JPH04323502A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH04323502A
JPH04323502A JP3091952A JP9195291A JPH04323502A JP H04323502 A JPH04323502 A JP H04323502A JP 3091952 A JP3091952 A JP 3091952A JP 9195291 A JP9195291 A JP 9195291A JP H04323502 A JPH04323502 A JP H04323502A
Authority
JP
Japan
Prior art keywords
optical path
interferometer
medium
length
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3091952A
Other languages
Japanese (ja)
Other versions
JP2979701B2 (en
Inventor
Masashi Sueyoshi
正史 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3091952A priority Critical patent/JP2979701B2/en
Publication of JPH04323502A publication Critical patent/JPH04323502A/en
Application granted granted Critical
Publication of JP2979701B2 publication Critical patent/JP2979701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To reduce the change in the difference of light passage lengths generated due to temperature variation by satisfying a specified expression for the physical length of a light passage length correction block. CONSTITUTION:A physical length 1i of a light passage length correction block is set so that an expression 1 is satisfied for di, where ni is refractive index, di is the change in the physical lengths between two beam luminous fluxes for each medium, alphai is rate of change in unit length due to expansion and contraction of the medium except for air, and T is temperature. An interferometer has, for example, a prism P1 which is the light passage length correction block, a prism P2 which is a reflection mirror for bending the light passage, and a polarizing beam splitter 2 which is a beam splitter. Difference in the prism lengths in the proceeding direction of the divided two luminous fluxes is L1, and a distance between the two luminous fluxes is L2. The material of glass is BK7, the wavelength is 632.8nm, and the temperature is 25 deg.C. alpha=7.1X10<-6>/K, n=1.515 (n=n2/n1, where n1 is refractive index of air, and n2 is refractive index of glass). L1=2.1XL2, and when L2=20mm, for example, L1=42mm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】干渉計の光路長の温度変化の低減
に関するものである。
[Industrial Application Field] This invention relates to the reduction of temperature variations in the optical path length of an interferometer.

【0002】0002

【従来の技術】従来技術に係る二光束干渉計、例えばレ
ーザ干渉計を用いて、移動ステージの座標測定を行う場
合の、レーザ干渉計と測定対象である移動ステージの関
係を図7に示す。
2. Description of the Related Art FIG. 7 shows the relationship between a laser interferometer and a moving stage to be measured when measuring the coordinates of a moving stage using a conventional two-beam interferometer, such as a laser interferometer.

【0003】本干渉計は、光源1と、プリズムP3、P
4と、偏光ビームスプリッタ2と、λ/4板3と、移動
鏡4と、固定鏡5とを有する。
[0003] This interferometer includes a light source 1 and prisms P3 and P.
4, a polarizing beam splitter 2, a λ/4 plate 3, a movable mirror 4, and a fixed mirror 5.

【0004】レーザ光源1より射出したレーザビームB
1は、偏光ビームスプリッタ2により、2つの偏光成分
に分割される。偏光ビームスプリッタ2を通過した一方
の偏光成分を有する偏光ビームB21は、プリズムP3
を通過し、移動鏡4で反射される。そして反射の前後で
、2度、λ/4板3を通ることにより偏光面が90°回
転し、偏光ビームスプリッタ2で反射され、ディテクタ
6に入射する。一方レーザビームB1の他方の偏光成分
を有する偏光ビームB31は、偏光ビームスプリッタ2
で反射され、さらに、プリズムP4で反射された後、固
定鏡5で反射される。そして、もう一方の偏光ビームB
21と同様に、ディテクタ6に入射する。  図3は、
図7のP3、P4の拡大図である。
Laser beam B emitted from laser light source 1
1 is split into two polarization components by a polarization beam splitter 2. The polarized beam B21 having one polarized component that has passed through the polarized beam splitter 2 is passed through the prism P3.
and is reflected by the movable mirror 4. Then, before and after reflection, the polarization plane is rotated by 90 degrees by passing through the λ/4 plate 3 twice, reflected by the polarization beam splitter 2, and incident on the detector 6. A polarized beam B31 having the other polarized component of the laser beam B1 is sent to the polarizing beam splitter 2.
The light is reflected by the prism P4, and then reflected by the fixed mirror 5. And the other polarized beam B
Similarly to 21, the light is incident on the detector 6. Figure 3 shows
8 is an enlarged view of P3 and P4 in FIG. 7. FIG.

