JPH06191971A - Complex ceramic member - Google Patents
Complex ceramic memberInfo
- Publication number
- JPH06191971A JPH06191971A JP4342984A JP34298492A JPH06191971A JP H06191971 A JPH06191971 A JP H06191971A JP 4342984 A JP4342984 A JP 4342984A JP 34298492 A JP34298492 A JP 34298492A JP H06191971 A JPH06191971 A JP H06191971A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- film
- silicon nitride
- silicon
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5062—Borides, Nitrides or Silicides
- C04B41/5066—Silicon nitride
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化珪素および窒化珪
素を主体としてなる耐食性、耐酸化性に優れた複合セラ
ミック部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ceramic member mainly composed of silicon carbide and silicon nitride, which is excellent in corrosion resistance and oxidation resistance.
【0002】[0002]
【従来技術】炭化珪素や窒化珪素を主体としてなる焼結
体は、機械的強度、硬度、耐熱性などに優れることから
エンジニアリングセラミックスとして注目され、各種の
構造材料あるいは熱機関用材料として応用されている。2. Description of the Related Art Sintered bodies composed mainly of silicon carbide and silicon nitride have attracted attention as engineering ceramics because of their excellent mechanical strength, hardness, heat resistance, etc., and have been applied as various structural materials or heat engine materials. There is.
【0003】窒化珪素質焼結体は、強度、靱性および耐
熱性に優れるものの高温での強度が低下するという性質
を有し、炭化珪素質焼結体は、高温における強度や耐薬
品性に優れるものの靱性に乏しいという問題がある。そ
こで、最近ではこの炭化珪素と窒化珪素を複合化させる
ことによりそれぞれの欠点を補った焼結体が提案されて
いる。The silicon nitride sintered body is excellent in strength, toughness and heat resistance, but has the property of lowering the strength at high temperature. The silicon carbide sintered body is excellent in high temperature strength and chemical resistance. However, there is a problem of poor toughness. Therefore, recently, a sintered body has been proposed in which these defects are compensated by compounding silicon carbide and silicon nitride.
【0004】一方、セラミックに対して、その表面の改
質を目的としてその表面に性質の異なる物質をコーティ
ングし、耐酸化性や摺動特性を改善させることも行わ
れ、それにより応用分野を拡大することも行われてい
る。On the other hand, ceramics may be coated with substances having different properties to improve their oxidation resistance and sliding properties for the purpose of modifying their surface, thereby expanding the field of application. Things are also being done.
【0005】特に、炭化珪素や窒化珪素はコーティング
材料としても注目され、例えばCVD法等によれば高純
度の膜が生成されることから耐熱性や耐酸化性などの改
善を行うことができるために半導体製造用治具などへの
応用が期待される。In particular, silicon carbide and silicon nitride are also attracting attention as coating materials. For example, a CVD method or the like produces a high-purity film, which improves heat resistance and oxidation resistance. It is expected to be applied to jigs for semiconductor manufacturing.
【0006】[0006]
【発明が解決しようとする問題点】しかしながら、炭化
珪素と窒化珪素の複合焼結体からなる基体の表面にCV
D法などにより炭化珪素または窒化珪素をコーティング
すると、例えば、熱CVD法によれば、複合焼結体と炭
化珪素または窒化珪素との間に熱膨張差が存在するため
に、およそ1000℃以上の生成温度からの冷却過程、
加工時に膜にクラックが発生してしまうという問題があ
った。However, CV is formed on the surface of the substrate made of a composite sintered body of silicon carbide and silicon nitride.
When silicon carbide or silicon nitride is coated by the D method or the like, for example, according to the thermal CVD method, there is a difference in thermal expansion between the composite sintered body and silicon carbide or silicon nitride. Cooling process from generation temperature,
There was a problem that cracks were generated in the film during processing.
【0007】成膜方法としてプラズマCVD法やPVD
法によれば、熱CVD法よりも低温で合成することがで
きるが、基体と膜間の熱膨張差に起因する内部応力が膜
中に発生し、それが大きくなるとやはり膜が破壊してし
まう。A plasma CVD method or PVD is used as a film forming method.
According to the method, synthesis can be performed at a lower temperature than the thermal CVD method, but internal stress due to the difference in thermal expansion between the substrate and the film is generated in the film, and if it becomes large, the film is also destroyed. .
