JPH0432204A - Method of forming film on magnetic substance particle - Google Patents

Method of forming film on magnetic substance particle

Info

Publication number
JPH0432204A
JPH0432204A JP2136972A JP13697290A JPH0432204A JP H0432204 A JPH0432204 A JP H0432204A JP 2136972 A JP2136972 A JP 2136972A JP 13697290 A JP13697290 A JP 13697290A JP H0432204 A JPH0432204 A JP H0432204A
Authority
JP
Japan
Prior art keywords
magnetic material
particles
magnetic
material particles
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2136972A
Other languages
Japanese (ja)
Inventor
Teruo Kiyomiya
照夫 清宮
Tomoyuki Hayashi
智幸 林
Yoshio Matsuo
良夫 松尾
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2136972A priority Critical patent/JPH0432204A/en
Publication of JPH0432204A publication Critical patent/JPH0432204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly form films of different materials on the surfaces of power- or chip-shaped magnetic substance particles by sticking the film materials while an AC magnetic field is applied to the magnetic substance particles. CONSTITUTION:When an AC magnetic field is applied to powder- or chip-shaped magnetic substance particles, magnetic coupling of the particles is cancelled and the particles are separated from one another by the action of the north and south poles of the AC magnetic field ever-changed by the magnetism of the magnetic substance particles and the separated particles move in the AC magnetic field three-dimensionally. When film materials are attached while the separated particles move three-dimensionally, the film materials are attached uniformly to each of the magnetic substance particles. For effective film formation, the frequency of the AC magnetic field is preferably 10-1,000Hz and its intensity is preferably at least 10 Oe. A frequency under 10Hz and intensity under 10 Oe separate and move the magnetic substance particles insufficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉末状や小片状等の磁性材料粒体への皮膜形
成方法に関し、例えばボンド磁石の粉末原料等として使
用する磁性材料粒体表面に均一に皮膜を形成する方法に
関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for forming a film on magnetic material particles in the form of powder or small pieces, for example, magnetic material particles used as a powder raw material for bonded magnets. This invention relates to a method for uniformly forming a film on the body surface.

(従来の技術) 粉末状や小片状の磁性材料粒体は、上記のように、ボン
ド磁石の粉末原料として多用されている。
(Prior Art) As described above, magnetic material particles in the form of powder or small pieces are often used as powder raw materials for bonded magnets.

すなわち、バルク体の磁性材料を各種の粉砕機あるいは
水素崩壊等の粉砕手段により粉末状や小片状に粉砕し、
得られる磁性材料粒体を原料とし、合成樹脂をバインダ
ーとして、所望形状に磁場中成形し、バインダー硬化し
て製品ボンド磁石を得るのである。
That is, a bulk magnetic material is pulverized into powder or small pieces using various pulverizers or pulverizing means such as hydrogen disintegration.
The resulting magnetic material particles are used as a raw material, and a synthetic resin is used as a binder to form a desired shape in a magnetic field, and the binder is cured to obtain a bonded magnet product.

ところで、近年、その優れた磁性特性に注目し、希土類
元素(以下、R)、鉄、ボロンを主成分とするR−Fe
−B系の希土類ボンド磁石が開発され、実用されている
By the way, in recent years, attention has been paid to its excellent magnetic properties, and
-B-based rare earth bonded magnets have been developed and put into practical use.

このR−Fe−B系の希土類ボンド磁石も、R−Fe−
B系のバルク体を上記のような手段で粉砕して得られる
磁性材料粒体を原料として、上記のような方法により製
造している。
This R-Fe-B rare earth bonded magnet also has R-Fe-
It is manufactured by the method described above using magnetic material granules obtained by pulverizing the B-based bulk material by the method described above as a raw material.

そしてこのR−Fe−B系バルク体には、焼結型と高速
急冷型とがあり、現在のところ、焼結型が、低コストで
高い磁気特性を有するものとして最も優れているとされ
ている。
There are two types of R-Fe-B bulk bodies: sintered type and high-speed quenched type.Currently, sintered type is considered to be the best as it is low cost and has high magnetic properties. There is.