【0005】[0005]

【発明が解決しようとする課題】従来の技術では温度変
化により、ガラスの膨張と屈折率変化が生じ、固定鏡側
と移動鏡側の2つの光路間において、光路長差に変化が
生じる。その結果、測定に誤差が生じる。
In the conventional technology, temperature changes cause expansion of the glass and change in the refractive index, resulting in a change in the optical path length difference between the two optical paths on the fixed mirror side and the movable mirror side. As a result, errors occur in the measurements.

【0006】本発明は、この様な、温度変化によって生
じる光路長差の変化を低減した干渉計を提供する事を目
的とする。
An object of the present invention is to provide an interferometer in which such changes in optical path length difference caused by temperature changes are reduced.

【0007】[0007]

【課題を解決する為の手段】本発明の目的を達成するた
めには、固定鏡側光路と移動鏡側光路で温度変化による
光路長の変化が打ち消し合う様に光学部品のサイズを設
計すればよい。
[Means for Solving the Problems] In order to achieve the object of the present invention, the size of the optical components should be designed so that changes in optical path length due to temperature changes are canceled out in the optical path on the fixed mirror side and the optical path on the movable mirror side. good.

【0008】そのために、光源からでた光線束を複数の
光線束に分けて、それぞれの光線束が1または2以上の
媒質中を通過後、干渉させる干渉計において、1または
2以上の光路長補正ブロックを有し、上記各媒質の屈折
率をni(i=1〜N)、上記各媒質毎の、光線束間の
物理的長さの差をdi(i=1〜N)、上記各物理的長
さの差diの、空気を除く媒質の膨張収縮による、単位
長当たりの変化率をαi(i=1〜N)、温度をTとし
たときに、diが、
For this purpose, an interferometer divides a beam of light emitted from a light source into a plurality of beams, and each beam passes through one or more media and then interferes with each other. It has a correction block, where the refractive index of each medium is ni (i = 1 to N), the physical length difference between the light beams for each medium is di (i = 1 to N), and each of the above When the change rate per unit length of the physical length difference di due to expansion and contraction of the medium excluding air is αi (i = 1 to N), and the temperature is T, then di is

【0009】[0009]

【数3】[Math 3]

【0010】を満たすように、上記の光路長補正ブロッ
クの物理的長さli(i=1〜m)が、設定されている
こととしたものである。
It is assumed that the physical length li (i=1 to m) of the optical path length correction block described above is set so as to satisfy the following.

【0011】[0011]

【作用】光路長差の温度による変化は、ガラスの屈折率
変化、膨張及びガラスの膨張による空気層の厚さの変化
によって起こる。
[Operation] Changes in the optical path length difference due to temperature are caused by changes in the refractive index of the glass, expansion, and changes in the thickness of the air layer due to the expansion of the glass.

【0012】各媒質の屈折率をni(i=1〜N)、各
光線束毎、各媒質毎の物理的長さをLij(i=1〜N
,j=1,2)、各光線束毎の全光路長をLH1,LH
2とすると、
The refractive index of each medium is ni (i=1 to N), and the physical length of each ray bundle and each medium is Lij (i=1 to N).
, j=1, 2), the total optical path length for each ray bundle is LH1, LH
If it is 2,

【0013】[0013]

【数4】[Math 4]

【0014】となる。[0014]

【0015】上記各媒質毎の、光線束間の物理的長さの
差をdi(i=1〜N)、温度をTとしたときに、光線
束間の光路長の差をLとすると、Lは下式で与えられる
When the physical length difference between the light beams for each medium is di (i=1 to N), the temperature is T, and the optical path length difference between the light beams is L, L is given by the following formula.

