JPH04321578A - Production of sintered material of ceramics having compounded coating layer - Google Patents

Production of sintered material of ceramics having compounded coating layer

Info

Publication number
JPH04321578A
JPH04321578A JP3119243A JP11924391A JPH04321578A JP H04321578 A JPH04321578 A JP H04321578A JP 3119243 A JP3119243 A JP 3119243A JP 11924391 A JP11924391 A JP 11924391A JP H04321578 A JPH04321578 A JP H04321578A
Authority
JP
Japan
Prior art keywords
coating layer
layer
silicon nitride
sintered body
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119243A
Other languages
Japanese (ja)
Other versions
JP2500012B2 (en
Inventor
Tomonori Takahashi
知典 高橋
Osamu Sakai
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3119243A priority Critical patent/JP2500012B2/en
Publication of JPH04321578A publication Critical patent/JPH04321578A/en
Application granted granted Critical
Publication of JP2500012B2 publication Critical patent/JP2500012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a dense compounded coating layer of a silicon nitride layer and a silicon carbide layer having excellent adhesiveness on a heat-resistant substrate such as sintered material of silicon nitride or sintered material of silicon carbide. CONSTITUTION:A compounded coating layer of a silicon nitride layer and a silicon carbide layer is formed on the surface of a sintered material of silicon nitride or sintered material of silicon carbide by chemical vapor-phase growth method. A hydrogen gas is circulated in a reaction furnace when a reaction gas to be sent to the reaction furnace in order to form each coating layer and the amount of the hydrogen gas introduced to the reaction furnace is set at least >=3.4 times as much as the volume of the reaction furnace at room temperature under atmospheric pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐熱基材上に化学気相
成長法例えばCVD法により窒化珪素および炭化珪素か
らなる複合被覆層を層状に形成した複合被覆セラミック
ス焼結体の製造方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing a composite coated ceramic sintered body in which a composite coat layer consisting of silicon nitride and silicon carbide is formed in a layered manner on a heat-resistant base material by chemical vapor deposition, such as CVD. .

【0002】0002

【従来の技術】窒化珪素および炭化珪素焼結体は高温高
強度であり、耐熱衝撃性に優れているため、ガスタービ
ン部品等の高温構造材料に使用されている。また、窒化
珪素および炭化珪素焼結体は耐腐食性、耐薬品性に優れ
ているため、半導体部品製造に用いるサセプター、炉心
管、治具等の部品に用いられている。窒化珪素焼結体の
耐酸化性を向上させるため、CVD法により耐酸化性の
優れた窒化珪素を被覆した窒化珪素焼結体が特公昭61
−40630号公報および特開昭60−161383号
公報に開示されている。また、高温においては窒化珪素
焼結体の粒界相成分と窒化珪素被覆層との反応が生じて
十分な効果を得ることが難しいため、粒界相を結晶化さ
せた窒化珪素焼結体およびCVD法による炭化珪素を被
覆した窒化珪素焼結体が特開昭61−87573号公報
および特開平2−289476号公報に開示されている
。しかし、窒化珪素焼結体にCVD法による窒化珪素を
被覆した場合には、窒化珪素被覆層と窒化珪素焼結体の
粒界相成分との反応を完全に防ぐことはできず、CVD
法による炭化珪素を被覆した場合には、反応は防止でき
るが被覆層と基材との熱膨張差が大きく十分な密着性を
得ることが困難となる。また、窒化珪素または炭化珪素
の何れを被覆した場合においても、被覆により窒化珪素
焼結体の強度が低下する問題があった。
BACKGROUND OF THE INVENTION Silicon nitride and silicon carbide sintered bodies have high strength at high temperatures and excellent thermal shock resistance, and are therefore used as high-temperature structural materials for gas turbine parts and the like. In addition, silicon nitride and silicon carbide sintered bodies have excellent corrosion resistance and chemical resistance, so they are used for parts such as susceptors, furnace tubes, and jigs used in the manufacture of semiconductor parts. In order to improve the oxidation resistance of silicon nitride sintered bodies, a silicon nitride sintered body coated with silicon nitride, which has excellent oxidation resistance, was produced using the CVD method.
It is disclosed in Japanese Patent Application Laid-Open No. 60-161383. In addition, at high temperatures, a reaction occurs between the grain boundary phase components of the silicon nitride sintered body and the silicon nitride coating layer, making it difficult to obtain a sufficient effect. A silicon nitride sintered body coated with silicon carbide by the CVD method is disclosed in JP-A-61-87573 and JP-A-2-289476. However, when a silicon nitride sintered body is coated with silicon nitride by the CVD method, it is not possible to completely prevent the reaction between the silicon nitride coating layer and the grain boundary phase components of the silicon nitride sintered body.
When silicon carbide is coated by the method, the reaction can be prevented, but the difference in thermal expansion between the coating layer and the base material is large, making it difficult to obtain sufficient adhesion. Further, even when coated with either silicon nitride or silicon carbide, there is a problem in that the strength of the silicon nitride sintered body is reduced by the coating.

