JPH04323556A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH04323556A
JPH04323556A JP3119403A JP11940391A JPH04323556A JP H04323556 A JPH04323556 A JP H04323556A JP 3119403 A JP3119403 A JP 3119403A JP 11940391 A JP11940391 A JP 11940391A JP H04323556 A JPH04323556 A JP H04323556A
Authority
JP
Japan
Prior art keywords
sound wave
vibrator
reflected
face
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3119403A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimori
西森 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP3119403A priority Critical patent/JPH04323556A/en
Publication of JPH04323556A publication Critical patent/JPH04323556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent an echo reflected at a flawed portion from interfering with a lens echo by connecting to a second sound wave transfer body a first sound wave transfer body having a concave lens face, and setting such a relation between the first and second sound wave transfer bodies that reflected transverse waves from a transmitting vibrator are not incident on a receiving vibrator. CONSTITUTION:A concave lens face 40A is formed at one end of a first sound wave transfer body 40 and an inclined face 40C having an angle theta2 with respect to an X axis perpendicular to the focusing axis of sound waves which is formed at the face 40A is formed at the other end. A second sound wave transfer body 41 is connected at one end to the inclined face 40C and a receiving vibrator 31 is provided on an inclined face 41A formed at an angle theta3 with respect to the X axis of the other end of the second sound wave transfer body. An inclined face 40B having an angle theta1 with respect to the focusing axis is formed in the side face of the transfer body 40 and is provided with a transmitting vibrator 30. Ultrasonic waves generated in the vibrator 30 by pulses transmitted from a pulser are reflected at boundary faces A, A' and are transmitted through the face 40A and transferred to a subject. Longitudinal waves reflected at the face 40A and the subject are refracted at the faces A, A' and received by the vibrator 31. Because of the angles theta1-theta3 and the positions of the vibrators 30,31 relative to each other the incidence of reflected transverse wave on the vibrator 31 is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、2振動子型超音波探触
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual-element ultrasonic probe.

【0002】0002

【従来の技術】従来技術について、図3、図4を用いて
説明する。図3は、従来の探触子2とこれを動作させる
装置のブロック図、図4は、オシロスコープでモニタさ
れる超音波信号のタイムチャートである。パルサ1によ
って振動子3に送信パルスを印加すると、振動子3には
超音波が励起されその超音波は、音波伝搬体4を伝搬し
、凹レンズ面4Aにて1部が反射し、他は媒体5(5A
)を透過し、集束されて被検体8へ放射される。又振動
子3はその凹レンズ面4Aで反射したレンズエコーL1
、そのL1の2度目の反射波L2 、被検体表面からの
反射エコーS1 等を電気信号に変換し、その電気信号
はレシーバ6によって増幅され、オシロスコープにて、
モニタされる。パルサ1は送信パルスを発生させると同
時にトリガ信号をオシロスコープ7へ送り、表示制御さ
せる。
2. Description of the Related Art The prior art will be explained with reference to FIGS. 3 and 4. FIG. 3 is a block diagram of a conventional probe 2 and a device for operating it, and FIG. 4 is a time chart of ultrasonic signals monitored by an oscilloscope. When a transmission pulse is applied to the transducer 3 by the pulser 1, an ultrasonic wave is excited in the transducer 3, the ultrasonic wave propagates through the sound wave propagation body 4, a part of which is reflected by the concave lens surface 4A, and the rest is reflected by the medium. 5 (5A
), and is focused and radiated to the subject 8. Also, the vibrator 3 has a lens echo L1 reflected by its concave lens surface 4A.
, the second reflected wave L2 of L1, the reflected echo S1 from the surface of the object, etc. are converted into electrical signals, and the electrical signals are amplified by the receiver 6 and then transmitted to the oscilloscope.
be monitored. The pulser 1 generates a transmission pulse and at the same time sends a trigger signal to the oscilloscope 7 to control the display.