しかし、R−Fe−B系焼結磁石は、主相R2F e 
、4B相をとり囲む希土類リッチな界面が高保磁力発生
する重要な役割をしているので、この焼結型のものを粉
砕すると、この界面が破壊され保磁力が激減してしまう
However, the R-Fe-B sintered magnet has a main phase R2F e
, 4B phase plays an important role in generating a high coercive force, so when this sintered type is crushed, this interface is destroyed and the coercive force is drastically reduced.

そこで、本発明者等により、上記の磁性材料粒体表面に
希土類元素の皮膜を形成し、破壊した界面を修復し、減
少した保磁力を回復してボンド磁石を製造する方法が提
案されている。
Therefore, the present inventors have proposed a method of manufacturing a bonded magnet by forming a rare earth element film on the surface of the magnetic material particles, repairing the broken interface, and restoring the reduced coercive force. .

この磁性材料粒体表面への皮膜形成は、従来、例えば第
2図(A)、(B)、(C)に示す方法により行われて
いる。
Formation of a film on the surface of the magnetic material particles has conventionally been carried out, for example, by the method shown in FIGS. 2(A), 2(B), and 2(C).

すなわち、同図(A)に示すものは、基板03上に磁性
材料粒体1を載置し、希土類元素等の皮膜材料の蒸気2
を磁性材料粒体1に被着(蒸着)させるものである。
That is, in the case shown in FIG. 3(A), magnetic material particles 1 are placed on a substrate 03, and a vapor 2 of a coating material such as a rare earth element is placed on the substrate 03.
is deposited (evaporated) on the magnetic material particles 1.

また、同図(B)に示すものは、回転する基板03を回
転する基台04に取付け、基板03上の籠05内に入れ
た磁性材料粒体1に皮膜材料蒸気2を被着(蒸着)させ
るものである。
In addition, in the case shown in FIG. 3B, a rotating substrate 03 is attached to a rotating base 04, and coating material vapor 2 is deposited on magnetic material particles 1 placed in a cage 05 on the substrate 03. ).

同図(B)に示すものは、基板03の自転と基台04の
公転とにより、同図(A)に示すものよりも、均一な蒸
着を可能とするものである。
The device shown in FIG. 3B allows more uniform vapor deposition than the device shown in FIG.

更に、同図(C)に示すものは、同図(A)。Furthermore, what is shown in the same figure (C) is the same as that shown in the same figure (A).

(B)に示すものよりも径の大きい小片状の磁性材料粒
体1に皮膜を形成する際に使用される方法で、回転する
筺体06内に入れた小片状の磁性材料粒体1に、皮膜材
料蒸気2を被着(蒸着)させるものである。
This method is used to form a film on small pieces of magnetic material particles 1 having a larger diameter than those shown in (B), and small pieces of magnetic material particles 1 are placed in a rotating housing 06. Then, a coating material vapor 2 is deposited.

(発明が解決しようとする課題) しかし、周知の通り、磁性材料粒体は、粒体自体の磁性
により、粒体同士が付着し合って小塊状を形成し、第2
図(A)〜(C)に示す基板03゜基台04.煙体06
を回転させる程度では、このような小塊状を破壊して1
粒づつの磁性材料粒体1に分離することは不可能である
(Problem to be Solved by the Invention) However, as is well known, magnetic material particles adhere to each other to form small lumps due to the magnetism of the particles themselves.
The board 03° base 04 shown in Figures (A) to (C). smoke body 06
If you rotate the
It is impossible to separate the magnetic material grains 1 grain by grain.

そして小塊状を形成している磁性材料粒体1に皮膜材料
を蒸着しても、均一な蒸着膜を得ることができないばか
りでなく、蒸着膜が形成されない粒体も生じてしまう。
Even if a coating material is deposited on the magnetic material particles 1 forming small lumps, not only a uniform deposited film cannot be obtained, but also some particles will not have a deposited film formed thereon.