【0016】[0016]

【数5】[Math 5]

【0017】従って、光線束間の光路長の差Lの温度に
よる変化率は、下式のようになる。
Therefore, the rate of change of the difference L in optical path length between the beam bundles due to temperature is expressed by the following equation.

【0018】[0018]

【数6】[Math 6]

【0019】ここで、上記各媒質の物理的長さの差di
の、空気を除く媒質の膨張収縮による、単位長当たりの
変化率をαi(i=1〜N)とすると、αiは、下式で
与えられる。
Here, the physical length difference di of each medium is
Let αi (i=1 to N) be the rate of change per unit length due to expansion and contraction of a medium other than air, αi is given by the following formula.

【0020】[0020]

【数7】[Math 7]

【0021】式7を使って、式6を変形し、さらに、式
6=0とすると下式を得る。
[0021] By using equation 7 to transform equation 6 and further setting equation 6=0, the following equation is obtained.

【0022】[0022]

【数8】[Math. 8]

【0023】ある温度付近では、∂ni/∂T、αi、
niは定数として与えられるので、式8となる様なdi
の組合せにすれば、光路長差は、温度によって変化しな
い。
[0023] Near a certain temperature, ∂ni/∂T, αi,
Since ni is given as a constant, di such as Equation 8
If the combination is made, the optical path length difference will not change depending on the temperature.

【0024】[0024]

【実施例】本発明に係る二光束干渉計、例えばレーザ干
渉計を用いて、移動ステージの座標測定を行う場合の、
レーザ干渉計と測定対象である移動ステージ7の関係を
図1に示す。
[Example] When measuring the coordinates of a moving stage using a two-beam interferometer according to the present invention, such as a laser interferometer,
FIG. 1 shows the relationship between the laser interferometer and the moving stage 7 that is the object of measurement.

【0025】本干渉計は、レ−ザ光源である光源1と、
光路長補正ブロックであるプリズムP1と、光路折り曲
げ用反射鏡であるプリズムP2と、ビ−ムスプリッタで
ある偏光ビームスプリッタ2と、λ/4板3と、第2の
反射鏡である移動鏡4と、第1の反射鏡である固定鏡5
とを有する。
This interferometer includes a light source 1 which is a laser light source,
A prism P1 which is an optical path length correction block, a prism P2 which is a reflecting mirror for bending the optical path, a polarizing beam splitter 2 which is a beam splitter, a λ/4 plate 3, and a movable mirror 4 which is a second reflecting mirror. and a fixed mirror 5 which is the first reflecting mirror.
and has.

【0026】光路長補正ブロックであるプリズムP1と
、光路折り曲げ用反射鏡であるプリズムP2と、ビ−ム
スプリッタである偏光ビームスプリッタ2とは1体とな
っている。
The prism P1, which is an optical path length correction block, the prism P2, which is a reflecting mirror for bending the optical path, and the polarizing beam splitter 2, which is a beam splitter, are integrated into one body.