【0008】例えば、炭化珪素と窒化珪素との複合材料
に炭化珪素単体あるいは窒化珪素単体をコーティングし
た場合、その膜厚が約10μm以上になると熱応力によ
って膜にクラックが発生してしまうのが現状であった。For example, in the case where a composite material of silicon carbide and silicon nitride is coated with silicon carbide alone or silicon nitride alone, when the film thickness is about 10 μm or more, cracks are generated in the film due to thermal stress. Met.
【0009】[0009]
【問題を解決するための手段】本発明者は、上記の問題
点に対して検討を重ねた結果、窒化珪素および炭化珪素
を主成分とする複合焼結体の表面に形成する膜を、基体
成分と同様な炭化珪素および窒化珪素の複合体により形
成することにより、基体との密着性に優れ、且つ膜にク
ラックの発生しない優れた複合材料が得られることを知
見したものである。As a result of repeated studies on the above problems, the present inventor found that a film formed on the surface of a composite sintered body containing silicon nitride and silicon carbide as a main component was formed on a substrate. It was discovered that by forming a composite of silicon carbide and silicon nitride similar to the components, an excellent composite material can be obtained that has excellent adhesion to the substrate and does not cause cracks in the film.
【0010】即ち、本発明は、炭化珪素および窒化珪素
を主成分とする複合焼結体からなる基体上に、炭化珪素
および窒化珪素からなる複合膜を形成したことを特徴と
する複合セラミック部材に関するもので、特に、基体に
おける炭化珪素/(窒化珪素+炭化珪素)で表される比
率と、前記複合膜の前記比率との差が絶対値で0.3以
内であることを特徴とするものである。That is, the present invention relates to a composite ceramic member characterized in that a composite film composed of silicon carbide and silicon nitride is formed on a substrate composed of a composite sintered body containing silicon carbide and silicon nitride as main components. Particularly, the difference between the ratio of silicon carbide / (silicon nitride + silicon carbide) in the substrate and the ratio of the composite film is within 0.3 in absolute value. is there.
【0011】以下、本発明を詳述する。本発明の複合セ
ラミック体における基体は、炭化珪素および窒化珪素を
主成分とする焼結体からなるものであって、具体的には
炭化珪素と窒化珪素の重量比率が1:9乃至9:1の比
率で存在するもので、その他にY2 O3 やEr2 O3 、
Yb2 O3 などの周期律表3a族金属酸化物やAl2 O
3 、MgOなどの焼結助剤を0.5乃至20重量%の割
合で添加したり、周期律表4a,5a,6a族遷移金属
の酸化物、窒化物、炭化物および炭素などを特性改善を
目的として0.1乃至30重量%の割合で添加されたも
のでもよい。この複合焼結体は、その相対密度が95%
以上であることが、コーティング膜および複合セラミッ
ク体全体の特性の安定性の点で望ましい。The present invention will be described in detail below. The substrate in the composite ceramic body of the present invention is made of a sintered body containing silicon carbide and silicon nitride as main components, and specifically, the weight ratio of silicon carbide and silicon nitride is 1: 9 to 9: 1. Of Y 2 O 3 and Er 2 O 3 ,
Periodic Table 3a group metal oxides such as Yb 2 O 3 and Al 2 O
3 , adding a sintering aid such as MgO in a proportion of 0.5 to 20% by weight, and improving the characteristics of oxides, nitrides, carbides, carbon, etc. of transition metals of groups 4a, 5a and 6a of the periodic table. For the purpose, it may be added in a proportion of 0.1 to 30% by weight. This composite sintered body has a relative density of 95%.
The above is preferable from the viewpoint of stability of characteristics of the coating film and the composite ceramic body as a whole.
【0012】一方、上記複合焼結体の表面に形成される
複合膜は、基体である複合焼結体と同様に成分として炭
化珪素および窒化珪素からなるものであって、膜中にお
ける炭化珪素と窒化珪素の重量比率が1:9乃至9:1
となる比率で含有するものである。On the other hand, the composite film formed on the surface of the above-mentioned composite sintered body is composed of silicon carbide and silicon nitride as components similarly to the composite sintered body as the base, and the silicon carbide in the film is Silicon nitride weight ratio is 1: 9 to 9: 1
It is contained in the following ratio.
【0013】ただし、本発明によれば、基体である複合
焼結体とその表面に形成される複合膜の炭化珪素の窒化
珪素に対する炭化珪素/(窒化珪素+炭化珪素)で表さ
れる比率の、複合焼結体基体と複合膜との差の絶対値が
0.3以下であることが望ましい。この比率の差が0.