【0003】またXカット水晶圧電素子あるいは、同じ
性質のセラミック圧電素子が振動子として用いられ、そ
の作用は、板厚方向に、周期的に電圧を与えると板厚方
向に振動する。さらに板厚方向の振動に比較し、微小で
あるが横方向にも振動する。音波伝搬体4の軸長をL、
焦点距離をF0 、音波伝搬体4の縦波音速、横波音速
をそれぞれC1、C2 、媒質5の縦波音速をC3 と
すると、レンズエコーL1、L2 、被検体表面反射エ
コーS1 の図4(イ)に示す送信パルスTからの伝搬
時間をそれぞれT1、T2、T3 とすれば、
[0003] Also, an X-cut crystal piezoelectric element or a ceramic piezoelectric element having the same properties is used as a vibrator, and its action is to vibrate in the thickness direction when a voltage is applied periodically in the thickness direction. Furthermore, it also vibrates in the lateral direction, although it is much smaller than the vibration in the thickness direction. The axial length of the sound wave propagation body 4 is L,
Assuming that the focal length is F0, the longitudinal and transverse sound velocities of the sound wave propagation body 4 are C1 and C2, respectively, and the longitudinal sound velocity of the medium 5 is C3, the lens echoes L1, L2 and the object surface reflection echo S1 shown in FIG. ), the propagation times from the transmission pulse T shown in ) are respectively T1, T2, and T3.

【数1】T1=2×L/C1            
    (秒)
[Math. 1] T1=2×L/C1
(seconds)

【数2】T2=2×2×L/C1   
         (秒)
[Math 2] T2=2×2×L/C1
(seconds)

【数3】T3=2×(L/C
1+F0/C3)  (秒)である。更に、振動子が横
方向にも振動するため、音波伝搬体4内を横波で伝搬し
、凹レンズ面での反射エコーS2が受信され、送信パル
スからの伝搬時間T4は
[Math. 3] T3=2×(L/C
1+F0/C3) (seconds). Furthermore, since the vibrator vibrates in the transverse direction, the sound wave propagates in the sound wave propagation body 4 as a transverse wave, and the reflected echo S2 on the concave lens surface is received, and the propagation time T4 from the transmitted pulse is

【数4】T4=2・(L/C2
+F0/C3)  (秒)である。また、探触子設計に
おいて、これらの伝搬時間の関係は第4図(b)に示す
ように
[Math. 4] T4=2・(L/C2
+F0/C3) (seconds). In addition, in probe design, the relationship between these propagation times is as shown in Figure 4 (b).

【数5】T1<T4<T3<T2 である場合が多い。[Math. 5] T1<T4<T3<T2 is often the case.

【0004】0004

【発明が解決しようとする課題】従来技術の問題点は、
探触子2をΔZだけ下げ被検体6内部に焦点を合わせた
場合図4(b)ではなく図4の(c)に示すように被検
体6内部の反射エコーFとレンズエコーS2が干渉(S
2+F)してしまうΔZの範囲がありその範囲内では、
反射エコーの大きさによって欠陥を評価する場合、被検
体6表面からの深さを正確に測定したい場合など、ΔZ
の微小な変位によって、干渉したエコーの大きさが変化
し、さらに超音波の位相がずれるため、正確な評価がで
きない。
[Problems to be solved by the invention] The problems of the prior art are as follows:
When the probe 2 is lowered by ΔZ and focused on the inside of the object 6, the reflected echo F inside the object 6 and the lens echo S2 interfere ( S
There is a range of ΔZ where 2+F) occurs, and within that range,
ΔZ
Due to minute displacements, the size of the interfering echoes changes and the phase of the ultrasonic waves shifts, making accurate evaluation impossible.