【0027】レーザ光源1より射出したレーザビームB
1は、偏光ビームスプリッタ2により、2つの偏光成分
に分割される。偏光ビームスプリッタ2を通過した一方
の偏光成分(P偏光成分)を有する偏光ビームB2は、
プリズムP1を通過し、移動鏡4で反射される。そして
反射の前後で、2度、λ/4板3を通ることにより偏光
面が90°回転し、S偏光成分となって偏光ビームスプ
リッタ2で反射され、ディテクタ6に入射する。一方レ
ーザビームB1の他方の偏光成分(S偏光成分)を有す
る偏光ビームB3は、偏光ビームスプリッタ2で反射さ
れ、さらに、プリズムP2で反射された後、固定鏡5で
反射される。そして、往復2度λ/4板を通るため、偏
光面が90゜回転してP偏光成分となるので、偏光ビ−
ムスプリッタ2を透過し、もう一方の偏光ビームB2と
同様に、ディテクタ6に入射する。
Laser beam B emitted from laser light source 1
1 is split into two polarization components by a polarization beam splitter 2. The polarized beam B2 having one polarized light component (P polarized light component) that has passed through the polarized beam splitter 2 is
The light passes through the prism P1 and is reflected by the movable mirror 4. Then, before and after reflection, the polarization plane is rotated by 90 degrees by passing through the λ/4 plate 3 twice, becoming an S-polarized light component, reflected by the polarization beam splitter 2, and incident on the detector 6. On the other hand, a polarized beam B3 having the other polarized component (S polarized component) of the laser beam B1 is reflected by the polarizing beam splitter 2, further reflected by the prism P2, and then reflected by the fixed mirror 5. Since the light passes through the λ/4 plate 2 times back and forth, the plane of polarization rotates 90 degrees and becomes a P-polarized component.
It passes through the polarized beam splitter 2 and enters the detector 6 like the other polarized beam B2.

【0028】図2は、図1のP1、P2の拡大図である
。図2に示すごとく、分割された2光束の進行方向にお
けるプリズム長の差をL1とし、2光束の分離距離をL
2とすると、前述のd1、d2は、d1=L1−L2、
d2=L1となる。
FIG. 2 is an enlarged view of P1 and P2 in FIG. As shown in Figure 2, the difference in prism length in the traveling direction of the two divided beams is L1, and the separation distance of the two beams is L.
2, the above d1 and d2 are d1=L1-L2,
d2=L1.

【0029】今、本実施例のように、媒質が2種類の場
合(N=2)に式3を適用することを考える。
Now, consider applying equation 3 to a case where there are two types of media (N=2) as in this embodiment.

【0030】式4において、LH1を移動鏡側の全光路
長、LH2を固定鏡側の全光路長とすると、式4は、下
式のようになる。
In equation 4, if LH1 is the total optical path length on the movable mirror side and LH2 is the total optical path length on the fixed mirror side, then equation 4 becomes as shown below.

【0031】[0031]

【数9】[Math. 9]

【0032】[0032]

【数10】[Math. 10]

【0033】但し、L0は、プリズム部分以外の、LH
1,LH2について共通な空気部分の長さである。n1
は、空気の屈折率、n2は、ガラスの屈折率である。従
って、式5は、下式のようになる。
[0033] However, L0 is LH other than the prism part.
1, which is the length of the air portion common to LH2. n1
is the refractive index of air, and n2 is the refractive index of glass. Therefore, Equation 5 becomes as shown below.

【0034】[0034]

【数11】[Math. 11]

【0035】空気については、屈折率の温度、湿度、気
圧による変化はレ−ザの波長を変化させて補正すること
で、0とし、n=n2/n1を使うと、式11より、L
の温度による変化率は、下式となる。この時、波長の変
化による屈折率の変化は小さいので無視する。
For air, changes in the refractive index due to temperature, humidity, and atmospheric pressure are corrected by changing the wavelength of the laser, and if n=n2/n1 is used, then from equation 11, L
The rate of change due to temperature is expressed by the following formula. At this time, the change in refractive index due to the change in wavelength is small, so it is ignored.

【0036】[0036]

【数12】[Math. 12]

【0037】式12は、d1、d2を使っても表現でき
るが、本実施例では、L1、L2を使って表現した方が
、温度変化率を0にする条件が判りやすいので、L1、
L2で示した。
Equation 12 can also be expressed using d1 and d2, but in this embodiment, it is easier to understand the conditions for making the temperature change rate 0 by expressing it using L1 and L2, so L1,
Indicated by L2.