3を越えると基体と膜間の熱膨張差が大きくなり、膜内
に応力が発生し膜にクラックが生じてしまうためであ
る。基体と複合膜の上記比率の差は特に0.2以下が望
ましい。However, according to the present invention, the ratio of silicon carbide / (silicon nitride + silicon carbide) of silicon carbide of the composite sintered body which is the substrate and the composite film formed on the surface thereof to silicon nitride is set. The absolute value of the difference between the composite sintered body substrate and the composite film is preferably 0.3 or less. The difference in this ratio is 0.
This is because if it exceeds 3, the difference in thermal expansion between the substrate and the film becomes large, stress is generated in the film, and cracks occur in the film. The difference in the ratio between the substrate and the composite film is particularly preferably 0.2 or less.
【0014】また、基体の表面に形成される複合膜はそ
の厚みが10μm以上であることが望ましいが、特に基
体となる複合焼結体と複合膜との前述した炭化珪素/
(窒化珪素+炭化珪素)の比率の関係を満足すれば、1
00μm程度形成してもクラックなどの発生がなく何ら
問題はないことを確認している。The composite film formed on the surface of the substrate preferably has a thickness of 10 μm or more, and particularly, the above-mentioned silicon carbide / composite film of the composite sintered body and the composite film, which is the substrate, is formed.
If the ratio relationship of (silicon nitride + silicon carbide) is satisfied, 1
It has been confirmed that even if it is formed to a thickness of about 00 μm, there is no crack and no problem.
【0015】炭化珪素および窒化珪素からなる複合膜
は、例えば、CVD法により形成することができる。例
えば、炭化珪素および窒化珪素からなる複合焼結体から
なる基体をCVD炉に設置し、CVD炉中に水素ガスを
希釈ガスとして、珪素含有ガスと炭素含有ガスからなる
炭化珪素形成用ガスと、珪素含有ガスと窒素含有ガスか
らなる窒化珪素形成用ガスと同時に導入し、基体を12
00乃至1600℃の温度に加熱することにより、反応
ガスの分解および基体への析出により基体表面に炭化珪
素と窒化珪素の複合膜を形成することができる。複合膜
の成分比率は、CVD炉に導入するガスの比率を制御す
ることにより任意の組成に制御することができる。The composite film made of silicon carbide and silicon nitride can be formed, for example, by the CVD method. For example, a substrate made of a composite sintered body made of silicon carbide and silicon nitride is installed in a CVD furnace, and hydrogen gas is used as a diluent gas in the CVD furnace, and a silicon carbide forming gas made of a silicon-containing gas and a carbon-containing gas, At the same time as the silicon nitride forming gas consisting of the silicon-containing gas and the nitrogen-containing gas is introduced, the substrate 12
By heating to a temperature of 00 to 1600 ° C., a composite film of silicon carbide and silicon nitride can be formed on the surface of the substrate by decomposition of the reaction gas and deposition on the substrate. The composition ratio of the composite film can be controlled to an arbitrary composition by controlling the ratio of the gas introduced into the CVD furnace.
【0016】珪素含有ガスとしては、珪素の塩化物や水
素化物が挙げられ、その中に窒素が含まれていても良
い。また、炭素含有ガスとしては炭化水素、四塩化炭素
など、窒素含有ガスとしては窒素、アンモニアなどを用
いればよい。また、珪素と炭素を含むSi(Me)4 や
メチルクロロシランなどや、珪素と窒素を含むシラザン
などを用いてもよい。Examples of the silicon-containing gas include chlorides and hydrides of silicon, which may contain nitrogen. Further, hydrocarbon, carbon tetrachloride, etc. may be used as the carbon-containing gas, and nitrogen, ammonia, etc. may be used as the nitrogen-containing gas. Alternatively, Si (Me) 4 containing silicon and carbon, methylchlorosilane, or the like, silazane containing silicon and nitrogen, or the like may be used.