【0003】一方、炭化珪素焼結体を半導体部品製造に
用いるサセプター、炉心管、治具等の部品に用いる場合
、焼結体に気孔が多く、気孔中に残存する不純物によっ
て半導体を汚染する問題があるため、CVD法による高
純度な炭化珪素での被覆が行なわれている。また、焼結
体の気孔をCVD法による炭化珪素で埋めることにより
、強度の改善が行なわれている。しかし、炭化珪素被覆
層の厚みが増すと粒成長が著しく、十分な強度、耐食性
を得ることが困難であるという問題があった。
On the other hand, when silicon carbide sintered bodies are used for parts such as susceptors, furnace tubes, and jigs used in the manufacture of semiconductor parts, there is a problem that the sintered bodies have many pores and the semiconductors are contaminated by impurities remaining in the pores. Therefore, coating with high-purity silicon carbide is performed using the CVD method. In addition, strength has been improved by filling the pores of the sintered body with silicon carbide using the CVD method. However, as the thickness of the silicon carbide coating layer increases, grain growth becomes significant, making it difficult to obtain sufficient strength and corrosion resistance.

【0004】これらの問題を解決するため、CVD法に
よる窒化珪素および炭化珪素との積層物からなる複合被
覆層を形成した窒化珪素焼結体および炭化珪素焼結体が
特公昭60−45154号公報に開示されている。この
ように窒化珪素と炭化珪素とを積層することで、基材と
の熱膨張差の制御、基材との反応の抑制、高強度化が達
成できると考えられる。
In order to solve these problems, Japanese Patent Publication No. 60-45154 discloses a silicon nitride sintered body and a silicon carbide sintered body in which a composite coating layer made of a laminate of silicon nitride and silicon carbide is formed by the CVD method. has been disclosed. By laminating silicon nitride and silicon carbide in this way, it is thought that it is possible to control the difference in thermal expansion with the base material, suppress the reaction with the base material, and increase the strength.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
CVD法により窒化珪素と炭化珪素との複合被覆層を合
成する方法は、原料ガスのうち窒素源と炭素源とを交互
に瞬時に切替えて反応炉に導入することにより複合被覆
層を合成するので、原料ガスの切替え時に反応炉中に不
必要なガスが残存し、基材に形成される複合被覆層がこ
の残留ガスにより多孔質になりやすい。このため、複合
被覆層が低強度となり、また、基材を高温空気、燃焼ガ
ス、薬品等の外気から十分に保護できないという問題が
ある。本発明はこのような問題点を解決するためになさ
れたもので、窒化珪素あるいは炭化珪素焼結体等のセラ
ミックス基材上に緻密で密着性の良好な複合被覆層を形
成するセラミックス焼結体の製造方法を提供することを
目的とする。
[Problems to be Solved by the Invention] However, the conventional method of synthesizing a composite coating layer of silicon nitride and silicon carbide by the CVD method requires that the nitrogen source and carbon source of the raw material gas be alternately and instantaneously switched. Since the composite coating layer is synthesized by introducing it into the furnace, unnecessary gas remains in the reactor when the raw material gas is switched, and the composite coating layer formed on the base material tends to become porous due to this residual gas. . Therefore, there is a problem that the strength of the composite coating layer is low and that the base material cannot be sufficiently protected from external air such as high temperature air, combustion gas, and chemicals. The present invention has been made to solve these problems, and it provides a ceramic sintered body that forms a dense composite coating layer with good adhesion on a ceramic base material such as silicon nitride or silicon carbide sintered body. The purpose is to provide a manufacturing method for.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明の第1発明による複合被覆層を有するセラミッ
ク焼結体の製造方法は、窒化珪素または炭化珪素焼結体
等のセラミックスまたは炭素基材の表面に化学気相成長
法により窒化珪素層および炭化珪素層の複合被覆層を層
状に形成する方法であって、各被覆層を形成するために
反応炉に流す反応ガスの切替え時、反応炉内に水素ガス
を流通させ、この反応炉内に導入する水素ガス量を室温
大気圧下で反応炉内の容積よりも少なくとも3.4倍以
上の容積のガス量に設定したことを特徴とする。第2発
明による複合被覆層を有するセラミックス焼結体の製造
方法は、前記化学気相成長法が減圧熱CVD法であるこ
とを特徴とする。第3発明による複合被覆層を有するセ
ラミックス焼結体の製造方法は、前記化学気相成長法に
よる窒化珪素の層状被覆層を形成する原料ガスとして、
四塩化珪素およびアンモニアを用い、炭化珪素の層状被
覆層を形成する原料ガスとして、四塩化珪素およびメタ
ンを用いることを特徴とする。第4発明による複合被覆
層を有するセラミックス焼結体の製造方法は、窒化珪素
と炭化珪素の各被覆層の厚みを傾斜させたことを特徴と
する。第5発明による複合被覆層を有するセラミックス
焼結体の製造方法は、基材が窒化珪素または炭化珪素焼
結体であることを特徴とする。
[Means for Solving the Problems] A method for manufacturing a ceramic sintered body having a composite coating layer according to the first aspect of the present invention to solve the above-mentioned problems is a method for manufacturing a ceramic sintered body having a composite coating layer. A method of forming a layered composite coating layer of a silicon nitride layer and a silicon carbide layer on the surface of a base material by chemical vapor deposition, the method comprising: switching the reaction gas flowed into the reactor to form each coating layer; Hydrogen gas is passed through the reactor, and the amount of hydrogen gas introduced into the reactor is set to a volume that is at least 3.4 times the volume of the reactor at room temperature and atmospheric pressure. shall be. A method for manufacturing a ceramic sintered body having a composite coating layer according to a second invention is characterized in that the chemical vapor deposition method is a low pressure thermal CVD method. The method for producing a ceramic sintered body having a composite coating layer according to the third invention includes, as a raw material gas for forming the layered coating layer of silicon nitride by the chemical vapor deposition method,
It is characterized in that silicon tetrachloride and ammonia are used, and silicon tetrachloride and methane are used as source gases for forming a layered coating layer of silicon carbide. A method for producing a ceramic sintered body having a composite coating layer according to a fourth aspect of the present invention is characterized in that the thicknesses of the silicon nitride and silicon carbide coating layers are graded. A method for producing a ceramic sintered body having a composite coating layer according to a fifth aspect of the present invention is characterized in that the base material is a silicon nitride or silicon carbide sintered body.