【0038】このとき、ガラスの材質をBK7、波長を
632.8nmとし、温度は25℃近辺で考えると、α
=7.1×10 ̄6/K,n=1.515,屈折率の温
度変化は下式で与えられる。
At this time, assuming that the glass material is BK7, the wavelength is 632.8 nm, and the temperature is around 25°C, α
=7.1×10 ̄6/K, n=1.515, and the temperature change in refractive index is given by the following formula.

【0039】[0039]

【数13】[Math. 13]

【0040】したがって、 (2.8×10 ̄6+0.515×7.1×10 ̄6)
・L1=(2.8×10 ̄6+1.515×7.1×1
0 ̄6)・L2 となる。これを整理すると、L1=2.1×L2となる
Therefore, (2.8×10 ̄6+0.515×7.1×10 ̄6)
・L1=(2.8×10 ̄6+1.515×7.1×1
0 ̄6)・L2. When this is rearranged, L1=2.1×L2.

【0041】上式によると、例えば、L2=20mmの
場合は、L1=42mmとすればよいことがわかる。
According to the above equation, it can be seen that, for example, when L2=20 mm, it is sufficient to set L1=42 mm.

【0042】図3は、図7に示す従来型の干渉計のプリ
ズムである。これについて、同条件で計算すると、L1
=0であるから下式のようになる。
FIG. 3 shows a prism of the conventional interferometer shown in FIG. Regarding this, when calculated under the same conditions, L1
= 0, so the following formula is obtained.

【0043】[0043]

【数14】[Math. 14]

【0044】従って、−271nm/℃の変動が起こる
[0044] Therefore, a variation of -271 nm/°C occurs.

【0045】本発明を実施するときのプリズムの配置に
ついては、図4の様に、平行四辺形状のプリズムP2を
2つの直角三角形状のプリズムP5、P7に分離して、
配置すると、プリズムP5、P7間の距離も温度により
変動し、またプリズムP7が、どの点を中心に膨張する
かにより、空気層の厚さが異なるので、適切な配置では
ない。但し、図5の様に、プリズムP1を、直角三角形
状のプリズムP8と長方形状プリズムP9に、または多
数個に分離すると、プリズムP9は、どこを中心として
膨張しても、空気層の厚さの変わり方は一定である。た
だし、プリズムの温度差が小さい方が望ましいので、プ
リズムP1を分離しない方がよい。
Regarding the arrangement of the prisms when carrying out the present invention, as shown in FIG. 4, the parallelogram-shaped prism P2 is separated into two right-angled triangular prisms P5 and P7.
If this arrangement is made, the distance between the prisms P5 and P7 will vary depending on the temperature, and the thickness of the air layer will vary depending on the point around which the prism P7 expands, so this is not an appropriate arrangement. However, if the prism P1 is separated into a right triangular prism P8 and a rectangular prism P9, or into a large number of prisms, as shown in FIG. The way in which it changes is constant. However, since it is desirable that the temperature difference between the prisms be small, it is better not to separate the prism P1.

【0046】本発明に係る実施例ではないが、図6は、
ビ−ムスプリッタ2ではなく、ミラーM1で光路を曲げ
た図であり、温度変化によるガラスの膨張及び屈折率変
化による光路長差の変化は起こらないが、ミラーM1と
プリズムP11、P12の間隔が温度によって変化する
ので望ましくない。
Although not an embodiment according to the present invention, FIG.
This is a diagram in which the optical path is bent by the mirror M1 instead of the beam splitter 2, and the optical path length difference does not change due to expansion of the glass due to temperature changes or changes in the refractive index, but the distance between the mirror M1 and the prisms P11 and P12 is This is undesirable because it changes with temperature.

【0047】尚、上記の説明では、温度変化によるレー
ザ波長の変化による影響は少いとしている。
In the above explanation, it is assumed that the influence of changes in laser wavelength due to temperature changes is small.