【0017】[0017]
【作用】本発明によれば、炭化珪素と窒化珪素との複合
材料からなる基体に、同様の組成からなる炭化珪素と窒
化珪素からなる複合膜を形成することによって、基体と
膜との熱膨張差に起因する応力の発生を低減せしめるこ
とができるために、膜の厚みが大きくなってもクラック
の発生を抑制することができる。According to the present invention, by forming a composite film made of silicon carbide and silicon nitride having the same composition on a base made of a composite material of silicon carbide and silicon nitride, the thermal expansion of the base and the film can be achieved. Since it is possible to reduce the generation of stress due to the difference, it is possible to suppress the generation of cracks even if the film thickness is increased.
【0018】これにより、炭化珪素−窒化珪素複合焼結
体の特性を活かしつつ、その表面に実質的に粒界が存在
しない高純度の複合膜を十分に大きい厚みに形成するこ
とができるために、例えば、半導体製造用治具などに適
用することができる。Thus, while utilizing the characteristics of the silicon carbide-silicon nitride composite sintered body, it is possible to form a high-purity composite film having substantially no grain boundaries on its surface with a sufficiently large thickness. For example, it can be applied to a jig for semiconductor manufacturing.
【0019】[0019]
【実施例】以下、本発明を次の例で説明する。 実施例1 Y2 O3 を10重量%の割合で含有し、炭化珪素/(窒
化珪素+炭化珪素)=0.65の複合焼結体を作製し、
これをCVD炉内に設置した。そこにCH3 SiC
l3 、SiCl4 、H2 、NH3 の混合ガスをCVD炉
に導入し、基体温度1500℃、圧力60Torrのも
とで成膜を行い、炭化珪素/(窒化珪素+炭化珪素)が
0.7の窒化珪素−炭化珪素複合膜を470μm析出さ
せた(試料No.1)。比較のために炭化珪素単体膜およ
び窒化珪素単体膜を表1の膜厚で成膜した(試料No.2
乃至5)。The present invention will be described below with reference to the following examples. Example 1 A composite sintered body containing Y 2 O 3 at a ratio of 10% by weight and having silicon carbide / (silicon nitride + silicon carbide) = 0.65 was prepared,
This was installed in the CVD furnace. CH 3 SiC there
l 3, SiCl 4, H 2 , and introducing a mixed gas of NH 3 in CVD furnace, the substrate temperature 1500 ° C., subjected to film formation under the pressure 60 Torr, silicon carbide / (silicon nitride + SiC) is 0. A silicon nitride-silicon carbide composite film of No. 7 was deposited at 470 μm (Sample No. 1). For comparison, a silicon carbide simple substance film and a silicon nitride simple substance film were formed in the thicknesses shown in Table 1 (Sample No. 2).
Through 5).
【0020】合計5種の複合体に対して研削およびダイ
ヤモンド砥粒により研磨処理を30分行ったところ、表
1に示すように、炭化珪素ー窒化珪素複合膜を形成した
試料No.1では研磨後も全くクラックの発生はなかっ
た。これに対して炭化珪素単体膜(試料No.2)と窒化
珪素単体(試料No.4)は成膜直後にクラックの発生は
なかったが、研磨時にクラックの発生が見られた。ま
た、厚みを厚くした単体膜(試料No.3、4)はいずれ
も成膜直後にクラックが発生した。When a total of 5 kinds of composites were subjected to grinding and polishing treatment with diamond abrasive grains for 30 minutes, as shown in Table 1, in Sample No. 1 having a silicon carbide-silicon nitride composite film formed thereon, polishing was carried out. After that, no cracks occurred at all. On the other hand, the silicon carbide simple substance film (Sample No. 2) and the silicon nitride simple substance (Sample No. 4) had no cracks immediately after the film formation, but cracks were observed during polishing. Further, in each of the thickened single films (Sample Nos. 3 and 4), cracks were generated immediately after the film formation.
【0021】なお、表中の膜中の炭化珪素と窒化珪素の
量は炭素分析、窒素分析により定量した。また、膜厚は
SEM写真から判定した。なお、剥離は研削、鏡面研磨
加工による加工後に判定した。The amounts of silicon carbide and silicon nitride in the films in the table were quantified by carbon analysis and nitrogen analysis. Further, the film thickness was judged from the SEM photograph. The peeling was judged after processing by grinding and mirror polishing.