【0005】前記した レンズエコーS2と欠陥反射エ
コーFが干渉した場合特に問題となる点について述べる
。 セラミック等に内在する微小欠陥が強度に大きく影響す
るので微小欠陥の検出が必要になる。この微小欠陥から
の反射エコーは信号強度が非常に小さく、レンズエコー
S2よりも小さい場合が多い。その為、この微小欠陥に
合焦させるために、ΔZを微動させるが、レンズエコー
S2と欠陥反射エコーFとの干渉により、信号強度が変
化してしまい正確に合焦させるのは、困難である。さら
に欠陥反射エコーFをディジタル化し、FFT(高速フ
ーリエ変換法)等の波形処理を行うとレンズエコーS2
の影響が含まれてしまうという問題点があった。また、
レンズエコーS2を小さくするために、振動子製作上、
板厚方向に極力振動するよう管理されているが横方向の
振動は零にはならない。
[0005] A particular problem that arises when the lens echo S2 and the defect reflection echo F interfere with each other will be described. Since minute defects inherent in ceramics etc. greatly affect the strength, it is necessary to detect minute defects. The signal intensity of the reflected echo from this minute defect is very low, and is often smaller than the lens echo S2. Therefore, in order to focus on this minute defect, ΔZ is slightly moved, but the signal strength changes due to interference between the lens echo S2 and the defect reflection echo F, making it difficult to focus accurately. . Furthermore, when the defect reflection echo F is digitized and subjected to waveform processing such as FFT (fast Fourier transform method), the lens echo S2
There was a problem that the influence of Also,
In order to reduce the lens echo S2, when manufacturing the transducer,
Although it is managed to vibrate as much as possible in the thickness direction, the vibration in the lateral direction does not go to zero.

【0006】本発明の目的は、振動子が横方向に微小に
振動する横波成分において、音波伝搬体内で横波が伝搬
して反射したエコーを振動子が受信せずしたがって欠陥
反射エコーがレンズエコーと干渉しないようにする超音
波探触子を提供するものである。
An object of the present invention is to prevent the transverse wave component in which the transverse wave vibrates minutely in the transverse direction from the transverse wave component to prevent the transducer from receiving echoes reflected by the propagation of the transverse wave within the sound wave propagating body, thereby preventing defective reflected echoes from becoming lens echoes. An object of the present invention is to provide an ultrasonic probe that prevents interference.

【0007】[0007]

【課題を解決するための手段】本発明の探触子は、第1
の音波伝搬体と、第2の音波伝搬体と、そのそれぞれに
着設された振動子とよりなる超音波探触子において、前
記第1の音波伝搬体の一端には凹レンズ面を形成し、他
端には前記凹レンズ面によって形成される超音波の集束
軸(Z軸方向)に直交するX軸に対し角度θ2の傾斜面
を形成し、該傾斜面に前記第2の音波伝搬体の一端を接
続しその他端には前記X軸に対し角度θ3の傾斜面を形
成し該傾斜面に前記一方の振動子を着設し、前記第1の
音波伝搬体の側面には前記集束軸に向かって前記集束軸
に対して角度θ1の傾斜面を形成しその傾斜面に前記他
方の振動子を着設した(請求項1)。
[Means for Solving the Problems] The probe of the present invention has a first
In an ultrasonic probe comprising a sound wave propagating body, a second sound wave propagating body, and a vibrator attached to each of them, a concave lens surface is formed at one end of the first sound wave propagating body, At the other end, an inclined surface is formed at an angle θ2 with respect to the X-axis perpendicular to the focusing axis (Z-axis direction) of the ultrasound formed by the concave lens surface, and one end of the second sound wave propagating body is formed on the inclined surface. is connected, and the other end thereof is formed with an inclined surface at an angle θ3 with respect to the X-axis, the one of the vibrators is mounted on the inclined surface, and the side surface of the first sound wave propagation body is provided with a surface facing toward the focusing axis. A sloped surface having an angle θ1 with respect to the focusing axis is formed, and the other vibrator is mounted on the sloped surface (Claim 1).

【0008】更に本発明の探触子は、角度θ1、θ2、
θ3 及び2つの振動子の位置の関係は、上記どちらか
の振動子が超音波を発信して試料からの反射波のうちの
横波がもう一方の振動子に入射しない関係としてなる(
請求項2)。
Furthermore, the probe of the present invention has angles θ1, θ2,
The relationship between θ3 and the positions of the two transducers is such that one of the transducers above emits ultrasonic waves and the transverse waves of the waves reflected from the sample do not enter the other transducer (
Claim 2).