このため、第2図(A)〜(C)に示す従来の方法で希
土類元素を蒸着させた磁性材料粒体を使用して製造され
る製品ボンド磁石の磁気特性はバラツキがあり、一定品
質の製品を提供するには、歩留りを低下させ、製品コス
トを上昇させることがある。この結果、低コストの焼結
型R−Fe−B系バルク体を使用する意義を没却する場
合がある。
For this reason, the magnetic properties of product bonded magnets manufactured using magnetic material particles deposited with rare earth elements by the conventional method shown in Figures 2 (A) to (C) vary, and the quality of the bonded magnets varies. Providing the product may reduce yield and increase product cost. As a result, the significance of using a low-cost sintered R-Fe-B bulk body may be lost.

また、磁性材料粒体は、上記のR−Fe−B系のものに
限るものでも、またボンド磁石の原料に限るものでもな
く、各種の材料製の磁性材料粒体が各種の分野で広く使
用されている。しがち、被覆材料も上記の希土類元素に
限ることなく、各種の材料が使用されている。従って、
このような磁性材料粒体への各種材料による均一な皮膜
形成方法の開発は、現在、各種の技術分野で切望される
ものである。
In addition, the magnetic material particles are not limited to the above-mentioned R-Fe-B type, nor are they limited to the raw materials for bonded magnets, but magnetic material particles made of various materials are widely used in various fields. has been done. However, the coating material is not limited to the rare earth elements mentioned above, and various other materials are used. Therefore,
The development of a method for forming uniform coatings of various materials on magnetic material particles is currently in great demand in various technical fields.

本発明は、以上の諸点に鑑みてなされたものであって、
その目的とするところは、粉末状あるいは小片状の磁性
材料粒体表面に、各種材料による皮膜を均一に形成する
方法を提案することを目的とする。
The present invention has been made in view of the above points, and
The purpose of this study is to propose a method for uniformly forming a film of various materials on the surface of powder-like or small-piece magnetic material particles.

(課題を解決するための手段) 上記目的を達成するために、本発明は、磁性材料粒体に
交流磁場を印加しながら、皮膜材料を被着させることを
特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that a coating material is applied to magnetic material particles while applying an alternating magnetic field to them.

(作 用) 本発明では、先ず、粉末状あるいは小片状等の磁性材料
粒体に交流磁場を印加する。すると、前述のように、磁
性材料粒体自体の磁性により、交流磁場の時々刻々変化
するS極とN極の作用を受け、粒体同士の磁性による結
合が解除されて、1粒づつの粒体に分離すると共に、分
離した粒体が交流磁場内を立体的に流動する。
(Function) In the present invention, first, an alternating magnetic field is applied to magnetic material particles in the form of powder or small pieces. Then, as mentioned above, due to the magnetism of the magnetic material grains themselves, they are affected by the ever-changing S and N poles of the AC magnetic field, and the magnetic bonds between the grains are released, causing each grain to separate. At the same time, the separated particles flow three-dimensionally in an alternating magnetic field.

この分離し、かつ立体的に流動している状態を保持させ
ながら、皮膜材料を被着させる。すると、皮膜材料は、
磁性材料粒体の1粒づつに均一に被着する。
The coating material is applied while maintaining this separated and three-dimensionally fluid state. Then, the coating material is
Uniformly coats each grain of magnetic material.

なお、このような作用を効果的に発生させるためには、
上記の交流磁場は、周波数10Hz以上で、磁場の強さ
 100e以上とすることが好ましい。
In order to effectively generate this effect,
It is preferable that the above-mentioned alternating current magnetic field has a frequency of 10 Hz or more and a magnetic field strength of 100 e or more.