【0007】本発明における基材には、セラミックス焼
結体または炭素等の耐熱材料の使用が可能であり、特に
窒化珪素および炭化珪素焼結体は、窒化珪素あるいは炭
化珪素原料と種々の添加物を含み、常圧あるいは加圧焼
結、ホットプレス、HIP等の通常の方法により得られ
る焼結体の適用が可能である。また、焼結体の形状およ
び寸法等についても特に制限されるものではない。
[0007] As the base material in the present invention, a heat-resistant material such as a ceramic sintered body or carbon can be used. In particular, the silicon nitride and silicon carbide sintered body is a mixture of silicon nitride or silicon carbide raw materials and various additives. A sintered body obtained by normal pressure or pressure sintering, hot pressing, HIP, etc. can be used. Furthermore, the shape and dimensions of the sintered body are not particularly limited.

【0008】化学気相成長(CVD)法としては、減圧
熱CVD法を用いることが望ましい。この場合、緻密な
窒化珪素あるいは炭化珪素被覆層を形成するために原料
ガスの組成、反応温度、反応圧力等が適当に制御される
。窒化珪素と炭化珪素が積層した構造の複合被覆層を合
成する場合、原料ガスとして、窒化珪素の合成に珪素源
と窒素源、炭化珪素の合成に珪素源と炭素源を用いる。 特に高温構造材料等に適用する場合においては、四塩化
珪素(SiCl4 )、アンモニア(NH3 )、メタ
ン(CH3 )等の入手しやすい原料を用いて減圧熱C
VD法により製造すると結晶性の良好な複合被覆層を高
速で安価に製造できる。さらに、積層する窒化珪素およ
び炭化珪素の厚みを段階的に増減させあるいは一方を厚
くして他方を薄くするという方法により、被覆層の熱膨
張を傾斜させることおよび全体の熱膨張を制御して基材
の焼結体の熱膨張に合わせることが可能である。例えば
、窒化珪素層が厚く、炭化珪素層が薄い場合には熱膨張
を窒化珪素単独の熱膨張に近づけることが可能となる。
[0008] As the chemical vapor deposition (CVD) method, it is desirable to use a low pressure thermal CVD method. In this case, the composition of the raw material gas, reaction temperature, reaction pressure, etc. are appropriately controlled in order to form a dense silicon nitride or silicon carbide coating layer. When synthesizing a composite coating layer having a laminated structure of silicon nitride and silicon carbide, as raw material gases, a silicon source and a nitrogen source are used for synthesizing silicon nitride, and a silicon source and a carbon source are used for synthesizing silicon carbide. Particularly when applied to high-temperature structural materials, etc., easily available raw materials such as silicon tetrachloride (SiCl4), ammonia (NH3), and methane (CH3) are used.
When manufactured by the VD method, a composite coating layer with good crystallinity can be manufactured at high speed and at low cost. Furthermore, by increasing and decreasing the thickness of the laminated silicon nitride and silicon carbide in stages, or by making one thicker and the other thinner, the thermal expansion of the coating layer can be tilted and the overall thermal expansion can be controlled. It is possible to match the thermal expansion of the sintered body of the material. For example, when the silicon nitride layer is thick and the silicon carbide layer is thin, the thermal expansion can be made close to that of silicon nitride alone.