【0009】[0009]

【作用】本発明によれば、送信用振動子から発生して他
方の受信用振動子に戻ってゆく反射横波が受信用振動子
に入射しないことになる(請求項1,2)。
According to the present invention, reflected transverse waves generated from a transmitting transducer and returning to the other receiving transducer do not enter the receiving transducer (claims 1 and 2).

【0010】0010

【実施例】図1は本発明の実施例図、図2(イ)、(ロ
)は傾斜角度を含めた構成詳細図であり(イ)は断面図
、(ロ)は平面図、図5はタイムチャートである。 超音波探触子は、異なる材質の2つの音波伝搬体40と
41、2つの振動子30と31を持ち、音波伝搬体40
は、凹レンズ面40Aを持つ円柱状である。この音波伝
搬体40の上部は傾斜部を持ち、この傾斜部に第2の音
波伝搬体41を接触させて使用する。音波伝搬体40の
側面の一部には頂部から内側にかけて傾斜部を持ち、こ
の傾斜部に第1の振動子30を設置する。更に第2の音
波伝搬体41の頂部の傾斜部には第2の振動子31を設
置する。
[Embodiment] Fig. 1 is an embodiment of the present invention, Figs. 2 (a) and 2 (b) are detailed views of the configuration including the inclination angle, (a) is a sectional view, and (b) is a plan view. Fig. 5 is a time chart. The ultrasonic probe has two sound wave propagators 40 and 41 made of different materials and two vibrators 30 and 31.
has a cylindrical shape with a concave lens surface 40A. The upper part of this sound wave propagation body 40 has a sloped part, and the second sound wave propagation body 41 is used in contact with this slope part. A part of the side surface of the sound wave propagation body 40 has an inclined part from the top toward the inside, and the first vibrator 30 is installed on this inclined part. Further, a second vibrator 31 is installed on the sloped portion of the top of the second sound wave propagation body 41 .

【0011】音波伝搬体40と41とは、異なる材質よ
り成り、例えば、音波伝搬体40にサファイアを使った
場合、音波伝搬体41には、石英ガラスを使う。
The sound wave propagating bodies 40 and 41 are made of different materials; for example, when the sound wave propagating body 40 is made of sapphire, the sound wave propagating body 41 is made of quartz glass.

【0012】以上の実施例で、3つの傾斜部の傾き、及
び振動子30と31との位置とは、送信用振動子から発
生して他方の受信用振動子に戻ってゆく反射横波が該受
信用振動子に入射しないような関係に設置するが詳しく
は後述する。
In the above embodiment, the inclinations of the three inclined parts and the positions of the transducers 30 and 31 are such that the reflected transverse waves generated from the transmitting transducer and returning to the other receiving transducer correspond to It is installed in such a way that it does not enter the receiving transducer, but details will be described later.

【0013】動作を説明する。パルサ1は、送信用振動
子30に超音波をを励起させる送信パルスを発生し、そ
れを送信用振動子30に送る。これにより、超音波(縦
波)が音波伝搬体40に送射されもう一方の音波伝搬体
41との境界面A・A’で反射され、凹レンズ面40A
を透過し被検体8に伝搬し、音波伝搬体40の凹レンズ
面の反射縦波および被検体8の反射縦波は音波伝搬体4
1との境界面A・A’で屈折し、受信用振動子31で受
信されレシーバ6によって増幅され、オシロスコープ7
でモニタされる。
The operation will be explained. The pulser 1 generates a transmission pulse that excites ultrasonic waves in the transmission transducer 30, and sends it to the transmission transducer 30. As a result, ultrasonic waves (longitudinal waves) are transmitted to the sound wave propagation body 40 and reflected at the boundary surfaces A and A' with the other sound wave propagation body 41, and the concave lens surface 40A
The longitudinal waves reflected from the concave lens surface of the sound wave propagating body 40 and the longitudinal waves reflected from the subject 8 are transmitted through the sound wave propagating body 4 and propagated to the subject 8 .
1, is refracted at the interface A/A' with the receiving transducer 31, is amplified by the receiver 6, and is transmitted to the oscilloscope 7.
will be monitored.

