JPH04321946A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH04321946A
JPH04321946A JP3090214A JP9021491A JPH04321946A JP H04321946 A JPH04321946 A JP H04321946A JP 3090214 A JP3090214 A JP 3090214A JP 9021491 A JP9021491 A JP 9021491A JP H04321946 A JPH04321946 A JP H04321946A
Authority
JP
Japan
Prior art keywords
refractive index
index layer
layer
refractive
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3090214A
Other languages
Japanese (ja)
Inventor
Takeo Tomiyama
富山 建男
Masanobu Hanehiro
羽広 昌信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3090214A priority Critical patent/JPH04321946A/en
Publication of JPH04321946A publication Critical patent/JPH04321946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enhance the reflectance of an unrecorded part by successively laminating a high-refractive-index layer and a low-reflective-index layer on the uppermost low-refractive-index layer as a recording layer and buffer- amplifying the respective reflected waves at each interface. CONSTITUTION:A high-refractive-index layer and a low-refractive-index layer are successively laminated on a substrate more than once. The attenuation coefficient of the high-refractive-index layer is preferably controlled to <=0.1, and the org. dyestuff such as cyanine dye and phthalocyanine dye and Si, ZnS, etc., as the inorg. material are used. The attenuation coefficient of the low- refractive-index layer is controlled almost to zero, and the inorg. matter such as SiO2 and the org. matter such as 'Teflon (R)' are used. A high-refractive- index layer is laminated on the uppermost low-refractive-index layer, and at least one among the high-refractive-index layers is used as the recording layer. This recording layer is irradiated with a laser beam to break the multiplex structure, and the layer is recorded while lowering the reflectance. The amplified reflected waves are buffer-amplified at each interface in this recording medium, and a high reflectance of >=75% is obtained at the unrecorded part as a whole.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光記録媒体、特に再生専
用型光ディスク(CD)用再生装置により再生が可能な
光ディスクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium, and more particularly to an optical disc that can be played back by a read-only optical disc (CD) playback device.

【0002】0002

【従来の技術】光情報記録媒体は、コンパクトディスク
(CD)に代表される再生専用形ディスクが広く普及し
、これに続いて将来大きな需要が期待される追記形光デ
ィスク及び書換え形光ディスクの研究が盛んに行われて
いる。この中でシアニン色素、フタロシアニン色素、ナ
フタロシアニン色素等の有機色素を記録材料として用い
た追記型光ディスクは、テルル等の無機系材料を記録材
料とする光ディスクに比べ、回転塗布による製膜が可能
であることから、低コスト化が期待できるために新たに
注目されている。近年では、さらに再生専用型光ディス
ク、すなわちコンパクトディスク(CD)の再生装置に
より再生が可能であり、かつ一回の記録が可能な追記型
光ディスク(CD−WO)が提案され、コンパクトディ
スクの規格に準拠する追記型光ディスクの研究開発が一
層盛んに行われている。特に、再生レーザー光に対して
ディスク未記録部の反射率を70%以上にするために種
々のディスク構造が検討されている。
BACKGROUND OF THE INVENTION As for optical information recording media, read-only discs such as compact discs (CDs) have become widely used, and research into write-once optical discs and rewritable optical discs, which are expected to have great demand in the future, has followed. It is being actively carried out. Among these, write-once optical discs that use organic dyes such as cyanine dyes, phthalocyanine dyes, and naphthalocyanine dyes as recording materials can be formed by spin coating, compared to optical disks that use inorganic materials such as tellurium as recording materials. For this reason, it is attracting new attention as it can be expected to reduce costs. In recent years, read-only optical discs, i.e. write-once optical discs (CD-WO), which can be played back by a compact disc (CD) playback device and can be recorded once, have been proposed, and the compact disc standard has been adopted. Research and development of compliant write-once optical discs is being actively conducted. In particular, various disk structures are being studied in order to increase the reflectance of the unrecorded portion of the disk to 70% or more with respect to the reproduction laser beam.

【0003】特開平2−87339号公報、特開平2−
87340号公報及び特開平2−79235号公報には
、反射率を高めるために、基板の上に特定の光学定数を
有する記録層、さらに金、銀、銅、アルミニウム等の金
属反射層を所定の膜厚に積層してなる構造が提案されて
いる。この構造によれば、レ−ザ−光に対する反射率を
70%以上にできるとされる。未記録部での反射率を高
めるためのディスクの構造について、いくつか提案され
ているが、これらの公報に記載されるように、基板の上
に記録層及び反射層を順次積層してなる構造のものが一
般的である。
[0003] JP-A-2-87339, JP-A-Hei 2-
No. 87340 and Japanese Unexamined Patent Publication No. 2-79235 disclose that in order to increase the reflectance, a recording layer having a specific optical constant and a metal reflective layer such as gold, silver, copper, or aluminum are provided on a substrate in a predetermined manner. A structure in which layers are laminated to a certain thickness has been proposed. According to this structure, it is said that the reflectance for laser light can be increased to 70% or more. Several proposals have been made regarding the structure of a disc to increase the reflectance in the unrecorded area, but as described in these publications, a structure in which a recording layer and a reflective layer are sequentially laminated on a substrate is proposed. These are common.