周波数が10Hz未満であると、上記の磁性材料粒体の
分離、流動が不充分となる。周波数は、高い程磁性材料
粒体の分離、流動は良好となるが、余り高くても効果は
飽和してしまうため、上限は1KHz程度である。
If the frequency is less than 10 Hz, the separation and flow of the magnetic material particles will be insufficient. The higher the frequency, the better the separation and flow of the magnetic material particles, but if the frequency is too high, the effect will be saturated, so the upper limit is about 1 KHz.

また、磁場の強さは、あまり低過ぎると、磁性材料粒体
の分離、流動が不充分となるため、100e以下とする
Furthermore, if the strength of the magnetic field is too low, separation and flow of the magnetic material particles will be insufficient, so the strength of the magnetic field is set to 100 e or less.

上記の周波数及び磁場の強さを最適にすることにより、
磁性材料粒体の流動を速くすることかでき、皮膜形成操
作をスピードアップすることかできる。
By optimizing the above frequency and magnetic field strength,
The flow of the magnetic material particles can be made faster and the film forming operation can be sped up.

本発明に係る方法により皮膜を形成することのできる磁
性材料粒体としては、前述の焼結型又は高速冷却型のR
,−F e −B系磁石バルク体を粉砕17たものに限
らず、各種の磁性材料の粉末状のものや小片状のものが
挙げられる。特に、焼結型RFe−B系磁石バルク体を
粉砕したものとして、R(Rは、Nd、Pr、Dy、H
o、Tbのうちの少なくとも1種又は更にLa、Ce、
Sm、Gd、Er、Eu、Srn、Yb、Lu、Yのう
ちの少なくともコ一種からなる)8〜30原子%、B2
〜28原子%、及び残部実質的にFeの組成からなるも
のが好ましく使用される。更に、キュリー点の向上等を
目的と【7て、Feの50原子%までをCoで置換する
こともてきる。
As the magnetic material particles on which a film can be formed by the method according to the present invention, the above-mentioned sintered type or rapid cooling type R
, -F e -B type magnet bulk bodies are not limited to pulverized ones, but various magnetic materials in the form of powders and small pieces can be used. In particular, R (R is Nd, Pr, Dy, H
o, at least one of Tb or further La, Ce,
consisting of at least one of Sm, Gd, Er, Eu, Srn, Yb, Lu, Y) 8 to 30 atomic%, B2
~28 atomic %, and the balance is preferably composed of Fe. Furthermore, for the purpose of improving the Curie point, etc., up to 50 atomic percent of Fe can be replaced with Co.

なお、磁性材料粒体は、余り粒径が大き過ぎると、上記
の交流磁場を印加17ても、1粒つづに分離しないばか
りか、充分な流動状態を得ることかできないため、粒径
は5顆以下程度とすることか好ましい。
In addition, if the particle size of the magnetic material particles is too large, even if the above-mentioned alternating current magnetic field is applied (17), not only will it not separate into particles one by one, but it will also be impossible to obtain a sufficient fluid state. It is preferable that it be below the level of the condyle.

また、このような磁性材料粒体に、本発明に係る方法に
より被覆することのできる皮膜材料とし2ても、Nd、
Ce、La、Pr、Dy、no、Tb等の希土類元素の
他に、通常の湿式皮膜形成法や乾式皮膜形成法で使用さ
れる各種の皮膜材料が挙げられる。
In addition, as coating materials that can be coated on such magnetic material particles by the method according to the present invention, Nd, Nd,
In addition to rare earth elements such as Ce, La, Pr, Dy, NO, and Tb, various film materials used in normal wet film forming methods and dry film forming methods may be mentioned.

更に、本発明に係る方法においては、これらの皮膜材料
は、前述の蒸着法に限ることなく、スパッタ法、イオン
ブレーティング法、CVD法、その他適宜の方法で被着
させることができる。
Furthermore, in the method according to the present invention, these coating materials are not limited to the above-mentioned vapor deposition method, but can be deposited by sputtering, ion blasting, CVD, or any other appropriate method.