【0022】実施例2 Y2 O3 を8重量%の割合で含有し、炭化珪素/(窒化
珪素+炭化珪素)=0.5の複合焼結体を作製してCV
D炉内に設置し、SiH4 、H2 、NH3 、C2 H2 の
混合ガスをCVD炉に導入し、温度1300℃、圧力5
0Torrのもとでコーティングを行ない、炭化珪素/
(窒化珪素+炭化珪素)が0.55の複合膜を210μ
m析出させた(試料No.6)。比較のために炭化珪素単
体を51μmの膜厚にコーティングを行なった(試料N
o.7)。同様に、窒化珪素単体の46μmの被覆も行な
った(試料No.8)。Example 2 A composite sintered body containing Y 2 O 3 in an amount of 8% by weight and having silicon carbide / (silicon nitride + silicon carbide) = 0.5 was prepared and CV was obtained.
It is installed in the D furnace, a mixed gas of SiH 4 , H 2 , NH 3 , and C 2 H 2 is introduced into the CVD furnace, and the temperature is 1300 ° C. and the pressure is 5
Coating under 0 Torr, silicon carbide /
210μ composite film with (silicon nitride + silicon carbide) 0.55
m (sample No. 6). For comparison, silicon carbide alone was coated to a film thickness of 51 μm (Sample N
o.7). Similarly, a coating of 46 μm of a simple substance of silicon nitride was performed (Sample No. 8).
【0023】各複合体に対して実施例1と同様に成膜直
後、および研磨処理後の膜の状態を観察した。その結
果、表1に示すように試料No.6の炭化珪素ー窒化珪素
複合膜は研磨後も全くクラックの発生はなかった。それ
に比べて試料No.7の炭化珪素単体膜と試料No.8の窒
化珪素単体膜にはクラックの発生が見られた。For each composite, the state of the film immediately after film formation and after polishing treatment was observed in the same manner as in Example 1. As a result, as shown in Table 1, the silicon carbide-silicon nitride composite film of Sample No. 6 had no cracks at all even after polishing. In comparison, cracks were found in the silicon carbide single film of sample No. 7 and the silicon nitride single film of sample No. 8.
【0024】実施例3 反応炉内に炭化珪素と窒化珪素とを主成分とし、炭化珪
素/(窒化珪素+炭化珪素)=0.33の重量比の焼結
体基体を設置し、そこにCH3 SiCl3 、H2 、Si
Cl4 およびNH3 の混合ガスを導入し、温度1400
℃、圧力60Torrのもとでコーティングを行ない、
炭化珪素と窒化珪素の比率が異なる数種の複合体を作製
した(試料No.9乃至13)。Example 3 A sintered base body containing silicon carbide and silicon nitride as main components and having a weight ratio of silicon carbide / (silicon nitride + silicon carbide) = 0.33 was placed in a reactor, and CH was placed therein. 3 SiCl 3 , H 2 , Si
A mixed gas of Cl 4 and NH 3 is introduced, and the temperature is set to 1400.
Coating at 60 ° C and a pressure of 60 Torr,
Several composites having different ratios of silicon carbide and silicon nitride were prepared (Samples No. 9 to 13).
【0025】その結果、窒化珪素膜からなる試料No.1
3ではクラックの発生が見られ、また炭化珪素/(窒化
珪素+炭化珪素)比率の基体と膜との差が0.3より大
きい試料No.10において炭化珪素単体膜または窒化珪
素単体膜ほどではないが、わずかながらクラックが観察
された。As a result, a sample No. 1 made of a silicon nitride film was obtained.
In No. 3, cracking was observed, and in the sample No. 10 in which the difference between the substrate and the film in the ratio of silicon carbide / (silicon nitride + silicon carbide) was larger than 0.3, in the case of the silicon carbide single film or the silicon nitride single film, There was no crack, but a slight crack was observed.
【0026】[0026]
【表1】 [Table 1]
【0027】実施例4 炭化珪素を窒素1000気圧の高圧下で反応焼結させた
炭化珪素、窒化珪素および炭素からなり、炭化珪素/
(窒化珪素+炭化珪素)=0.25の重量比からなる焼
結体を反応炉内に設置し、そこにSiCl4 、H2 、N
H3 およびC2 H2 のガスで炭化珪素/(窒化珪素+炭
化珪素)=0.20の複合膜を140μmの厚みで合成
した。得られた複合膜は成膜直後および研磨後も全くク
ラックの発生はなかった。EXAMPLE 4 Silicon carbide, which was obtained by reacting and sintering silicon carbide under a high pressure of 1000 atm of nitrogen, was composed of silicon nitride and carbon.