【0014】本発明による探触子の構造の詳細について
図2を用いて説明する。その前に図6に示すように超音
波が個体Dと個体Eとの境界面に斜め入射する場合、個
体D、Eの縦波、横波速度及び密度をC5、C6、ρ1
、C7、C8、ρ2とすると、スネルの法則により下式
となる。
The structure of the probe according to the present invention will be explained in detail with reference to FIG. Before that, as shown in Fig. 6, when the ultrasonic wave is obliquely incident on the interface between individuals D and E, the longitudinal wave velocity and shear wave velocity and density of individuals D and E are C5, C6, ρ1.
, C7, C8, and ρ2, the following equation is obtained according to Snell's law.

【数6】C5/Sinθi=C5/Sinθ5=C6/
Sinθ6=C7/Sinθ7=C8/Sinθ8ここ
で、θiは境界面の法線からの個体Dへの縦波入射角、
θ5は境界面の法線からの個体Dでの縦波反射角度、θ
6は境界面の法線からの個体Dでの横波反射角度、θ7
は境界面の法線からの個体Eへの縦波屈折角度、θ8は
境界面の法線からの個体Eへの横波屈折角度である。
[Formula 6] C5/Sinθi=C5/Sinθ5=C6/
Sinθ6=C7/Sinθ7=C8/Sinθ8where, θi is the angle of incidence of longitudinal waves on individual D from the normal to the boundary surface,
θ5 is the longitudinal wave reflection angle at individual D from the normal to the boundary surface, θ
6 is the transverse wave reflection angle at individual D from the normal to the boundary surface, θ7
is the longitudinal wave refraction angle from the normal line of the boundary surface to the individual E, and θ8 is the transverse wave refraction angle from the normal line of the boundary surface to the individual E.

【0015】本実施例ではこうした関係を積極的に利用
する。即ち、図2において第1の音波伝搬体40の一点
鎖線0−lは凹レンズ面40により超音波が集束される
集束軸線を示し、紙面の上では上下方向にZ軸として示
し、これに直交する紙面上左右方向をX軸、さらにこの
Z、Xに直交する紙面に垂直な方向をY軸としたとき音
波伝搬体は40は0−l線(Z軸方向)を軸心とする円
柱状に形成され、その側面の一部に頂部から内側に向け
てZ軸に対し角度θ1の傾斜面40Bを切り出して形成
しておく。この傾斜面40Bに上記振動子30を設置す
る。振動子30は、例えば圧電素子と電極とより成る。 一方、音波伝搬体40の頂部は前記X軸に対し角度θ2
で傾斜面40Cが形成されている。音波伝搬体41の底
面は、傾斜面40Cと合致するよう前記角度θ2の傾斜
面に形成されている。この2つの傾斜面は、シリコンオ
イル等の媒質のうすい膜を介して接着させ、超音波の反
射、屈折作用をもつ。音波伝搬体41の上面部は、頂部
から図の如くX軸に対し角度θ3で切り出された傾斜面
41Aとなっている。この傾斜面上に第2の振動子31
を設置しておく。
[0015] In this embodiment, such a relationship is actively utilized. That is, in FIG. 2, the dashed-dotted line 0-l of the first sound wave propagating body 40 indicates the focusing axis along which the ultrasonic waves are focused by the concave lens surface 40, and is shown as the Z-axis in the vertical direction on the paper, and is perpendicular to this. When the left and right direction on the paper is the X axis, and the direction perpendicular to the paper that is perpendicular to Z and An inclined surface 40B having an angle θ1 with respect to the Z-axis is cut out from a part of the side surface thereof from the top toward the inside. The vibrator 30 is installed on this inclined surface 40B. The vibrator 30 includes, for example, a piezoelectric element and an electrode. On the other hand, the top of the sound wave propagation body 40 is at an angle θ2 with respect to the X axis.
An inclined surface 40C is formed. The bottom surface of the sound wave propagation body 41 is formed into an inclined surface at the angle θ2 so as to match the inclined surface 40C. These two inclined surfaces are bonded together via a thin film of a medium such as silicone oil, and have the effect of reflecting and refracting ultrasonic waves. The upper surface of the sound wave propagating body 41 is an inclined surface 41A cut out from the top at an angle θ3 with respect to the X-axis as shown in the figure. A second vibrator 31 is placed on this inclined surface.
Set it up.