(実 施 例) 本発明に係る方法の効果を実証するために、次の要領で
調整したNd−Fe−B系の磁性材料粒体に、次ぎの要
領でNdメタルを蒸着させたものの磁気特性を測定、比
較し7た。
(Example) In order to demonstrate the effect of the method according to the present invention, the magnetic properties of Nd metal was deposited in the following manner on Nd-Fe-B magnetic material particles prepared in the following manner. were measured and compared.

先ず、Nd1sF f!778B  (a t%)焼結
磁石バルク体(保磁力1ce−12,5kOe)をショ
ークラッシャーにより、800IJlII以下の粗粉末
状とした。
First, Nd1sF f! A 778B (at%) sintered bulk magnet (coercive force 1ce-12.5 kOe) was made into a coarse powder of 800 IJlII or less using a show crusher.

この粗粉末状の磁性材料粒体の保磁力iHeは、1.5
kOeであり、上記のバルク体の保磁力IHeの10分
の1以下に激減していた。
The coercive force iHe of this coarse powder magnetic material granule is 1.5
kOe, which was drastically reduced to less than one-tenth of the coercive force IHe of the bulk body.

この磁性材料粒体に以下の3方法でNdメタルを10人
/ s e cでトータル1縛(水晶振動式膜厚測定に
よる)の膜厚となるように蒸着させた。
Nd metal was deposited on the magnetic material particles by the following three methods at a rate of 10 people/sec to a total film thickness of 1 (as measured by quartz crystal film thickness measurement).

1、第2図(A)に示す従来方法で、基板03上に上記
の磁性材料粒体1を載置し、基板03を回転させながら
、Ndメタル蒸気02を磁性材料粒体11に蒸着させた
1. Using the conventional method shown in FIG. 2(A), place the above magnetic material particles 1 on a substrate 03, and while rotating the substrate 03, Nd metal vapor 02 is deposited on the magnetic material particles 11. Ta.

2、第2図(B)に示す従来方法で、基板03上の籠0
5内に上記の磁性材料粒体1を入れ、基板03と、基板
03が取り付けられている基台04とを回転させながら
、Ndメタル蒸気02を磁性材料粒体1に蒸着させた。
2. By the conventional method shown in FIG. 2(B), the cage 0 on the substrate 03 is
The above-mentioned magnetic material particles 1 were placed in a container 5, and Nd metal vapor 02 was deposited on the magnetic material particles 1 while rotating the substrate 03 and the base 04 to which the substrate 03 was attached.

3、第1図に示す本発明に係る方法で、図示省略のチャ
ンバー内に設備されたコイル10に電源1コから周波数
60Hzで交流電流を流し、最高磁場1000eとし、
このコイル10内に磁性材料粒体1を投入し、図示する
ように、磁性材料粒体1をコイル10内で流動させた。
3. In the method according to the present invention shown in FIG. 1, an alternating current is passed from one power supply at a frequency of 60 Hz to a coil 10 installed in a chamber (not shown), with a maximum magnetic field of 1000 e,
The magnetic material particles 1 were put into the coil 10, and the magnetic material particles 1 were made to flow within the coil 10 as shown in the figure.

この流動状態の磁性材料粒体1にNdメタル蒸気2を蒸
着させた。
Nd metal vapor 2 was deposited on the magnetic material particles 1 in a fluidized state.

上記の3方法てNdメタルの皮膜を形成した3種の磁性
材料粒体を、真空中で600℃で1時間の熱処理を施し
た後、夫々図示省略のカプセルに充填し、VSMにより
保磁力を測定した。
The three types of magnetic material particles on which Nd metal films were formed using the three methods described above were heat-treated at 600°C for 1 hour in a vacuum, then filled into capsules (not shown), and the coercive force was increased using VSM. It was measured.

この結果は、次の通りであった。The results were as follows.