A sintered body having a weight ratio of (silicon nitride + silicon carbide) = 0.25 was placed in a reaction furnace, and SiCl 4 , H 2 , N
A composite film of silicon carbide / (silicon nitride + silicon carbide) = 0.20 was synthesized with a gas of H 3 and C 2 H 2 to a thickness of 140 μm. The obtained composite film had no cracks immediately after film formation and after polishing.
【0028】[0028]
【発明の効果】以上の通り、本発明によれば、炭化珪素
と窒化珪素を主成分とする焼結体の表面に炭化珪素と窒
化珪素の複合膜をコーティングすることによってクラッ
クの発生のない良質な膜が形成される。これにより複合
材料の優れた機械的特性を維持しつつ、耐食性、耐酸化
性に優れ、高純度である被膜の形成が可能となった。As described above, according to the present invention, by coating the surface of the sintered body containing silicon carbide and silicon nitride as the main component with the composite film of silicon carbide and silicon nitride, no cracks are generated. Film is formed. As a result, it became possible to form a coating having excellent corrosion resistance and oxidation resistance and high purity while maintaining the excellent mechanical properties of the composite material.
【0029】これにより、炭化珪素質焼結体の半導体部
品用の治具、高温機械材料や、慴動部材等への用途を拡
大することができる。As a result, the use of the silicon carbide sintered body as a jig for semiconductor parts, high-temperature mechanical materials, sliding members, etc. can be expanded.
Claims (2)
合焼結体からなる基体上に、炭化珪素および窒化珪素か
らなる複合膜を形成したことを特徴とする複合セラミッ
ク部材。1. A composite ceramic member having a composite film made of silicon carbide and silicon nitride formed on a base body made of a composite sintered body containing silicon carbide and silicon nitride as main components.
炭化珪素)で表される比率と、前記複合膜の前記比率と
の差が絶対値で0.3以内である請求項1記載の複合セ
ラミック部材。2. Silicon carbide / (silicon nitride +) in said substrate
The composite ceramic member according to claim 1, wherein a difference between the ratio represented by (silicon carbide) and the ratio of the composite film is within 0.3 in absolute value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4342984A JPH06191971A (en) | 1992-12-24 | 1992-12-24 | Complex ceramic member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4342984A JPH06191971A (en) | 1992-12-24 | 1992-12-24 | Complex ceramic member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06191971A true JPH06191971A (en) | 1994-07-12 |
Family
ID=18358038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4342984A Pending JPH06191971A (en) | 1992-12-24 | 1992-12-24 | Complex ceramic member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06191971A (en) |
-
1992
- 1992-12-24 JP JP4342984A patent/JPH06191971A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5035923A (en) | Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates | |
US20100310860A1 (en) | Synthetic method for anti-oxidation ceramic coatings on graphite substrates | |
EP0310043A2 (en) | Oxidation resistant, high temperature thermal cycling resistant coating on silicon-based substrates and process for the production thereof | |
JP4312293B2 (en) | Silicon carbide ceramic composite material and manufacturing method thereof | |
EP1026281B1 (en) | Method of producing anti-corrosion member and anti-corrosion member | |
KR101628689B1 (en) | Silicon carbide parts for plasma apparatus and manufacturing method thereof | |
JPH0513109B2 (en) | ||
JPS61109628A (en) | Diamond coated tool | |
JPH06191971A (en) | Complex ceramic member | |
JP2801485B2 (en) | Composite and method for producing the same | |
JP2660346B2 (en) | Ceramic composite materials | |
JPH0776775A (en) | Diamond-coated cemented carbide tool | |
JP2500012B2 (en) | Method for manufacturing ceramics sintered body having composite coating layer | |
JPH04301084A (en) | Wear-resistant member and its manufacture | |
JPH0692761A (en) | Sic-cvd coated and si impregnated sic product and its manufacture | |
JP2528928B2 (en) | Method for producing silicon carbide-silicon nitride composite film | |
KR20120042628A (en) | A method for forming an aluminum nitride thin film | |
JPH0466838B2 (en) | ||
JPH0582473B2 (en) | ||
JP2000507647A (en) | Method of forming pyrolytic SiBN coating | |
JPH11278944A (en) | Silicon nitride corrosion resistant member and its production | |
JP3602931B2 (en) | Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same | |
JPS63236782A (en) | Method of reforming surface of silicon carbide ceramics | |
JP3132849B2 (en) | High toughness high pressure phase boron nitride sintered body | |
JP2001262347A (en) | Film structure |