【0048】以上のように本発明によれば、温度変化に
伴うガラスの屈折率変化及びガラスの膨張によって生ず
る光路長差の変化を小さくすることができるので、干渉
計による高精度の測長が可能である。
As described above, according to the present invention, it is possible to reduce the change in the optical path length difference caused by the change in the refractive index of the glass due to temperature change and the expansion of the glass, so that highly accurate length measurement using an interferometer is possible. It is possible.

【0049】式3から明らかなように、干渉計のビーム
間隔L2は、可能ならば小さい方が誤差が小さくなり、
二本のビームを接近させればさせるほど、二本の光路の
温度差も小さくなると考えられるので、より精度を向上
させることができる。
As is clear from equation 3, the smaller the beam spacing L2 of the interferometer is, the smaller the error will be.
It is thought that the closer the two beams are brought together, the smaller the temperature difference between the two optical paths will be, so the accuracy can be further improved.

【0050】[0050]

【発明の効果】本発明は、以上のように構成されている
ので、温度変化によって生じる光路長差の変化を低減し
た干渉計を提供する事ができ、より高精度に位置計測を
行なうことができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to provide an interferometer that reduces changes in the optical path length difference caused by temperature changes, and can perform position measurement with higher accuracy. can.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るレーザ干渉計とステージの関係を
示す説明図。
FIG. 1 is an explanatory diagram showing the relationship between a laser interferometer and a stage according to the present invention.

【図2】図1のプリズムP1、P2を拡大した説明図。FIG. 2 is an enlarged explanatory diagram of prisms P1 and P2 in FIG. 1;

【図3】図7のプリズムP3、P4を拡大した説明図。FIG. 3 is an enlarged explanatory diagram of prisms P3 and P4 in FIG. 7;

【図4】正確に計算できない配置に置かれたプリズムの
配置図。
FIG. 4 is a layout diagram of prisms placed in a position that cannot be accurately calculated.

【図5】本発明の第2の実施例の説明図。FIG. 5 is an explanatory diagram of a second embodiment of the present invention.

【図6】正確に計算できない配置に置かれたプリズムの
配置図。
FIG. 6 is a layout diagram of prisms placed in a position that cannot be accurately calculated.

【図7】従来技術に係るレーザ干渉計とステージの関係
を示す説明図。
FIG. 7 is an explanatory diagram showing the relationship between a laser interferometer and a stage according to the prior art.

【符号の説明】[Explanation of symbols]