蒸  着  方  法         保  磁  
力1の従来法        2.5kOe2の従来法
        3.8kOe3の本発明に係る方法 
 10.2kOe以上のように、1及び2の従来法でN
dメタルを蒸着させたNd−Fe−B系の磁性材料粒体
は、Ndメタル未蒸着の磁性材料粒体の磁気特性(保磁
力)に比し、成る程度の向上は見られるものの、満足の
行くものではない。これに対し、本発明に係る方法でN
dメタルを蒸着させたNd−Fe−B系の磁性材料粒体
は、粉砕前のNd−Fe−B系焼結磁石バルク体の磁気
特性(保磁力)とほぼ同程度にまで向上しており、本発
明に係る方法によれば、Ndメタルの均一な皮膜形成が
可能であり、Nd−Fe−B系焼結磁石バルク体の粉砕
により破壊した希土類リッチな界面が極めて良好に回復
していることが判る。
Vapor deposition method Coercive
Conventional method with force 1 Conventional method with force 2.5 kOe2 Method according to the present invention with force 3.8 kOe3
With conventional methods 1 and 2, N
Although the magnetic properties (coercive force) of Nd-Fe-B based magnetic material particles on which d-metal is deposited are improved to a certain extent compared to magnetic material particles on which Nd-metal is not deposited, the results are not satisfactory. It's not something I'm going to. On the other hand, in the method according to the present invention, N
The Nd-Fe-B magnetic material granules on which d-metal has been deposited have improved magnetic properties (coercive force) that are almost the same as those of the bulk Nd-Fe-B sintered magnet before pulverization. According to the method of the present invention, it is possible to form a uniform film of Nd metal, and the rare earth-rich interface destroyed by crushing the Nd-Fe-B sintered magnet bulk has been extremely well recovered. I understand that.

(発明の効果) 以上詳述した本発明に係る方法によれば、粉末状や小片
状の磁性材料粒体を交流磁場の作用により1粒づつに分
離することができるため、磁性材料粒体の1粒づつに均
一に皮膜材料を被着させることができる。
(Effects of the Invention) According to the method according to the present invention described in detail above, magnetic material particles in the form of powder or small pieces can be separated one by one by the action of an alternating magnetic field. The coating material can be uniformly applied to each particle.

この結果、例えば、界面の破壊により磁性材料粒体の磁
気特性が劣化するのを効果的に防止することができ、こ
れを原料とする製品ボンド磁石の磁気特性を大幅に向上
させることができる。
As a result, it is possible to effectively prevent the magnetic properties of the magnetic material particles from deteriorating due to, for example, destruction of the interface, and it is possible to significantly improve the magnetic properties of a product bonded magnet made from the particles.

また、本発明に係る方法によれば、常に、磁性材料粒体
1粒づつに、均一な皮膜を形成することができるため、
本発明に係る方法で希土類元素の皮膜を形成した焼結型
のR−Fe−B基磁性材料粒体を原料とする製品ボンド
磁石は、一定の品質となり、歩留りを向上させ、製品コ
ストを低減させる。
Furthermore, according to the method according to the present invention, it is possible to always form a uniform film on each magnetic material particle.
Product bonded magnets made from sintered R-Fe-B-based magnetic material particles on which a rare earth element film is formed by the method according to the present invention have a constant quality, improve yield, and reduce product costs. let

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法の一実施態様を示す図、第2
図(A)〜(C)は従来の皮膜形成方法を示す図である
。 特許出願人      富士電気化学株式会社代 理 
人      弁理士 −色 健 軸向       
 弁理士 松 本 雅 利手 続 補 正 書 (自発)
FIG. 1 is a diagram showing one embodiment of the method according to the present invention, and FIG.
Figures (A) to (C) are diagrams showing a conventional film forming method. Patent applicant Fuji Electrochemical Co., Ltd. Representative
People Patent Attorney - Color Ken Axis
Patent attorney Masatoshi Matsumoto Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 磁性材料粒体に交流磁場を印加しながら、皮膜材料を被
着させることを特徴とする磁性材料粒体への皮膜形成方
法。
A method for forming a film on magnetic material particles, the method comprising depositing a film material on the magnetic material particles while applying an alternating magnetic field to the magnetic material particles.
JP2136972A 1990-05-29 1990-05-29 Method of forming film on magnetic substance particle Pending JPH0432204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136972A JPH0432204A (en) 1990-05-29 1990-05-29 Method of forming film on magnetic substance particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136972A JPH0432204A (en) 1990-05-29 1990-05-29 Method of forming film on magnetic substance particle