【0016】かかる構成のもとで、振動子30を送信用
振動子にするものとする。θ1、θ2、θ3との関係を
述べよう。今、境界面の一点Oが入射、反射点とすると
、この点Oへの上記振動子30からの入射角度θi及び
凹レンズ面40Aへの反射角度θrは図2のようになる
。 また、θrで反射して伝搬した超音波が凹レンズ面40
Aや被検体8で反射されて戻ってきた超音波が点Oで屈
折する角度θtも図2のようになる。ここで、超音波音
軸は、それぞれ、to、ol、orである。法線はHH
’で示してある。
With this configuration, it is assumed that the vibrator 30 is used as a transmitting vibrator. Let us describe the relationship between θ1, θ2, and θ3. Now, assuming that one point O on the boundary surface is the incident and reflection point, the incident angle θi from the vibrator 30 to this point O and the reflection angle θr to the concave lens surface 40A are as shown in FIG. In addition, the ultrasonic waves reflected and propagated by θr are transmitted to the concave lens surface 40.
The angle θt at which the ultrasonic wave reflected by A and the object 8 and returned is refracted at point O is also as shown in FIG. Here, the ultrasonic sound axes are to, ol, and or, respectively. The normal is HH
' is indicated.

【0017】to、ol、or間の縦波音速をCot、
Col、Corとすれば、スネルの法則から下式が成り
立つ。
[0017] The longitudinal sound velocity between to, ol, or is Cot,
If Col and Cor are used, the following formula holds true from Snell's law.

【数7】Cot/Sinθi=Col/Sinθr=C
or/Sinθtここで、音波伝搬体40が音響的に等
方性としたときには、Cot=Colとなるので、θi
=θrであり、また、θtは、
[Formula 7] Cot/Sinθi=Col/Sinθr=C
or/SinθtHere, when the sound wave propagation body 40 is acoustically isotropic, Cot=Col, so θi
= θr, and θt is

【数8】θt=Sin−1(Cor/Col)と表され
、θ1、θ2、θ3は、下式で決定できる。
[Equation 8] It is expressed as θt=Sin-1 (Cor/Col), and θ1, θ2, and θ3 can be determined by the following formula.

【数9】θ1=π/2−(θi+θ2)=π/2−2θ
[Formula 9] θ1=π/2-(θi+θ2)=π/2-2θ
i

【数10】θ2=θi[Formula 10] θ2=θi

【数11】θ3=θt[Formula 11] θ3=θt

【0018】一方、音波伝搬体40が音響的に異方性が
ある場合には、θ1、θ2、θ3は、
On the other hand, when the sound wave propagation body 40 is acoustically anisotropic, θ1, θ2, and θ3 are as follows.

【数12】θ1=π/2−(θi+θ2)[Formula 12] θ1=π/2−(θi+θ2)

【数13】θ
2=θr=Sin−1(Cor/Cot)
[Formula 13] θ
2=θr=Sin-1(Cor/Cot)

【数14】θ
3=θt=Sin−1(Cor/Col)となる。
[Formula 14] θ
3=θt=Sin-1 (Cor/Col).

【0019】次にθiの決定について説明すると、音波
伝搬体異方性が無いものと仮定し、送信用振動子30側
より入射し、凹レンズ面へ反射される音圧反射率T1と
、凹レンズ面から入射し受信用振動子31へ通過する音
圧通過率R1 との積が最大となるように設計を行う(
T1、R1は、第1、第2の音波伝搬体それぞれの縦波
および横波速度、密度、θi との関数で示される)。
Next, the determination of θi will be explained. Assuming that there is no anisotropy in the sound wave propagating body, the sound pressure reflectance T1 incident from the transmitting vibrator 30 side and reflected to the concave lens surface, and the concave lens surface The design is made so that the product of the sound pressure passing rate R1 which enters the receiving transducer 31 from
T1 and R1 are expressed as functions of longitudinal and transverse wave velocities, densities, and θi of the first and second sound wave propagators, respectively).