1…レーザ光源、2…ビームスプリッタ、3…λ/4板
、4…移動鏡、5…固定鏡、6…ディテクタ、7…ステ
ージ、P1〜P12…プリズム、M1…ミラー。
DESCRIPTION OF SYMBOLS 1... Laser light source, 2... Beam splitter, 3... λ/4 plate, 4... Movable mirror, 5... Fixed mirror, 6... Detector, 7... Stage, P1 to P12... Prism, M1... Mirror.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源からでた光線束を複数の光線束に分け
て、それぞれの光線束が1または2以上の媒質中を通過
後、干渉させる干渉計において、1または2以上の光路
長補正ブロックを有し、上記各媒質の屈折率をni(i
=1〜N)、上記各媒質毎の、光線束間の物理的長さの
差をdi(i=1〜N)、上記各物理的長さの差diの
、空気を除く媒質の膨張収縮による、単位長当たりの変
化率をαi(i=1〜N)、温度をTとしたときに、d
iが【数1】 を満たすように、上記の光路長補正ブロックの物理的長
さli(i=1〜m)が、設定されていることを特徴と
する干渉計。
[Claim 1] An interferometer in which a beam of light emitted from a light source is divided into a plurality of beams of light, each of which passes through one or more media and then interferes with each other, wherein one or more optical path length corrections are performed. block, and the refractive index of each medium is ni(i
= 1 to N), the physical length difference between the ray bundles for each medium is di (i = 1 to N), and the expansion and contraction of the medium excluding air is the physical length difference di for each of the above media. When αi (i=1 to N) is the rate of change per unit length and T is the temperature, d
An interferometer characterized in that the physical length li (i=1 to m) of the optical path length correction block is set so that i satisfies the following equation.
【請求項2】前記光路長補正ブロックと、光線束を分岐
するビ−ムスプリッタと、分岐された一方の光線束の進
行方向を変える光路折り曲げ用反射鏡とを有し、上記光
路長補正ブロックと、上記ビ−ムスプリッタと、上記光
路折り曲げ用反射鏡とが1体となっていることを特徴と
する請求項1記載の干渉計。
2. The optical path length correction block comprises: the optical path length correction block; a beam splitter for splitting a beam; and a reflecting mirror for bending the optical path to change the traveling direction of one of the branched beams; 2. An interferometer according to claim 1, wherein: , said beam splitter, and said optical path bending reflecting mirror are integrated into one body.
【請求項3】請求項1または2記載の干渉計は、光源と
して、レ−ザ光源を有することを特徴とする干渉計。
3. The interferometer according to claim 1, wherein the interferometer has a laser light source as a light source.
【請求項4】請求項1、2または3記載の干渉計は、位
置測定の基準となる第1の反射鏡と、測定対象に取付け
られて、位置を測定される第2の反射鏡とを有し、第1
の反射鏡と、第2の反射鏡間の相対距離を測定する位置
測定装置であることを特徴とする干渉計。
4. The interferometer according to claim 1, 2, or 3 includes a first reflecting mirror that serves as a reference for position measurement, and a second reflecting mirror that is attached to a measurement object and whose position is measured. have, first
An interferometer characterized in that it is a position measuring device that measures the relative distance between a second reflecting mirror and a second reflecting mirror.
【請求項5】光源からでた光線束を、複数の光線束に分
けて、それぞれの光線束が、1または2以上の媒質中を
通過後、干渉させる干渉方法において、上記各媒質の屈
折率をni(i=1〜N)、上記各媒質毎の、光線束間
の物理的長さの差をdi(i=1〜N)、上記各物理的
長さの差diの、空気を除く媒質の膨張収縮による、単
位長当たりの変化率をαi(i=1〜N)、温度をTと
したときに、diが、 【数2】 を満たすように、物理的長さli(i=1〜m)が設定
された媒質中を、光線束が通過することを特徴とする干
渉方法。
5. An interference method in which a beam of light emitted from a light source is divided into a plurality of beams of light, and each of the beams of light passes through one or more media and then interferes with each other, wherein the refractive index of each medium is ni (i = 1 to N), the difference in physical length between the ray bundles for each of the above media is di (i = 1 to N), and the difference in physical length di of each of the above, excluding air, is When the rate of change per unit length due to expansion and contraction of the medium is αi (i = 1 to N) and the temperature is T, the physical length li (i = An interference method characterized in that a beam of light passes through a medium in which an angle of 1 to m) is set.
JP3091952A 1991-04-23 1991-04-23 Interferometer Expired - Lifetime JP2979701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091952A JP2979701B2 (en) 1991-04-23 1991-04-23 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091952A JP2979701B2 (en) 1991-04-23 1991-04-23 Interferometer

Publications (2)

Publication Number Publication Date
JPH04323502A true JPH04323502A (en) 1992-11-12
JP2979701B2 JP2979701B2 (en) 1999-11-15

Family

ID=14040917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091952A Expired - Lifetime JP2979701B2 (en) 1991-04-23 1991-04-23 Interferometer

Country Status (1)