Publications (1)

Publication Number Publication Date
JPH0432204A true JPH0432204A (en) 1992-02-04

Family

ID=15187780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136972A Pending JPH0432204A (en) 1990-05-29 1990-05-29 Method of forming film on magnetic substance particle

Country Status (1)

Country Link
JP (1) JPH0432204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848818B1 (en) * 2007-01-19 2008-07-28 한국과학기술연구원 Cvd diamond synthesis apparatus for uniform coating onto particles
JP2020139194A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Particle coating method and particle coating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057907A (en) * 1983-09-10 1985-04-03 Japan Synthetic Rubber Co Ltd Surface treating method of particulate of magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057907A (en) * 1983-09-10 1985-04-03 Japan Synthetic Rubber Co Ltd Surface treating method of particulate of magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848818B1 (en) * 2007-01-19 2008-07-28 한국과학기술연구원 Cvd diamond synthesis apparatus for uniform coating onto particles
JP2020139194A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Particle coating method and particle coating device
US11821086B2 (en) 2019-02-28 2023-11-21 Seiko Epson Corporation Particle coating method and particle coating apparatus

Similar Documents

Publication Publication Date Title
Becker Reversal mechanism in copper-modified cobalt-rare-earths
Roy et al. Magnetic properties of glass‐metal nanocomposites prepared by the sol‐gel route and hot pressing
Tao et al. Charge transfer and the magnetic properties of amorphous Gd0. 33Co0. 67
CA2124395A1 (en) Magnetically anisotropic spherical powder
US4063970A (en) Method of making permanent magnets
Ding et al. Magnetic properties of Ba-and Sr-hexaferrite prepared by mechanical alloying
JPH0432204A (en) Method of forming film on magnetic substance particle
EP0247681B1 (en) Magnetic material, magnetic recording medium, and method of manufacturing a magnetic material
Klimecka-Tatar et al. The effect of consolidation method on electrochemical corrosion of polymer bonded Nd-Fe-B type magnetic material
JPH01205403A (en) Rare earth iron resin coupling type magnet
Jurczyk et al. Application of high energy ball milling to the production of magnetic powders from NdFeB-type alloys
Pearce et al. Magnetism of two Apollo 12 igneous rocks
US3811962A (en) Large grain cobalt-samarium intermetallic permanent magnet material stabilized with zinc and process
CA1229066A (en) Thermally controlled sputtering of high anisotrophy magnetic material
Strnat et al. Measurements on permanent magnets made from misch metal-cobalt alloy powders
Woodhams et al. Chalcogenides of the transition elements. IX. Transferred hyperfine field at 57Fe in the pyrite Co0. 98Fe0. 02S2
US3844850A (en) Large grain cobalt-samarium intermetallic permanent magnet material and process
GB1263382A (en) Improvements in permanent magnet material powders having superior magnetic characteristics and method for their production
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
Torkar et al. The effect of grain size on saturation magnetization of barium ferrite powders
Sugimoto et al. Magnetic properties and microstructures of the aerosol-deposited permanent magnet films
US3490703A (en) Permanent magnet and method of manufacturing the same
Greenough et al. Magnetostriction and magnetomechanical coupling in amorphous rare earth‐iron compounds
Binner et al. Effect of structural features in NdFeB-based magnets on the demagnetization process
JPH04110404A (en) Treatment of anisotropy rare earth metal-iron-boron series magnetic powder and plastic magnet with this magnetic powder and manufacture thereof