【0009】反応炉内に導入する水素ガスを室温大気圧
下で反応炉内の容積よりも少なくとも3.4倍以上の容
積のガス量に設定した理由は、水素ガスがこの容積値未
満であると、層状被覆層が多孔質になるからである。す
なわち、反応炉内の容積の3.4倍以上の容積の水素ガ
ス量を反応炉に流通させることにより、反応ガスの切替
え時に残留している原料ガスを被覆層形成に影響しない
程度まで除去し、各被覆層を合成する前に反応炉内が十
分に清浄されるからである。ここで、反応炉の容積とは
、実質的に原料ガスが導入される部分の容積をいい、外
部加熱式の反応炉等においては加熱部を除いて原料ガス
の導入される反応管部分のみの容積をいう。
The reason why the amount of hydrogen gas introduced into the reactor is set to be at least 3.4 times the volume of the inside of the reactor at room temperature and atmospheric pressure is that the hydrogen gas is less than this volume value. This is because the layered coating layer becomes porous. In other words, by circulating a hydrogen gas volume that is 3.4 times or more the volume of the reactor inside the reactor, the raw material gas remaining when switching the reaction gas can be removed to the extent that it does not affect the formation of the coating layer. This is because the inside of the reactor is sufficiently cleaned before synthesizing each coating layer. Here, the volume of the reactor refers to the volume of the part into which the raw material gas is introduced, and in external heating type reactors, the volume of only the reaction tube part into which the raw material gas is introduced, excluding the heating part. Refers to volume.

【0010】0010

【作用】本発明による複合被覆層を有するセラミックス
焼結体の製造方法は、窒化珪素あるいは炭化珪素等のセ
ラミックス表面に化学気相成長(CVD)法により窒化
珪素層と炭化珪素層とが積層した構造の複合被覆層を形
成するに当たり、セラミックス表面に窒化珪素あるいは
炭化珪素の第1層を形成した後、反応炉の容積の少なく
とも3.4倍以上の水素ガスを反応炉中に流通させ、窒
化珪素あるいは炭化珪素の第2層を形成する。そして、
第3層以降の被覆層を合成する前にも同様に水素ガスを
流通させる。これにより、複合被覆層が多孔質となるこ
とを防止し、緻密で基材を十分に保護できる複合被覆層
の合成ができる。また、被覆層が緻密なため、合成時間
の調節により各被覆層の厚みを制御でき、被覆層の熱膨
張を制御できる。さらに窒化珪素焼結体に被覆した場合
、窒化珪素と炭化珪素との積層により、窒化珪素焼結体
の粒界相成分と被覆層との反応を十分に抑制することが
できる。また、積層構造であるため、被覆層の結晶粒の
成長を抑制し、微細結晶からなる高強度の被覆層を形成
することができる。
[Function] The method for producing a ceramic sintered body having a composite coating layer according to the present invention includes laminating a silicon nitride layer and a silicon carbide layer on the surface of a ceramic such as silicon nitride or silicon carbide by chemical vapor deposition (CVD). In forming the composite coating layer of the structure, after forming the first layer of silicon nitride or silicon carbide on the ceramic surface, hydrogen gas of at least 3.4 times the volume of the reactor is passed through the reactor to cause nitriding. A second layer of silicon or silicon carbide is formed. and,
Hydrogen gas is passed in the same manner before synthesizing the third and subsequent coating layers. This prevents the composite coating layer from becoming porous and allows the synthesis of a dense composite coating layer that can sufficiently protect the base material. Further, since the coating layer is dense, the thickness of each coating layer can be controlled by adjusting the synthesis time, and the thermal expansion of the coating layer can be controlled. Furthermore, when a silicon nitride sintered body is coated, the reaction between the grain boundary phase components of the silicon nitride sintered body and the coating layer can be sufficiently suppressed by the lamination of silicon nitride and silicon carbide. Moreover, since it has a laminated structure, growth of crystal grains in the coating layer can be suppressed, and a high-strength coating layer made of fine crystals can be formed.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。 実施例1〜実施例8 実施例1〜実施例8は、常圧焼結窒化珪素焼結体を基材
とし、この基材表面に減圧熱CVD装置を用いてSi3
 N4 およびSiCの層状被覆層を次に示すように形
成した。まず、容積11451cm3 の反応管内に基
材を挿入し、この基材を所定の合成温度に加熱した状態
でSiCl4 とNH3 の混合ガスを所定時間流し、
基材表面上にSi3 N4 層を形成する。次いで反応
管内に表1に示す条件でH2 ガスを導入し、次にSi
Cl4 とCH4 の混合ガスを反応管内に所定時間流
す。するとSiC層が形成される。さらにSiC層上に
Si3 N4 層を形成する場合は、表1に示す条件で
H2 ガスを再び反応管内に流した後、SiCl4 と
NH3 の混合ガスを所定時間反応管内に流す。このよ
うにして基材の表面にSi3 N4 層とSiC層とを
交互に層状に形成した。表1に実施例1〜実施例8の積
層数を示す。
[Examples] Examples of the present invention will be described below. Examples 1 to 8 In Examples 1 to 8, a pressureless sintered silicon nitride sintered body is used as a base material, and Si3 is deposited on the surface of this base material using a low pressure thermal CVD device.
A layered coating of N4 and SiC was formed as follows. First, a base material was inserted into a reaction tube with a volume of 11,451 cm3, and while the base material was heated to a predetermined synthesis temperature, a mixed gas of SiCl4 and NH3 was flowed for a predetermined time.
A Si3N4 layer is formed on the surface of the substrate. Next, H2 gas was introduced into the reaction tube under the conditions shown in Table 1, and then Si
A mixed gas of Cl4 and CH4 is allowed to flow into the reaction tube for a predetermined period of time. Then, a SiC layer is formed. Furthermore, when forming a Si3 N4 layer on the SiC layer, after flowing H2 gas into the reaction tube again under the conditions shown in Table 1, a mixed gas of SiCl4 and NH3 is allowed to flow into the reaction tube for a predetermined period of time. In this way, Si3 N4 layers and SiC layers were alternately formed on the surface of the base material. Table 1 shows the number of layers in Examples 1 to 8.

