw rate of the target aircraft, dθ/dt: pitch rate of the target aircraft, and in the input, mT: mass of the target aircraft, TT: Thrust, DT: Drag of target aircraft, g: Gravitational acceleration, γ
: Target aircraft path angle, GMAX: Target aircraft allowable load (maximum G)
, VT: target aircraft speed. [0024] Equations (11) and (12) above directly calculate the Euler angle rate; Equation (11) controls left and right (±) with respect to the desired direction of flight, and Equation (12) It controls up and down (±) in the direction you want to fly. [0025] In step 2 (P2), dVT/dt,d
Integral processing for ψ/dt, dθ/dt, VT=∫
(dVT/dt)dt
…(13) [
ψ=∫(dψ/dt)dt
…(
14) θ=∫(dθ/dt)dt
…(
15) Perform [0028]. However, since it is a three-degree-of-freedom model, γ=θ. [0029] In step 3 (P3), the maneuver G in the horizontal plane
Let GY be GY, and let GZ be the maneuver G in the vertical plane, GY=m*((dψ/dt)*VT)
…(16)
GZ=m*((dθ/dt)*VT)
…(17)
Calculate . Here, m is the mass of the target aircraft. In step 4 (P4), the bank angle φ is calculated as follows. φ=tan-1(GY/(GZ+mgco
sθ)) FIG. 3 is a functional block diagram for implementing the present invention. The target aircraft control command generation control means 31 obtains dψ/dt and dθ/dt. The target aircraft motion control means 32 calculates VT. The target aircraft attitude angle calculation means 33 uses these dψ/dt, dθ/dt and VT to calculate θ.
, φ, ψ are calculated and outputted to the simulated visual field device 34. The simulated visibility device 34 displays the movement of the target aircraft according to the input. As described above, according to the present invention, each attitude angle of ψ, θ, and φ can be calculated with almost no load on the computer, even though it is a three-degree-of-freedom model.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】一実施例の制御フロー図である。FIG. 1 is a control flow diagram of one embodiment.

【図2】3自由度モデルを説明する図である。FIG. 2 is a diagram illustrating a three-degree-of-freedom model.

【図3】本発明を実施する機能ブロック図である。FIG. 3 is a functional block diagram implementing the present invention.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  自機に対して目標機の姿勢を制御する
戦闘機シミュレータの目標機姿勢模擬方法であって、目
標機の速度変化dV/dt、ヨーレートdψ/dtおよ
びピッチレートdθ/dtを算出する第1の過程と、前
記速度変化、ヨーレートおよびピッチレートを積分して
速度V、ヨー角ψ、ピッチ角θを算出する第2の過程と
、前記ヨーレートdψ/dtと速度Vとの積から水平面
内の機動GYと前記ピッチレートdθ/dtと速度Vと
の積から垂直面内の機動GZとを計算する第3の過程と
、重力加速度をg、質量をmとしてバンク角φ=tan
−1(GY/(GZ+mgcosθ))を算出する第4
の過程とから目標機のバンク角を制御することを特徴と
する戦闘機シミュレータの目標機姿勢模擬方法。
1. A target aircraft attitude simulation method for a fighter jet simulator that controls the attitude of a target aircraft with respect to its own aircraft, the method comprising: controlling the target aircraft's speed change dV/dt, yaw rate dψ/dt and pitch rate dθ/dt; A first process of calculating, a second process of integrating the speed change, yaw rate and pitch rate to calculate the speed V, yaw angle ψ, and pitch angle θ, and the product of the yaw rate dψ/dt and the speed V. The third step is to calculate the maneuver GY in the horizontal plane from the product of the pitch rate dθ/dt and the velocity V, and the maneuver GZ in the vertical plane from the product of the pitch rate dθ/dt and the velocity V, and the bank angle φ=tan where the gravitational acceleration is g and the mass is m.
-1(GY/(GZ+mgcosθ))
A method for simulating the attitude of a target aircraft in a fighter jet simulator, characterized in that the bank angle of the target aircraft is controlled from the process.
JP11652591A 1991-04-22 1991-04-22 Target craft attitude simulating method of fighter simulator Pending JPH04324098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11652591A JPH04324098A (en) 1991-04-22 1991-04-22 Target craft attitude simulating method of fighter simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11652591A JPH04324098A (en) 1991-04-22 1991-04-22 Target craft attitude simulating method of fighter simulator

Publications (1)

Publication Number Publication Date
JPH04324098A true JPH04324098A (en) 1992-11-13

Family

ID=14689290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11652591A Pending JPH04324098A (en) 1991-04-22 1991-04-22 Target craft attitude simulating method of fighter simulator

Country Status (1)

Country Link
JP (1) JPH04324098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4360B (en) 1996-07-18 1998-07-27 Bendra Lietuvos Ir Jav �Mon� "Kraft Jakobs Suchard Lietuva" Process for the sterilization of cacao mass
LT5387B (en) 2005-02-03 2006-12-27 Steponas Kazimieras DŽIUGYS Process for the sterilization of cacao beans

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4360B (en) 1996-07-18 1998-07-27 Bendra Lietuvos Ir Jav �Mon� "Kraft Jakobs Suchard Lietuva" Process for the sterilization of cacao mass
LT5387B (en) 2005-02-03 2006-12-27 Steponas Kazimieras DŽIUGYS Process for the sterilization of cacao beans

Similar Documents

Publication Publication Date Title
US20100279255A1 (en) Vehicle simulator system
CN108496121A (en) Unmanned plane simulated flight system, method, equipment and machine readable storage medium
KR100280853B1 (en) Image processing method, image processing device and pseudo experience device
KR100393504B1 (en) Object orientation control method and apparatus
CN103942085B (en) A kind of carrier-based helicopter flight simulator warship emulation mode
Bu et al. General simulation platform for vision based UAV testing
CN110376920A (en) A kind of control method and control device of virtual excavator
JPH04324098A (en) Target craft attitude simulating method of fighter simulator
KR101814869B1 (en) A Small Ship Simulator Applied Equations of Motion for Real Ship
JP4104362B2 (en) Control method of shaking device for sensory acceleration simulation device
Tseng et al. Implementation of a driving simulator based on a stewart platform and computer graphics technologies
Guiatni et al. Programmable force-feedback side-stick for flight simulation
JP3637348B1 (en) Simulation device
JP2644578B2 (en) Formation flight simulation method
JPH01237703A (en) Robot teaching device
JP2642985B2 (en) Formation flight training system with formation set function
JP2001017748A (en) Operation command data generating method of oscillation device, and oscillation device
JP3637340B2 (en) Acceleration simulator device and acceleration simulator control device
JP3245911B2 (en) Tracking editing device
JP3694608B2 (en) Method and apparatus for controlling operation of operation mechanism
Anderson et al. A low-cost flight simulation for rapid handling qualities evaluations during design
Huang Adaptive washout filter design with human visual-vestibular based (HVVB) for VR-based motion simulator
JPH11339065A (en) Vr motion generation device
JP3628409B2 (en) Sea surface wave simulation visual field generation method and apparatus
Huang et al. A PC cluster high-fidelity mobile crane simulator