【0020】以上の構成によれば、従来法の問題点であ
った、送信用振動子30から発生する横波は、境界面A
A’において、スネルの法則により反射角度が縦波の反
射角度と異なる。しかも、受信用振動子31は、この反
射波を受信しない位置に設定しているため、距離が遠い
場合には図5の(d)、距離が近い場合には図5の(e
)の如くなり、いずれも横波の反射波の受信はない。こ
れによって探触子を被検体に内在する欠陥に合焦させる
ため被検体に近づけても図5の(e)の如くなって、信
号S2の発生はなく、信号Fとの干渉は生じ得ない。
According to the above configuration, the transverse waves generated from the transmitting vibrator 30, which was a problem in the conventional method, can be avoided at the boundary surface A.
At A', the reflection angle is different from the reflection angle of the longitudinal wave according to Snell's law. Furthermore, since the receiving transducer 31 is set at a position where it does not receive this reflected wave, it is shown in (d) in FIG. 5 when the distance is long, and (e in FIG. 5) when the distance is short.
), and there is no reception of reflected transverse waves in either case. As a result, even if the probe is brought close to the object to be examined in order to focus on the defect inherent in the object, the result will be as shown in (e) of Fig. 5, and the signal S2 will not be generated, and no interference with the signal F will occur. .

【0021】尚、本実施例では、点焦点形の探触子で説
明したが、図7に示す線焦点形の探触子(シリンドリカ
ル型)に応用できることは明かである。尚、図7のハイ
フォンで規定した各記号はそれぞれ図2の記号と対応し
ていることは云うまでもない。
Although this embodiment has been explained using a point focus type probe, it is obvious that the present invention can be applied to a line focus type probe (cylindrical type) shown in FIG. It goes without saying that the symbols defined by the hyphen in FIG. 7 correspond to the symbols in FIG. 2, respectively.

【0022】[0022]

【発明の効果】本発明によれば、横波の反射波の受波が
なくなるため、探触子を試料の欠陥部分に近づけても正
規の反射信号との干渉はなく、正確な反射信号のみの検
出が可能となる。従って、V(Z)曲線による評価に対
し、干渉によるV(Z)曲線のみだれがなくなり、正確
な評価が行える。
[Effects of the Invention] According to the present invention, since there is no reception of reflected waves of transverse waves, there is no interference with normal reflected signals even when the probe approaches a defective part of the sample, and only accurate reflected signals can be received. Detection becomes possible. Therefore, when evaluating the V(Z) curve, there is no distortion of the V(Z) curve due to interference, and accurate evaluation can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の超音波探触子の実施例図である。FIG. 1 is an embodiment diagram of an ultrasonic probe of the present invention.

【図2】本発明の超音波探触子本体の実施例図である。FIG. 2 is an embodiment diagram of an ultrasonic probe main body of the present invention.

【図3】従来の超音波探触子の実施例図である。FIG. 3 is an example diagram of a conventional ultrasonic probe.

【図4】従来のタイムチャートである。FIG. 4 is a conventional time chart.

【図5】本実施例のタイムチャートである。FIG. 5 is a time chart of this embodiment.

【図6】異なる媒体での入射波、反射波の説明図である
FIG. 6 is an explanatory diagram of incident waves and reflected waves in different media.

【図7】線焦点形の探触子に対する本発明の実施例図で
ある。
FIG. 7 is a diagram showing an embodiment of the present invention for a line focus type probe.