【0012】0012

【表1】[Table 1]

【0013】Si3 N4 層およびSiC層の合成温
度は、実施例1および実施例3〜実施例8については1
450℃とし、実施例2については1430℃とした。 また、Si3 N4 層およびSiC層の合成時間は、
実施例1および実施例3〜実施例8の場合、Si3 N
4 層およびSiC層ともに一層につき5分とし、実施
例2については、最下層から上層にいくに従い順にSi
3 N4 層2分、SiC層5分、Si3 N4 層4
分、SiC層5分、Si3 N4 層5分とした。
The synthesis temperature of the Si3N4 layer and the SiC layer was 1 for Example 1 and Examples 3 to 8.
The temperature was 450°C, and for Example 2 it was 1430°C. In addition, the synthesis time of the Si3 N4 layer and the SiC layer is
In the case of Example 1 and Examples 3 to 8, Si3N
4 and the SiC layer, and in Example 2, the SiC layer was heated in order from the bottom layer to the top layer.
3 N4 layer 2 minutes, SiC layer 5 minutes, Si3 N4 layer 4
5 minutes for the SiC layer, and 5 minutes for the Si3 N4 layer.

【0014】実施例9および実施例10実施例9および
実施例10は、常圧焼結炭化珪素焼結体を基材とし、こ
の基材表面に実施例1〜実施例8と同様な方法によりS
i3 N4 層およびSiC層の層状被覆層を形成した
。この場合、実施例9および実施例10の被覆層の積層
数および反応管への導入H2 ガスの条件は、表1に示
すように設定した。Si3 N4 層およびSiC層の
合成温度は、実施例9および実施例10ともに1450
℃とし、Si3 N4 層およびSiC層の合成時間は
、実施例9および実施例10ともに一層につき5分とし
た。
Examples 9 and 10 In Examples 9 and 10, a pressureless sintered silicon carbide sintered body was used as a base material, and the surface of this base material was coated in the same manner as in Examples 1 to 8. S
A layered covering layer of an i3 N4 layer and a SiC layer was formed. In this case, the number of laminated coating layers and the conditions of H2 gas introduced into the reaction tube in Examples 9 and 10 were set as shown in Table 1. The synthesis temperature of the Si3N4 layer and the SiC layer was 1450 in both Examples 9 and 10.
℃, and the synthesis time of the Si3 N4 layer and the SiC layer was 5 minutes per layer in both Examples 9 and 10.

【0015】比較例1〜比較例5 比較例1〜比較例5は、常圧焼結窒化珪素焼結体を基材
とし、この基材表面に減圧熱CVD装置を用いてSi3
 N4 およびSiCの層状被覆層を次に示すように形
成した。まず、容積11451cm3 の反応管内に基
材を挿入し、この基材を所定の合成温度に加熱した状態
でSiCl4 とNH3 の混合ガスを所定時間流し、
基材表面上にSi3 N4 層を形成する(比較例1)
。次いでSiCl4とCH4 の混合ガスを反応管内に
所定時間流す。するとSiC層が形成される(比較例2
〜比較例5)。さらにSiC層上にSi3 N4 層を
形成する場合は、表1に示す条件でH2 ガスを再び反
応管内に流した後、SiCl4 とNH3 の混合ガス
を所定時間反応管内に流す。 このようにして基材の表面にSi3 N4層とSiC層
とを交互に層状に形成する。表1に比較例1〜比較例5
の積層数を示す。Si3 N4 層およびSiC層の合
成温度は、比較例1〜比較例5ともに1450℃とし、
Si3 N4 層およびSiC層の合成時間は、比較例
1〜比較例5ともに一層につき5分とした。
Comparative Examples 1 to 5 In Comparative Examples 1 to 5, a pressureless sintered silicon nitride sintered body was used as a base material, and Si3 was deposited on the surface of this base material using a low pressure thermal CVD device.
A layered coating of N4 and SiC was formed as follows. First, a base material was inserted into a reaction tube with a volume of 11,451 cm3, and while the base material was heated to a predetermined synthesis temperature, a mixed gas of SiCl4 and NH3 was flowed for a predetermined time.
Forming a Si3N4 layer on the substrate surface (Comparative Example 1)
. Next, a mixed gas of SiCl4 and CH4 is allowed to flow into the reaction tube for a predetermined period of time. Then, a SiC layer is formed (Comparative Example 2)
~ Comparative Example 5). Furthermore, when forming a Si3 N4 layer on the SiC layer, after flowing H2 gas into the reaction tube again under the conditions shown in Table 1, a mixed gas of SiCl4 and NH3 is allowed to flow into the reaction tube for a predetermined period of time. In this way, Si3 N4 layers and SiC layers are formed alternately on the surface of the base material. Table 1 shows Comparative Examples 1 to 5.
Indicates the number of layers. The synthesis temperature of the Si3N4 layer and the SiC layer was 1450°C in both Comparative Examples 1 to 5,
The synthesis time for the Si3N4 layer and the SiC layer was 5 minutes for each layer in Comparative Examples 1 to 5.