Country Link
JP (1) JP2979701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867271A (en) * 1993-11-17 1999-02-02 Advantest Corporation Michelson interferometer including a non-polarizing beam splitter
JP2000249513A (en) * 1999-02-26 2000-09-14 Dr Johannes Heidenhain Gmbh Beam splitter structure group and interferometer with it
JP2016211922A (en) * 2015-05-01 2016-12-15 Ckd株式会社 Three dimensional measuring device
WO2019009401A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867271A (en) * 1993-11-17 1999-02-02 Advantest Corporation Michelson interferometer including a non-polarizing beam splitter
WO2004079313A1 (en) * 1993-11-17 2004-09-16 Isao Tokumoto Michelson interferometer
JP2000249513A (en) * 1999-02-26 2000-09-14 Dr Johannes Heidenhain Gmbh Beam splitter structure group and interferometer with it
JP2016211922A (en) * 2015-05-01 2016-12-15 Ckd株式会社 Three dimensional measuring device
JPWO2019009401A1 (en) * 2017-07-06 2020-04-30 浜松ホトニクス株式会社 Optical module
US11067380B2 (en) 2017-07-06 2021-07-20 Hamamatsu Photonics K.K. Optical module
JP6496463B1 (en) * 2017-07-06 2019-04-03 浜松ホトニクス株式会社 Optical module
CN110799817A (en) * 2017-07-06 2020-02-14 浜松光子学株式会社 Optical assembly
WO2019009401A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module
EP3650820A4 (en) * 2017-07-06 2021-04-21 Hamamatsu Photonics K.K. Optical module
US11054309B2 (en) 2017-07-06 2021-07-06 Hamamatsu Photonics K.K. Optical module
WO2019009404A1 (en) * 2017-07-06 2019-01-10 浜松ホトニクス株式会社 Optical module
US11187579B2 (en) 2017-07-06 2021-11-30 Hamamatsu Photonics K.K. Optical device
US11209260B2 (en) 2017-07-06 2021-12-28 Hamamatsu Photonics K.K. Optical module having high-accuracy spectral analysis
US11624605B2 (en) 2017-07-06 2023-04-11 Hamamatsu Photonics K.K. Mirror unit and optical module
US11629946B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Mirror unit and optical module
US11629947B2 (en) 2017-07-06 2023-04-18 Hamamatsu Photonics K.K. Optical device
US11635290B2 (en) 2017-07-06 2023-04-25 Hamamatsu Photonics K.K. Optical module
US11879731B2 (en) 2017-07-06 2024-01-23 Hamamatsu Photonics K.K. Mirror unit and optical module

Also Published As

Publication number Publication date
JP2979701B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP3143663B2 (en) Interferometer
US10024647B2 (en) Method of air refractive index correction for absolute long distance measurement
JPH021501A (en) Laser interference length measuring machine and positioning method using the same machine
JPS63228003A (en) Interferometer
JP2001513204A (en) Interferometer system using two wavelengths and a lithographic apparatus comprising such a system
JPH0712535A (en) Interferometer
US7426039B2 (en) Optically balanced instrument for high accuracy measurement of dimensional change
JP3151881B2 (en) Optical pulse width measurement device
JPH09178415A (en) Light wave interference measuring device
TWI304157B (en) Lithographic apparatus and device manufacturing method
CN111742190A (en) Beam guiding in an interferometer
JPH07239208A (en) Device for measuring application of interference
JPH04323502A (en) Interferometer
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
US6836335B2 (en) Multi-axis interferometer
JP2002286409A (en) Interferometer
JP3412212B2 (en) Interferometer device
JP2002214070A (en) Instrument and method for eccentricity measurement and projection lens incorporating optical element measured for eccentricity by using them
JP7433954B2 (en) laser interference device
JPH11287612A (en) Interferometer
JP2003083846A (en) Interferometer and highly precise projection lens
JPH08271216A (en) Measuring method for interference of light wave to non-aphesion block gauge
JPH06123607A (en) Length measuring device
JPH04120311U (en) interferometer
JPH11325848A (en) Aspherical surface shape measurement device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12