【符号の説明】[Explanation of symbols]

1  パルサ 6  レシーバ 7  オシロスコープ 20  探触子 30  送信用振動子 31  受信用振動子 40  第1の音波伝搬体 41  第2の音波伝搬体 1 Parsa 6 Receiver 7 Oscilloscope 20 Probe 30 Transmitting transducer 31 Receiving transducer 40 First sound wave propagator 41 Second sound wave propagator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1の音波伝搬体と、第2の音波伝搬
体と、そのそれぞれに着設された振動子とよりなる超音
波探触子において、前記第1の音波伝搬体の一端には凹
レンズ面を形成し、他端には前記凹レンズ面によって形
成される超音波の集束軸(Z軸方向)に直交するX軸に
対し角度θ2の傾斜面を形成し、該傾斜面に前記第2の
音波伝搬体の一端を接続しその他端には前記X軸に対し
角度θ3の傾斜面を形成し該傾斜面に前記一方の振動子
を着設し、前記第1の音波伝搬体の側面には前記集束軸
に向かって前記集束軸に対して角度θ1の傾斜面を形成
しその傾斜面に前記他方の振動子を着設したことを特徴
とする超音波探触子。
Claim 1: An ultrasonic probe comprising a first sound wave propagating body, a second sound wave propagating body, and a transducer attached to each of them, wherein one end of the first sound wave propagating body forms a concave lens surface, and at the other end is formed an inclined surface at an angle θ2 with respect to the One end of the second sound wave propagating body is connected, the other end is formed with an inclined surface at an angle θ3 with respect to the X axis, the one vibrator is mounted on the inclined surface, and the side surface of the first sound wave propagating body is connected. An ultrasonic probe characterized in that an inclined surface is formed at an angle θ1 toward the focusing axis, and the other transducer is mounted on the inclined surface.
【請求項2】  請求項1の超音波探触子において、角
度θ1、θ2、θ3 及び2つの振動子の位置の関係は
、上記どちらかの振動子が超音波を発信して試料からの
反射波のうちの横波がもう一方の振動子に入射しない関
係としてなる超音波探触子。
2. In the ultrasonic probe according to claim 1, the relationship between the angles θ1, θ2, θ3 and the positions of the two oscillators is such that the relationship between the angles θ1, θ2, θ3 and the positions of the two oscillators is such that when one of the oscillators transmits an ultrasonic wave and the ultrasound is reflected from the sample, An ultrasonic probe in which the transverse waves of the waves do not enter the other transducer.
JP3119403A 1991-04-23 1991-04-23 Ultrasonic probe Pending JPH04323556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119403A JPH04323556A (en) 1991-04-23 1991-04-23 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119403A JPH04323556A (en) 1991-04-23 1991-04-23 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH04323556A true JPH04323556A (en) 1992-11-12

Family

ID=14760624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119403A Pending JPH04323556A (en) 1991-04-23 1991-04-23 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH04323556A (en)

Similar Documents

Publication Publication Date Title
KR870000590A (en) Defect detection method and apparatus of metal
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JPH0421139B2 (en)
US5748564A (en) Amplified acousto-optical vibration sensor and ultrasonic transducer array
JPH0273151A (en) Ultrasonic probe
US3379902A (en) Ultrasonic testing apparatus
JP2004037436A (en) Method of measuring sound elastic stress by surface sh wave and measuring sensor
JP2001208729A (en) Defect detector
JPH04323556A (en) Ultrasonic probe
JP4187993B2 (en) Ultrasonic probe
JP2004524536A (en) High Frequency Ultrasonic Measurement of Partial Layer Thickness of Thin-Walled Tube by Contact Method
US5585563A (en) Non-contact thickness measurement using UTG
JPS63186143A (en) Ultrasonic wave probe
JP3653785B2 (en) C-scan ultrasonic flaw detection method and apparatus
JPH0376419B2 (en)
Lockett Lamb and torsional waves and their use in flaw detection in tubes
JPH0481654A (en) Ultrasonic detector
JP2006284486A (en) Ultrasonic probe, and soft delay material for ultrasonic probe
RU1772721C (en) Ultrasonic contact transducer
JP3379166B2 (en) Ultrasound spectrum microscope
JP4046926B2 (en) Contact ultrasonic sensor with delay material
JPH0731169Y2 (en) Ultrasonic probe
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
SU1569696A1 (en) Transducer for ultrasonic inspection