【0016】比較例6 比較例6は、常圧焼結窒化珪素焼結体を基材とし、基材
表面に被覆層を形成しなかった。
Comparative Example 6 In Comparative Example 6, a pressureless sintered silicon nitride sintered body was used as a base material, and no coating layer was formed on the surface of the base material.

【0017】比較例7〜比較例9 比較例7〜比較例9は、常圧焼結炭化珪素焼結体を基材
とし、この基材表面に比較例1〜比較例5と同様な方法
によりSi3 N4 およびSiCの層状被覆層を形成
した。この場合、比較例7〜比較例9の積層数および導
入H2 ガスの条件は、表1に示すように設定した。S
i3 N4 層およびSiC層の合成温度は、比較例7
〜比較例9ともに1450℃とし、Si3 N4 層お
よびSiC層の合成時間は、比較例7〜比較例9ともに
一層につき5分とした。
Comparative Examples 7 to 9 In Comparative Examples 7 to 9, a pressureless sintered silicon carbide sintered body was used as a base material, and the surface of this base material was coated in the same manner as in Comparative Examples 1 to 5. A layered coating of Si3N4 and SiC was formed. In this case, the number of laminated layers and the conditions of introduced H2 gas in Comparative Examples 7 to 9 were set as shown in Table 1. S
The synthesis temperature of the i3 N4 layer and the SiC layer was that of Comparative Example 7.
~ Comparative Example 9 The temperature was 1450° C., and the synthesis time of the Si3 N4 layer and SiC layer was 5 minutes per layer in Comparative Examples 7 to 9.

【0018】次に、実施例1〜実施例10および比較例
1〜比較例9について、被覆層全体の厚さおよび被覆層
の気孔率について調査し、さらに室温4点曲げ強度試験
および耐酸化性試験を行なった。4点曲げ強度試験は、
JIS  R−1601ファインセラミックスの曲げ強
さ試験法に準じて行ない、耐酸化性試験は、大気圧下、
1300℃、100時間の条件下、JIS  R−16
06非酸化物系ファインセラミックス耐酸化性試験法に
準じて行なった。また、気孔率は画像解析による気孔面
積率より求めた。結果を表2に示す。
Next, for Examples 1 to 10 and Comparative Examples 1 to 9, the overall thickness of the coating layer and the porosity of the coating layer were investigated, and furthermore, a room temperature four-point bending strength test and an oxidation resistance test were conducted. I conducted a test. The 4-point bending strength test is
The oxidation resistance test was conducted in accordance with the JIS R-1601 bending strength test method for fine ceramics, under atmospheric pressure,
JIS R-16 under conditions of 1300℃, 100 hours
The test was conducted in accordance with the 06 non-oxide fine ceramics oxidation resistance test method. In addition, the porosity was determined from the pore area ratio by image analysis. The results are shown in Table 2.

【0019】[0019]

【表2】[Table 2]