【0004】前記公報に記載される構造では反射率を大
きくするための反射層に低屈折率で消衰係数の大きい、
金、銀、銅、アルミニウム、白金、を用いる必要がある
。これら金等の反射膜は高価な上、色素との界面での付
着力が弱く、剥離の問題が指摘されている。また、反射
層として安価なアルミニウムを用いたものが発表されて
いるが、アルミニウムでは、耐食性が問題視されている
[0004] In the structure described in the above-mentioned publication, the reflective layer for increasing the reflectance includes a layer having a low refractive index and a large extinction coefficient.
It is necessary to use gold, silver, copper, aluminum, and platinum. These reflective films made of gold or the like are expensive, have weak adhesion at the interface with the dye, and have been pointed out to have a peeling problem. Further, although a reflective layer using inexpensive aluminum has been announced, corrosion resistance of aluminum is considered to be a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題に
鑑み、未記録部の反射率を高めるために新規な構造を有
する光記録媒体を提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an optical recording medium having a novel structure for increasing the reflectance of unrecorded areas.

【0006】[0006]

【課題を解決するための手段】本発明における光記録媒
体は、基板上に、高屈折率層及び低屈折率層を順次1回
以上積層し、一番上の低屈折率層の上に高屈折率層が積
層されており、高屈折率層のすく少なくとも一つを記録
層とし、それぞれの界面での振幅反射波が互いに干渉し
て増幅するように調整されてなるものである。
[Means for Solving the Problems] The optical recording medium of the present invention has a high refractive index layer and a low refractive index layer laminated one or more times in sequence on a substrate, and a high refractive index layer is stacked on the topmost low refractive index layer. The refractive index layers are laminated, at least one of the high refractive index layers is used as a recording layer, and the amplitudes of reflected waves at each interface are adjusted so as to interfere and amplify each other.

【0007】上記基板としては、塩化ビニル、アクリル
樹脂、ポリオレフィン樹脂、ポリカ−ボネ−ト樹脂、ポ
リビニルアセタ−ル樹脂等の熱可塑性樹脂、エポキシ樹
脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等の
熱硬化成樹脂、ガラス等の材料からなるものがあり、形
状としては板状が好ましい。基板は、レーザー発信波長
で消衰係数が0又はほぼ0のものが好ましい。
The above-mentioned substrate may be made of thermoplastic resin such as vinyl chloride, acrylic resin, polyolefin resin, polycarbonate resin, or polyvinyl acetal resin, or thermoplastic resin such as epoxy resin, unsaturated polyester resin, or vinyl ester resin. Some are made of materials such as hardened resin and glass, and are preferably plate-shaped. The substrate preferably has an extinction coefficient of 0 or approximately 0 at the laser emission wavelength.

【0008】前記高屈折率層は、レーザー発信波長で基
板よりも高屈折率でかつ、反射率を高めるために多重干
渉を利用するので消衰係数が小さいものであることが好
ましい。消衰係数が小さいと、光をあまり吸収せずに他
の層まで光を透過させることができる。高屈折率層は、
レーザー発信波長で屈折率が基板よりも1以上大きく、
消衰係数が0.1以下であるのが好ましい。ただし、最
外層の高屈折率層は、消衰係数が小さくてもよい。高屈
折率層は、有機色素、無機物質等からなる。有機色素と
してはシアニン色素、フタロシアニン色素、ナフタロシ
アニン色素、メロシアニン色素、ポリメチン色素、アン
トラキノン色素、ポルフィリン色素等がある。これらの
色素のうち、レーザ光発信波長よりも低波長側にに共鳴
吸収帯のピークを有するものは、この波長で高屈折率で
低消衰係数を示しやすい。これらの色素は、有機溶媒に
溶解した後回転塗布法により、また、蒸着可能なものは
真空蒸着法により製膜して、高屈折率層とされる。無機
物質としては、Si、ZnS、CdS、ZnSe、Zn
Te等があり、真空蒸着法、スパッタリング法等により
製膜して、高屈折率層とされる。高屈折率層の少なくと
も一つは、記録層とされる。記録レーザ波長で記録層が
0より大きい消衰係数を有する場合、この記録層に光が
吸収され、変形等の影響を受けて記録が行われる。この
記録層は未記録の場合、高反射率を達成するために消衰
係数はできるだけ小さいことが好ましく、しかも記録層
がより多くの光を吸収するように、記録層は基板に接し
て存在するのが好ましく、このような配置では、弱い記
録レーザー光パワーで十分な記録が可能になる。
[0008] The high refractive index layer preferably has a higher refractive index than the substrate at the laser transmission wavelength and has a small extinction coefficient since multiple interference is used to increase the reflectance. When the extinction coefficient is small, light can be transmitted to other layers without absorbing much light. The high refractive index layer is
The refractive index is 1 or more larger than the substrate at the laser emission wavelength,
Preferably, the extinction coefficient is 0.1 or less. However, the outermost high refractive index layer may have a small extinction coefficient. The high refractive index layer is made of an organic dye, an inorganic substance, or the like. Examples of organic dyes include cyanine dyes, phthalocyanine dyes, naphthalocyanine dyes, merocyanine dyes, polymethine dyes, anthraquinone dyes, and porphyrin dyes. Among these dyes, those having a resonance absorption band peak on the wavelength side lower than the laser beam emission wavelength tend to exhibit a high refractive index and a low extinction coefficient at this wavelength. These dyes are dissolved in an organic solvent and then formed into a high refractive index layer by spin coating or, if possible, by vacuum evaporation. Inorganic substances include Si, ZnS, CdS, ZnSe, and Zn.
A high refractive index layer is formed by forming a film using a vacuum evaporation method, a sputtering method, or the like. At least one of the high refractive index layers is a recording layer. If the recording layer has an extinction coefficient greater than 0 at the recording laser wavelength, light is absorbed by this recording layer and recording is performed under the influence of deformation and the like. When this recording layer is unrecorded, it is preferable that the extinction coefficient is as small as possible in order to achieve high reflectance, and the recording layer is in contact with the substrate so that the recording layer absorbs as much light as possible. It is preferable that the arrangement be such that sufficient recording can be performed with a weak recording laser beam power.

【0009】前記低屈折率層は、レーザー発信波長で高
屈折率層よりも低屈折率でかつ、反射率を高めるために
多重干渉を利用するので消衰係数が小さいものであるこ
とが好ましい。低屈折率層は、レーザー発信波長で屈折
率が高屈折率層よりも1以上小さく、消衰係数が0又は
ほぼ0であるのが好ましい。低屈折率層の材料としては
、SiO2、MgF2、CeF3、LaF3等の無機材
料やテフロン、ポリスチレン、ニトロセルロース、ポリ
ビニルピロリドン、ヒドロキシエチルセルロース、ポリ
ビニルアルコール、シリコン樹脂等の有機材料を用いる
ことができる。無機材料は真空蒸着法、スパッタリング
法によって、有機物ポリマーは有機溶媒に溶解した後回
転塗布法によって又はスパッタリング法によって製膜し
て、低屈折率層とされる。
[0009] The low refractive index layer preferably has a lower refractive index than the high refractive index layer at the laser transmission wavelength and has a small extinction coefficient since multiple interference is used to increase the reflectance. It is preferable that the low refractive index layer has a refractive index smaller than that of the high refractive index layer by one or more at the laser transmission wavelength and an extinction coefficient of 0 or almost 0. As the material for the low refractive index layer, inorganic materials such as SiO2, MgF2, CeF3, and LaF3, and organic materials such as Teflon, polystyrene, nitrocellulose, polyvinylpyrrolidone, hydroxyethylcellulose, polyvinyl alcohol, and silicone resin can be used. The inorganic material is formed into a film by a vacuum evaporation method or a sputtering method, and the organic polymer is formed into a film by a spin coating method or a sputtering method after being dissolved in an organic solvent to form a low refractive index layer.

【0010】本発明における光記録媒体は、最外層に保
護層が積層されていてもよい。保護層には紫外線硬化樹
脂、熱硬化樹脂等の各種合成樹脂が使用できる。また、
保護層として、二酸化ケイ素等の膜をスパッタリング法
、真空蒸着法等により形成してもよい。
The optical recording medium of the present invention may have a protective layer laminated as the outermost layer. Various synthetic resins such as ultraviolet curing resins and thermosetting resins can be used for the protective layer. Also,
As the protective layer, a film of silicon dioxide or the like may be formed by sputtering, vacuum evaporation, or the like.

【0011】基板及び各層の屈折率は、基板、低屈折率
層及び必要に応じて積層される保護層が1.5前後であ
り、高屈折率層が2.7以上であるのが好ましい。この
場合、未記録部の反射率を十分に高める(例えば、反射
率を70%以上にする)ことができる。
It is preferable that the refractive index of the substrate and each layer is around 1.5 for the substrate, the low refractive index layer and the protective layer laminated as necessary, and 2.7 or more for the high refractive index layer. In this case, the reflectance of the unrecorded area can be sufficiently increased (for example, the reflectance can be increased to 70% or more).

【0012】本発明における光記録媒体は、基板上に高
屈折率層及び低屈折率層が順次積層されており、一番上
の低屈折率層の上に高屈折率層が積層されている。この
ように、高屈折率層が、基板に接して存在し、しかも、
高屈折率層が一番外にあるため、反射率に寄与する振幅
反射波の数が多くなり、高反射率が得やすくなる。基板
の上に高屈折率層、低屈折率層及び高屈折率層の三層が
順次積層されていることは、最も少ない積層数で例えば
70%以上の高い反射率を得ることができるため、好ま
しい。
In the optical recording medium of the present invention, a high refractive index layer and a low refractive index layer are sequentially laminated on a substrate, and a high refractive index layer is laminated on the topmost low refractive index layer. . In this way, the high refractive index layer is present in contact with the substrate, and
Since the high refractive index layer is the outermost layer, the number of amplitude reflected waves contributing to the reflectance increases, making it easier to obtain a high reflectance. The fact that the three layers of the high refractive index layer, the low refractive index layer, and the high refractive index layer are sequentially laminated on the substrate is because a high reflectance of, for example, 70% or more can be obtained with the least number of laminated layers. preferable.

【0013】各層の膜厚は、上記したように、各界面に
基づく振幅反射波が互いに干渉してて増幅するように調
整されるが、次のようにマトリックス法を用いて決定す
るのが好ましい。
As described above, the film thickness of each layer is adjusted so that the amplitude reflected waves based on each interface interfere with each other and are amplified, but it is preferable to determine it using the matrix method as follows. .

【0014】以下において、基板上に第1の高屈折率層
、低屈折率層、第2の高屈折率層及び保護層が順次積層
されている場合について、説明する。再生レーザー光の
波長をλで示す。また、層の特性マトリックスをMで、
波長λでの光学定数をNで、波長λでの屈折率をnで、
波長λでの消衰係数kで、膜厚をdで、位相距離をγで
表わし、これらが、基板、第1の高屈折率層、低屈折率
層、第2の高屈折率層及び保護層のものであることを、
それぞれ、下付き添字で、0、H1、L、H2及びPで
示す。また、以下において、iは1の虚数を示す。 なお、N=n+ikである。
In the following, a case will be explained in which a first high refractive index layer, a low refractive index layer, a second high refractive index layer, and a protective layer are sequentially laminated on a substrate. The wavelength of the reproduction laser beam is indicated by λ. Also, the characteristic matrix of the layer is M,
The optical constant at wavelength λ is N, the refractive index at wavelength λ is n,
Denote the extinction coefficient k at the wavelength λ, the film thickness d, and the phase distance γ, which are the substrate, the first high refractive index layer, the low refractive index layer, the second high refractive index layer, and the protective layer. that it is of layers,
They are indicated by subscripts 0, H1, L, H2 and P, respectively. Further, in the following, i represents an imaginary number of 1. Note that N=n+ik.

【0015】第1の高屈折率層、低屈折率層及び第2の
高屈折率層の特性マトリックスMH1、ML 及びMH
2は、下記の数1、数2及び数3で示される行列によっ
て与えられる。
Characteristic matrices MH1, ML and MH of the first high refractive index layer, low refractive index layer and second high refractive index layer
2 is given by matrices shown by Equations 1, 2, and 3 below.

【数1】[Math 1]

【数2】[Math 2]

【数3】[Math 3]

【0016】上記の行列に現われる、γH1、γL 及
びγH2は、下記の数4、数5及び数6で示される。
γH1, γL and γH2 appearing in the above matrix are expressed by the following equations 4, 5 and 6.

【数4】γH1=2πdH1nH1/λ−idH1kH
1/λ
[Equation 4] γH1=2πdH1nH1/λ-idH1kH
1/λ

【数5】γL =2πdL nL /λ−idL
 kL /λ
[Formula 5] γL = 2πdL nL /λ-idL
kL/λ

【数6】γH2=2πdH2nH2/λ−
idH2kH2/λ
[Equation 6] γH2=2πdH2nH2/λ-
idH2kH2/λ

【0017】積層構造の特性マトリ
ックスは、各層の特性マトリックスの積である。前記し
た第1の高屈折率層、低屈折率層及び第2の高屈折率層
の積層構造の特性マトリックスをMMUL とすると、
これは下記数7で表わされる。
The property matrix of the layered structure is the product of the property matrices of each layer. If the characteristic matrix of the laminated structure of the first high refractive index layer, low refractive index layer, and second high refractive index layer described above is MMUL,
This is expressed by the following number 7.

【数7】 ただし、数1中、M11、M12、M21及びM22は
マトリックスの成分を示す。例えば、M11は下記数8
で表わされる。
[Equation 7] However, in Equation 1, M11, M12, M21, and M22 represent components of the matrix. For example, M11 is the following number 8
It is expressed as

【数8】M11=cosγH1・cosγL・cosγ
H2−(NL/NH1)・sinγH1・sinγL・
cosγH2−(NH2/NL)・cosγH1・si
nγL・sinγH2−(NH2/NH1)・sinγ
H1・cosγL・sinγH2
[Formula 8] M11=cosγH1・cosγL・cosγ
H2-(NL/NH1)・sinγH1・sinγL・
cosγH2-(NH2/NL)・cosγH1・si
nγL・sinγH2-(NH2/NH1)・sinγ
H1・cosγL・sinγH2

【0018】上記した
構造の光記録媒体の反射率(エネルギー反射率)Rは、
垂直入射の場合、下記数9により計算される。
The reflectance (energy reflectance) R of the optical recording medium having the above structure is:
In the case of normal incidence, it is calculated by the following equation 9.

【数9】[Math. 9]

【0019】上記の式において、式中には、各層の光学
定数、再生波長及び各層の厚さが含まれる。再生波長は
特定することができ、これを特定し、しかも各層の物質
を特定すると、光学定数が決まる。従って、この場合、
上記数9において未知数はdH1、dL及びdH2の三
個の膜厚である。そこで、これらのうち2個を約λ/4
n(ただし、λは上記した再生波長、nは各層のこの再
生波長における屈折率)に設定し、残りの膜厚を上記R
が最大になるように決定する。λ/4nは振幅反射波の
位相が揃うための最短位相距離に相当する。しかし、少
なくとも記録層は消衰係数が0でないため、振幅反射波
の位相が揃うための最短位相距離がλ/4nから少しず
れを生じる。そこで、上記三個の膜厚のうち2個を約λ
/4nとし、他の1個を上記Rが最大になるように決定
することにより、未記録部の反射率が70%以上になる
ように光記録媒体の各層の膜厚を容易に設計することが
できる。さらに、多くの層を有するときも同様に膜厚を
設計することができる。保護層がないときは、上記Np
を空気の光学定数に置き換えればよい。
In the above equation, the optical constant of each layer, the reproduction wavelength, and the thickness of each layer are included in the equation. The reproduction wavelength can be specified, and by specifying this and the material of each layer, the optical constants can be determined. Therefore, in this case,
In Equation 9 above, the unknowns are the three film thicknesses dH1, dL, and dH2. Therefore, two of these are approximately λ/4
n (where λ is the above-mentioned reproduction wavelength, n is the refractive index of each layer at this reproduction wavelength), and the remaining film thickness is set to the above-mentioned R.
is determined so that it is maximized. λ/4n corresponds to the shortest phase distance for aligning the phases of the amplitude reflected waves. However, since at least the recording layer has a non-zero extinction coefficient, the shortest phase distance for aligning the phases of the amplitude reflected waves slightly deviates from λ/4n. Therefore, two of the above three film thicknesses are set to approximately λ
/4n and the other one is determined so that the above-mentioned R is maximized, so that the thickness of each layer of the optical recording medium can be easily designed so that the reflectance of the unrecorded part is 70% or more. Can be done. Furthermore, even when there are many layers, the film thickness can be designed in the same way. When there is no protective layer, the above Np
can be replaced with the optical constant of air.

【0020】本発明における光記録媒体への記録は記録
レーザ光を照射して、記録層に変化を生じさせ、その部
分の反射率を変化させて行う。例えば、上記記録層に記
録レーザ光を照射し、照射部に光を吸収させ、吸収され
た光が熱に変換され、これによりその照射部が溶融、気
化又は分解して変形し、さらに記録層に隣接する層の界
面を変形させて、多重干渉構造を崩し、その照射部の反
射率を低下させることにより、記録することができる。 このような記録層の変化を伴うものは、追記型となる。 記録した情報の再生は、同一のレーザ光を記録が行われ
るよりも小さいパワーで照射し、記録部と未記録部の反
射率の変化を検知して行うことができる。
Recording on the optical recording medium in the present invention is carried out by irradiating a recording laser beam to cause a change in the recording layer, thereby changing the reflectance of that portion. For example, the recording layer is irradiated with a recording laser beam, the irradiated part absorbs the light, the absorbed light is converted into heat, the irradiated part is melted, vaporized, or decomposed and deformed, and then the recording layer Recording can be achieved by deforming the interface between adjacent layers to break the multiple interference structure and lower the reflectance of the irradiated area. Those that involve changes in the recording layer are write-once types. Reproduction of recorded information can be performed by irradiating the same laser beam with a power lower than that used for recording and detecting changes in reflectance between recorded and unrecorded areas.

【0021】[0021]

【作用】本発明における光記録媒体では、複素屈折率の
異なる薄膜を多数積層し、各層界面において、透過光を
反射させ、各界面に基づく振幅反射波を互いに干渉させ
て増幅させ、好ましくはこれらの振幅反射波の位相が揃
うようにし、全体として高い反射率を、金属反射層を使
用することなく、得ることができる。
[Operation] In the optical recording medium of the present invention, a large number of thin films having different complex refractive indexes are laminated, and the transmitted light is reflected at the interface of each layer, and the amplitude reflected waves based on each interface are amplified by interfering with each other. The amplitudes of the reflected waves are aligned in phase, and a high overall reflectance can be obtained without using a metal reflective layer.

【0022】[0022]

【実施例】次に本発明の実施例を示す。[Example] Next, an example of the present invention will be shown.

【0023】実施例1 ガラス基板(780nmでの屈折率は1.5、消衰係数
は0である)上に高屈折率層として、1,1’−ジブチ
ル−3,3,3’,3’−テトラメチル−4,5,4’
,5’−ジベンゾインドジカ−ボシアニンパ−クロレー
ト(780nmでの屈折率は2.7、消衰係数は0.0
5である)70mgを1,1,1,3,3,3−ヘキサ
フルオロプロパノール5ccに溶解し、回転塗布法によ
り、膜厚70nmに製膜した。このうえにさらに低屈折
率層としてSiO2(780nmでの屈折率は1.5、
消衰係数は0である)をスパッタリング法により130
nmに製膜した。さらに高屈折率層としてSi(780
nmでの屈折率は3.1、消衰係数は0.1である)を
同様にスパッタリング法により62nmに製膜した。図
1にこの多層膜の反射スペクトルを示す。記録再生波長
の780nmでの反射率は75%であった。
Example 1 1,1'-dibutyl-3,3,3',3 was formed as a high refractive index layer on a glass substrate (refractive index at 780 nm: 1.5, extinction coefficient 0). '-tetramethyl-4,5,4'
, 5'-dibenzoindodicarbocyanine perchlorate (refractive index at 780 nm is 2.7, extinction coefficient is 0.0
5) was dissolved in 5 cc of 1,1,1,3,3,3-hexafluoropropanol, and a film with a thickness of 70 nm was formed by spin coating. In addition, a low refractive index layer of SiO2 (refractive index at 780 nm is 1.5,
(extinction coefficient is 0) by sputtering method.
A film was formed to a nm size. Furthermore, as a high refractive index layer, Si (780
A film having a refractive index of 3.1 and an extinction coefficient of 0.1) was similarly formed into a film with a thickness of 62 nm by the sputtering method. Figure 1 shows the reflection spectrum of this multilayer film. The reflectance at the recording/reproducing wavelength of 780 nm was 75%.

【0024】実施例2 ポリカーボネート基板(外経:120mm,内経:15
mm,トラックピッチ:1.6μm,出光石油化学株式
会社製、780nmでの屈折率は1.5、消衰係数は0
である)の上に、高屈折率層として1,1’−ジブチル
−3,3,3’,3’−テトラメチル−4,5,4’,
5’−ジベンゾインドジカ−ボシアニンパ−クロレート
(780nmでの屈折率は2.7、消衰係数は0.05
である)70mgを1,1,1,3,3,3−ヘキサフ
ルオロプロパノール5ccに溶解し、回転塗布法により
膜厚70nmに製膜した。この上にさらに低屈折率層と
してSiO2(780nmでの屈折率は1.5、消衰係
数は0である)をスパッタリング法により130nmに
製膜した。さらに高屈折率層としてSi(780nmで
の屈折率は3.1、消衰係数は0.1である)を同様に
スパッタリング法により62nmに製膜した。このディ
スクの780nmでの反射率は、75%であった。以上
のようにして得られた光ディスクに、光記録評価装置(
OMS−2000、ナカミチ株式会社商品名)を用い基
板側から波長780nmの半導体レーザーで、線速度1
.25m/sec、デューティ比50/50の信号を記
録した。記録信号はCDのEFM信号と同じ単一周波数
、11T(197KHz)、7T(309KHz)、3
T(718KHz)を用いた。記録した信号を780n
mの半導体レーザー0.5mWで再生したところ、記録
部では反射率が低下し最高到達C/Nはほぼ50dB前
後であった。また、上記で得られた光ディスクにEFM
信号を記録し、市販のコンパクトディスクプレ−ヤ−(
DP−8000,Kenwood社製、再生光波長78
0nm)で再生することが可能であった。このとき、再
生振幅信号のアイパターンから求めたところ、I11/
ITOPは0.65、I3/ITOPは0.35であっ
た。
Example 2 Polycarbonate substrate (outer diameter: 120 mm, inner diameter: 15
mm, track pitch: 1.6 μm, manufactured by Idemitsu Petrochemical Co., Ltd., refractive index at 780 nm is 1.5, extinction coefficient is 0
1,1'-dibutyl-3,3,3',3'-tetramethyl-4,5,4',
5'-dibenzoindicabocyanine perchlorate (refractive index at 780 nm is 2.7, extinction coefficient is 0.05
) was dissolved in 5 cc of 1,1,1,3,3,3-hexafluoropropanol, and a film with a thickness of 70 nm was formed by spin coating. On top of this, a low refractive index layer of SiO2 (refractive index at 780 nm: 1.5, extinction coefficient: 0) was formed to a thickness of 130 nm by sputtering. Further, as a high refractive index layer, Si (refractive index at 780 nm: 3.1, extinction coefficient: 0.1) was similarly formed into a 62 nm film by sputtering. The reflectance of this disk at 780 nm was 75%. An optical recording evaluation device (
Using OMS-2000 (product name of Nakamichi Co., Ltd.), a semiconductor laser with a wavelength of 780 nm was used to increase the linear velocity of 1 from the substrate side.
.. A signal was recorded at 25 m/sec and a duty ratio of 50/50. The recording signal is the same single frequency as the CD EFM signal, 11T (197KHz), 7T (309KHz), 3
T (718 KHz) was used. Recorded signal at 780n
When the data was reproduced using a 0.5 mW semiconductor laser, the reflectance decreased in the recording part and the highest C/N was approximately 50 dB. In addition, EFM was applied to the optical disc obtained above.
Record the signal and play it on a commercially available compact disc player (
DP-8000, manufactured by Kenwood, reproduction light wavelength 78
0 nm). At this time, as determined from the eye pattern of the reproduced amplitude signal, I11/
ITOP was 0.65 and I3/ITOP was 0.35.

【0025】実施例3 ガラス基板(780nmでの屈折率は1.5、消衰係数
は0である)の上に、高屈折率層として1,1’−ジブ
チル−3,3,3’,3’−テトラメチル−4,5,4
’,5’−ジベンゾインドジカ−ボシアニンパ−クロレ
ート(780nmでの屈折率は2.7、消衰係数は0.
05である)70mgを1,1,1,3,3,3−ヘキ
サフルオロプロパノール5ccに溶解し、回転塗布法に
より膜厚70nmに製膜した。この上にさらに低屈折率
層としてSiO2(780nmでの屈折率は1.5、消
衰係数は0である)をスパッタリング法により130n
mに製膜した。さらに高屈折率層としてビス(トリブチ
ルシロキシ)シリコンナフタロシアニン(780nmで
の屈折率は4.0、消衰係数は0.2である)を真空蒸
着法により同様に50nmに製膜した。図2にこの多層
膜の反射スペクトルを示す。記録再生波長の780nm
での反射率は81%であった。
Example 3 A high refractive index layer of 1,1'-dibutyl-3,3,3', 3'-tetramethyl-4,5,4
',5'-dibenzoindodicarbocyanine perchlorate (refractive index at 780 nm is 2.7, extinction coefficient is 0.
05) was dissolved in 5 cc of 1,1,1,3,3,3-hexafluoropropanol, and a film with a thickness of 70 nm was formed by spin coating. On top of this, as a low refractive index layer, SiO2 (refractive index at 780 nm is 1.5, extinction coefficient is 0) is deposited at 130 nm by sputtering.
A film was formed on m. Further, as a high refractive index layer, bis(tributylsiloxy)silicon naphthalocyanine (refractive index at 780 nm: 4.0, extinction coefficient: 0.2) was similarly formed into a 50 nm film by vacuum evaporation. Figure 2 shows the reflection spectrum of this multilayer film. Recording/reproducing wavelength of 780nm
The reflectance was 81%.

【0026】実施例4 ポリカーボネート基板(外経:120mm,内経:15
mm,トラックピッチ:1.6μm,出光石油化学株式
会社製、780nmでの屈折率は1.5、消衰係数は0
である)の上に、高屈折率層として1,1’−ジブチル
−3,3,3’,3’−テトラメチル−4,5,4’,
5’−ジベンゾインドジカ−ボシアニンパ−クロレート
(780nmでの屈折率は2.7、消衰係数は0.05
である)70mgを1,1,1,3,3,3−ヘキサフ
ルオロプロパノール5ccに溶解し、回転塗布法により
膜厚70nmに製膜した。この上にさらに低屈折率層と
してSiO2(780nmでの屈折率は1.5、消衰係
数は0である)をスパッタリング法により130nmに
製膜した。さらに高屈折率層としてビス(トリブチルシ
ロキシ)シリコンナフタロシアニン(780nmでの屈
折率は4.0、消衰係数は0.2である)を真空蒸着法
により同様に50nmに製膜した。以上のようにして得
られた光ディスクに、実施例2と同様に光記録特性を評
価したところ、3〜11Tの単一信号を4mWの記録で
45dB前後のC/Nが得られた。図3に各周波数信号
での記録パワ−とC/Nの関係を示す。図3中、グラフ
1は3Tにおける特性を、グラフ2は7Tにおける特性
を、グラフ3は11Tにおける特性を示す。
Example 4 Polycarbonate substrate (outer diameter: 120 mm, inner diameter: 15
mm, track pitch: 1.6 μm, manufactured by Idemitsu Petrochemical Co., Ltd., refractive index at 780 nm is 1.5, extinction coefficient is 0
1,1'-dibutyl-3,3,3',3'-tetramethyl-4,5,4',
5'-dibenzoindicabocyanine perchlorate (refractive index at 780 nm is 2.7, extinction coefficient is 0.05
) was dissolved in 5 cc of 1,1,1,3,3,3-hexafluoropropanol, and a film with a thickness of 70 nm was formed by spin coating. On top of this, a low refractive index layer of SiO2 (refractive index at 780 nm: 1.5, extinction coefficient: 0) was formed to a thickness of 130 nm by sputtering. Further, as a high refractive index layer, bis(tributylsiloxy)silicon naphthalocyanine (refractive index at 780 nm: 4.0, extinction coefficient: 0.2) was similarly formed into a 50 nm film by vacuum evaporation. When the optical recording characteristics of the optical disk obtained as described above were evaluated in the same manner as in Example 2, a C/N of around 45 dB was obtained by recording a single signal of 3 to 11 T at 4 mW. FIG. 3 shows the relationship between recording power and C/N for each frequency signal. In FIG. 3, graph 1 shows the characteristics at 3T, graph 2 shows the characteristics at 7T, and graph 3 shows the characteristics at 11T.

【0027】[0027]

【発明の効果】請求項1における光記録媒体は、記録再
生用レーザー波長で未記録部の反射率が高い。
Effects of the Invention The optical recording medium according to claim 1 has a high reflectance in the unrecorded portion at the laser wavelength for recording and reproduction.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  実施例1で得られた光ディスクの反射スペ
クトルである。
FIG. 1 is a reflection spectrum of the optical disc obtained in Example 1.

【図2】  実施例3で得られた光ディスクの反射スペ
クトルである。
FIG. 2 is a reflection spectrum of the optical disc obtained in Example 3.

【図3】  実施例4で得られた光ディスクの記録特性
を示すグラフである。
FIG. 3 is a graph showing the recording characteristics of the optical disc obtained in Example 4.

【符号の説明】[Explanation of symbols]

1…周波数信号3Tでの記録特性を示すグラフ、2…周
波数信号7Tでの記録特性を示すグラフ、3…周波数信
号11Tでの記録特性を示すグラフ。
1... Graph showing recording characteristics at frequency signal 3T, 2... Graph showing recording characteristics at frequency signal 7T, 3... Graph showing recording characteristics at frequency signal 11T.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基板上に、高屈折率層及び低屈折率層
を順次1回以上積層し、一番上の低屈折率層の上に高屈
折率層が積層されており、高屈折率層のすく少なくとも
一つを記録層とし、それぞれの界面での振幅反射波が互
いに干渉して増幅するように調整されてなる光記録媒体
Claim 1: A high refractive index layer and a low refractive index layer are sequentially laminated one or more times on a substrate, and a high refractive index layer is laminated on top of the uppermost low refractive index layer. An optical recording medium in which at least one of the layers is a recording layer, and the amplitudes of reflected waves at each interface are adjusted so as to interfere and amplify each other.
JP3090214A 1991-04-22 1991-04-22 Optical recording medium Pending JPH04321946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090214A JPH04321946A (en) 1991-04-22 1991-04-22 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090214A JPH04321946A (en) 1991-04-22 1991-04-22 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH04321946A true JPH04321946A (en) 1992-11-11

Family

ID=13992235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090214A Pending JPH04321946A (en) 1991-04-22 1991-04-22 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH04321946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037095A1 (en) * 2005-07-28 2007-02-15 Noboru Sasa Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
JP2008097820A (en) * 2002-01-18 2008-04-24 Koninkl Philips Electronics Nv Optical data storage medium for write-once recording

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097820A (en) * 2002-01-18 2008-04-24 Koninkl Philips Electronics Nv Optical data storage medium for write-once recording
US20070037095A1 (en) * 2005-07-28 2007-02-15 Noboru Sasa Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US8859184B2 (en) * 2005-07-28 2014-10-14 Ricoh Company, Ltd. Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording

Similar Documents

Publication Publication Date Title
JPH043345A (en) Optical information recording medium
JPH05151616A (en) Optical recording medium, production thereof and reproducing device
JPH04321946A (en) Optical recording medium
EP0777224B1 (en) Optical recording medium and method
JP3499724B2 (en) Optical recording medium
JP2516890B2 (en) Optical information recording medium
KR100292378B1 (en) Optical recording medium capable of performing recording/reproducing operations and optical recording method thereof
JP4187369B2 (en) Information recording medium and information recording / reproducing method
JPH04339331A (en) Optical recording medium
JPH10172182A (en) Mutilayered structure optical information medium
JP2002092956A (en) Optical information recording medium and producing method thereof
JPH04265541A (en) Optical recording medium
JPH05120727A (en) Optical recording medium and method for recording or reproducing information to or from this medium
JP2834420B2 (en) Optical information recording medium
JPH0991752A (en) Multilayer optical disk
JP2512043B2 (en) Optical recording medium and optical recording method
JP2866022B2 (en) Optical information recording medium and reproducing method thereof
JPWO2003065359A1 (en) Optical recording medium
JPH02187939A (en) Optical recording medium and optical recording and reproducing method
JPH06111365A (en) Optical recording medium
JP2793516B2 (en) Optical information recording medium and reproducing method thereof
JPH07105071B2 (en) Optical information recording medium
JPH0445896B2 (en)
JP2002269831A (en) Optical recording medium
JPH04176033A (en) Information recording medium