【0020】表2に示すように、実施例1〜実施例10
および比較例1〜比較例9は、Si3 N4 層または
SiC層の合成時間に応じた層厚の被覆層が形成されて
いる。被覆層の積層状態は、例えば実施例1によると、
層厚9μmのSi3 N4 と層厚4μmのSiCの層
厚が交互に積層され被覆層全体の層厚が35μmであっ
た。また、実施例2によると、Si3 N4 およびS
iCが交互に層厚5μm、4μm、3μm、8μm、1
0μmで積層され被覆層全体の層厚が31μmであった
。被覆層の気孔率を比較すると、実施例1〜実施例10
は、被覆層の気孔率が小さいのに対し、比較例1〜比較
例9は、被覆層を形成していないもの(比較例7)およ
び被覆層が単層のもの(比較例1および比較例7)を除
き、被覆層の気孔率が10%以上と大きくなっている。 また、実施例1〜実施例10は、室温4点曲げ強度およ
び耐酸化性ともに優れた値を示し、破断面の外観も良好
であった。 これにに対し、比較例1〜比較例9は、室温4点曲げ強
度および耐酸化性のうち少なくとも一方が小さく、破断
面の外観が多孔質になっていた。
As shown in Table 2, Examples 1 to 10
In Comparative Examples 1 to 9, a coating layer having a thickness corresponding to the synthesis time of the Si3N4 layer or the SiC layer was formed. For example, according to Example 1, the laminated state of the coating layer is as follows:
Si3N4 with a layer thickness of 9 μm and SiC with a layer thickness of 4 μm were alternately laminated, and the total layer thickness of the coating layer was 35 μm. Also, according to Example 2, Si3 N4 and S
iC alternately layer thickness 5μm, 4μm, 3μm, 8μm, 1
The layers were laminated at a thickness of 0 μm, and the total layer thickness of the coating layer was 31 μm. Comparing the porosity of the coating layer, Examples 1 to 10
The porosity of the coating layer is small, whereas Comparative Examples 1 to 9 have no coating layer (Comparative Example 7) and those with a single coating layer (Comparative Examples 1 and 9). Except for 7), the porosity of the coating layer is as large as 10% or more. Moreover, Examples 1 to 10 showed excellent values in both room temperature four-point bending strength and oxidation resistance, and the appearance of the fractured surface was also good. On the other hand, in Comparative Examples 1 to 9, at least one of the four-point bending strength at room temperature and the oxidation resistance was small, and the appearance of the fractured surface was porous.

【0021】前記実施例1〜実施例10により得られた
Si3 N4 −SiC積層構造をもつ被覆層の破断面
およびその研磨面は、例えば図1および図3のようにな
る。 図1および図3から明らかなように被覆層は層状に緻密
に形成される。これに対し前記比較例1〜比較例9の場
合の被覆層の破断面およびその研磨面は、例えば図2お
よび図4のようになる。図2および図4から明らかなよ
うに、被覆層は多孔質である。
The fractured surfaces and polished surfaces of the coating layers having the Si3 N4 --SiC laminated structure obtained in Examples 1 to 10 are as shown in FIGS. 1 and 3, for example. As is clear from FIGS. 1 and 3, the coating layer is formed in a dense layered manner. On the other hand, the fractured surface of the coating layer and its polished surface in Comparative Examples 1 to 9 are as shown in FIGS. 2 and 4, for example. As is clear from FIGS. 2 and 4, the coating layer is porous.

【0022】[0022]

【発明の効果】以上説明したように、本発明の複合被覆
層を有するセラミックス焼結体の製造方法によれば、原
料ガスの切替え時に反応炉の容積よりも少なくとも3.
4倍以上の容積のH2ガスを反応室中に流すことによっ
て、セラミックス焼結体表面に緻密で密着性の良好な窒
化珪素と炭化珪素とが積層した構造の複合被覆層が形成
できる。また、各被覆層の厚みの制御により、任意の熱
膨張を有するセラミックス基材に複合被覆層の形成が可
能となる。このため、窒化珪素焼結体については高温で
の被覆層と窒化珪素焼結体の粒界層との反応が防止され
、耐酸化性が良好で高強度の複合被覆窒化珪素焼結体が
得られる。また、炭化珪素焼結体においては高強度で耐
蝕性に優れた複合被覆炭化珪素焼結体が得られる。
As explained above, according to the method of manufacturing a ceramic sintered body having a composite coating layer of the present invention, the volume of the reactor is at least 3.
By flowing four or more times the volume of H2 gas into the reaction chamber, a dense composite coating layer of silicon nitride and silicon carbide with good adhesion can be formed on the surface of the ceramic sintered body. Furthermore, by controlling the thickness of each coating layer, it is possible to form a composite coating layer on a ceramic substrate having any thermal expansion. For silicon nitride sintered bodies, this prevents the reaction between the coating layer and the grain boundary layer of the silicon nitride sintered bodies at high temperatures, resulting in a composite coated silicon nitride sintered body with good oxidation resistance and high strength. It will be done. Further, in the silicon carbide sintered body, a composite coated silicon carbide sintered body having high strength and excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1による被覆層の破断面を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a fractured surface of a coating layer according to Example 1 of the present invention.

【図2】従来の比較例1による被覆層の破断面を示す電
子顕微鏡写真である。
FIG. 2 is an electron micrograph showing a fractured surface of a coating layer according to conventional comparative example 1.

【図3】本発明の実施例1による被覆層の研磨面を示す
光学顕微鏡写真である。
FIG. 3 is an optical micrograph showing the polished surface of the coating layer according to Example 1 of the present invention.

【図4】従来の比較例1による被覆層の研磨面を示す光
学顕微鏡写真である。
FIG. 4 is an optical micrograph showing a polished surface of a coating layer according to conventional comparative example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】セラミックス等の基材の表面に化学気相成
長法により窒化珪素層および炭化珪素層の複合被覆層を
層状に形成する方法であって、各被覆層を形成するため
に反応炉に流す反応ガスの切替え時、反応炉内に水素ガ
スを流通させ、この反応炉内に導入する水素ガス量を室
温大気圧下で反応炉内の容積よりも少なくとも3.4倍
以上の容積のガス量に設定したことを特徴とする複合被
覆層を有するセラミックス焼結体の製造方法。
1. A method for forming a composite coating layer of a silicon nitride layer and a silicon carbide layer on the surface of a base material such as ceramics by chemical vapor deposition, wherein a reactor is used to form each coating layer. When switching the reaction gas to be flowed into the reactor, hydrogen gas is passed through the reactor, and the amount of hydrogen gas introduced into the reactor is adjusted to a volume that is at least 3.4 times larger than the volume inside the reactor at room temperature and atmospheric pressure. A method for manufacturing a ceramic sintered body having a composite coating layer, characterized in that the amount of gas is set to a certain amount.
【請求項2】前記化学気相成長法が減圧熱CVD法であ
ることを特徴とする請求項1に記載の複合被覆層を有す
るセラミックス焼結体の製造方法。
2. The method for producing a ceramic sintered body having a composite coating layer according to claim 1, wherein the chemical vapor deposition method is a low pressure thermal CVD method.
【請求項3】前記化学気相成長法による窒化珪素の層状
被覆層を形成する原料ガスとして、四塩化珪素およびア
ンモニアを用い、炭化珪素の層状被覆層を形成する原料
ガスとして、四塩化珪素およびメタンを用いることを特
徴とする請求項1または請求項2に記載の複合被覆層を
有するセラミックス焼結体の製造方法。
3. Silicon tetrachloride and ammonia are used as source gases for forming the layered coating layer of silicon nitride by the chemical vapor deposition method, and silicon tetrachloride and ammonia are used as source gases for forming the layered coating layer of silicon carbide. The method for producing a ceramic sintered body having a composite coating layer according to claim 1 or 2, characterized in that methane is used.
【請求項4】窒化珪素と炭化珪素の各被覆層の厚みを傾
斜させたことを特徴とする請求項1または請求項2に記
載の複合被覆層を有するセラミックス焼結体の製造方法
4. The method for producing a ceramic sintered body having a composite coating layer according to claim 1 or 2, wherein the thicknesses of each of the silicon nitride and silicon carbide coating layers are graded.
【請求項5】基材が窒化珪素または炭化珪素焼結体であ
る請求項1、2、3または4に記載の複合被覆層を有す
るセラミックス焼結体の製造方法。
5. The method for producing a ceramic sintered body having a composite coating layer according to claim 1, wherein the base material is a silicon nitride or silicon carbide sintered body.
JP3119243A 1991-04-22 1991-04-22 Method for manufacturing ceramics sintered body having composite coating layer Expired - Fee Related JP2500012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119243A JP2500012B2 (en) 1991-04-22 1991-04-22 Method for manufacturing ceramics sintered body having composite coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119243A JP2500012B2 (en) 1991-04-22 1991-04-22 Method for manufacturing ceramics sintered body having composite coating layer

Publications (2)

Publication Number Publication Date
JPH04321578A true JPH04321578A (en) 1992-11-11
JP2500012B2 JP2500012B2 (en) 1996-05-29

Family

ID=14756511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119243A Expired - Fee Related JP2500012B2 (en) 1991-04-22 1991-04-22 Method for manufacturing ceramics sintered body having composite coating layer

Country Status (1)

Country Link
JP (1) JP2500012B2 (en)

Also Published As

Publication number Publication date
JP2500012B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US4950558A (en) Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof
DE69907107T2 (en) CERAMIC WITH OXIDIZABLE LAYER
US5300322A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
US5035923A (en) Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates
EP0310043A2 (en) Oxidation resistant, high temperature thermal cycling resistant coating on silicon-based substrates and process for the production thereof
CN110382735A (en) Porous body and preparation method
KR960702421A (en) Sintered self-reinforced silicon nitride
Leipold et al. Materials of construction for silicon crystal growth
JPH04321578A (en) Production of sintered material of ceramics having compounded coating layer
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPS62176981A (en) Boron nitride-coated crucible
JP3231950B2 (en) Surface coated silicon nitride material
US4940680A (en) Silicon nitride sintered members
JPH0699865B2 (en) Composite carbon fiber and manufacturing method thereof
Ghanem et al. Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JPH06172033A (en) Surface-coated carbon-fiber reinforced composite material and its production
JPH03265585A (en) Reinforced ceramics and its production
JPH03271170A (en) Fiber-reinforced ceramic composite material
CN115124348A (en) Single phase (Hf) x Zr 1-x ) N solid solution ultra-high temperature ablation-resistant ceramic coating and preparation method thereof
JPH03247506A (en) Polycrystal silicon carbide
JPH03112881A (en) Si3n4-based ceramics
JPH05221723A (en) Si-sic composite material
JPH03237065A (en) Silicon nitride sintered body and production thereof
JPH06191971A (en) Complex ceramic member

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees