JPH04321552A - Superconducting member - Google Patents

Superconducting member

Info

Publication number
JPH04321552A
JPH04321552A JP3088401A JP8840191A JPH04321552A JP H04321552 A JPH04321552 A JP H04321552A JP 3088401 A JP3088401 A JP 3088401A JP 8840191 A JP8840191 A JP 8840191A JP H04321552 A JPH04321552 A JP H04321552A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconducting
oxygen
layers
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3088401A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3088401A priority Critical patent/JPH04321552A/en
Publication of JPH04321552A publication Critical patent/JPH04321552A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the superconducting characteristics such as critical current density of a superconducting material produced by using a bulk oxide superconductor. CONSTITUTION:Oxide superconductor layers 1 and oxygen-transmission layers 2 made of a material having excellent oxygen permeability such as silver are alternately laminated and the laminate is baked in an oxygen-containing atmosphere to effect the sintering of the layers while uniformly supplying oxygen to the core part of the oxide superconductor layers 1 and to integrate the layers as a superconducting material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、酸化物超電導体のよう
な高温超電導材料を用いた超電導部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to superconducting members using high temperature superconducting materials such as oxide superconductors.

【0003】0003

【従来の技術】1986年に BednorzとMul
lerらによって、La−Ba−Cu−O系酸化物が超
電導性を有することが初めて報告されて以来、ペロブス
カイト構造を有するいくつかの酸化物系の超電導体が発
見されいる。それらの多くは、高い臨界温度 (Tc)
をもち、特に Y−Ba−Cu−O系 (Tc=93K
)、 Bi−Sr−Ca−Cu−O系 (Tc=80K
,108K) 、Tl−Ba−Ca−Cu−O系 (T
c=125K) 等は、そのTc が液体窒素温度(7
7.3K) を超える点で注目されている。
[Prior Art] In 1986, Bednorz and Mul
Since Ler et al. first reported that La-Ba-Cu-O-based oxides have superconductivity, several oxide-based superconductors having a perovskite structure have been discovered. Many of them have high critical temperature (Tc)
, especially Y-Ba-Cu-O system (Tc=93K
), Bi-Sr-Ca-Cu-O system (Tc=80K
, 108K), Tl-Ba-Ca-Cu-O system (T
c=125K) etc., the Tc is the liquid nitrogen temperature (7
It is attracting attention as it exceeds 7.3K).

【0004】このような酸化物超電導体の応用分野の一
つの柱は、電力・エネルギー機器の分野であると考えら
れている。この分野で利用される酸化物超電導体の形態
は、大きく分けてシース材をもつ長尺な線材と、シース
材をもたない短尺のバルク材とに分類され、それぞれに
様々な用途が考えられている。具体的な例をあげると、
線材では送電ケーブルや超電導マグネット用線材等が、
またバルク材では電流リードや限流素子等が挙げられる
[0004] One of the main fields of application of such oxide superconductors is considered to be the field of electric power and energy equipment. The forms of oxide superconductors used in this field can be roughly divided into long wire rods with a sheath material and short bulk wire rods without a sheath material, and each can have various uses. ing. To give a specific example,
Wire materials include wire materials for power transmission cables and superconducting magnets.
Examples of bulk materials include current leads and current limiting elements.

【0005】上記した電流リードは、超電導マグネット
や超電導限流器等の超電導応用機器と電源を結んで、電
流を供給するものであり、大電流を安定して流せること
と熱を伝えにくいことが必要な条件となる。酸化物超電
導体は熱伝導率が小さく、また高温までジュール発熱な
しに電流を流せるので、電流リードには適しているとい
える。また、酸化物超電導体の多結晶体中を流れる電流
は、現在のところ磁界に対して急激に減衰してしまうた
め、このことからも磁界の影響の小さい電流リードや限
流素子等としての実用化が進められている。
[0005] The above-mentioned current lead connects a power source to superconducting applied equipment such as a superconducting magnet or a superconducting current limiter to supply current, and has the advantage of being able to stably flow a large current and being difficult to conduct heat. This is a necessary condition. Oxide superconductors have low thermal conductivity and can conduct current up to high temperatures without Joule heat generation, making them suitable for current leads. In addition, current flowing through polycrystalline oxide superconductors at present rapidly attenuates in response to magnetic fields, which also makes them useful as current leads and current-limiting elements that are less affected by magnetic fields. is being developed.

【0006】[0006]

【発明が解決しようとする課題】上述したように、酸化
物超電導体の応用分野の一つとして、酸化物超電導体の
バルク材を電流リード等に利用することが考えられてい
るが、現状の固相法によるバルク材の製造方法では、十
分に大きい臨界電流密度を有するものを安定して得るこ
とが困難であるという難点がある。よって、超電導マグ
ネット等に十分な電流を供給するためには、電流リード
の断面積を大きくせざるをえない。このように、断面積
を大きくすると、電流リードにおいては装置の大型化を
招くことはもちろんのこと、酸化物超電導体は熱伝導率
が小さいとはいうものの、外部からの熱侵入量が増え、
超電導機器の機能低下やランニングコストが増大する等
といった問題を招いてしまう。このようなことから、電
流リード等として用いる酸化物超電導バルク体の臨界電
流密度を向上させることが強く望まれている。
[Problems to be Solved by the Invention] As mentioned above, one of the application fields of oxide superconductors is the use of bulk materials of oxide superconductors for current leads, etc. The method of manufacturing bulk materials using the solid phase method has the disadvantage that it is difficult to stably obtain materials having a sufficiently large critical current density. Therefore, in order to supply sufficient current to a superconducting magnet or the like, it is necessary to increase the cross-sectional area of the current lead. In this way, increasing the cross-sectional area not only increases the size of the current lead device, but also increases the amount of heat intrusion from the outside, although oxide superconductors have low thermal conductivity.
This results in problems such as reduced functionality of superconducting equipment and increased running costs. For these reasons, it is strongly desired to improve the critical current density of oxide superconducting bulk bodies used as current leads and the like.

【0007】また、上記した電流リードは、酸化物超電
導体のバルク材を用いた超電導部材の一つの応用例であ
り、酸化物超電導バルク体の臨界電流密度を向上させる
ことが可能であれば、種々の用途への応用が可能となる
Furthermore, the above-mentioned current lead is one application example of a superconducting member using a bulk material of an oxide superconductor, and if it is possible to improve the critical current density of the bulk material of an oxide superconductor, Application to various uses becomes possible.

【0008】本発明は、このような課題に対処するため
になされたもので、酸化物超電導体のバルク材の臨界電
流密度等の超電導特性を向上させた超電導部材を提供す
ることを目的としている。
[0008] The present invention has been made to address these problems, and an object of the present invention is to provide a superconducting member with improved superconducting properties such as critical current density of a bulk material of an oxide superconductor. .

【0009】[発明の構成][Configuration of the invention]

【0010】0010

【課題を解決するための手段】すなわち、本発明の超電
導部材は、酸化物超電導体を用いた超電導部材であって
、前記酸化物超電導体と酸素透過層とが交互に積層一体
化されて構成されていることを特徴とするものである。
[Means for Solving the Problems] That is, the superconducting member of the present invention is a superconducting member using an oxide superconductor, and is constructed by integrally laminating the oxide superconductor and oxygen permeable layers alternately. It is characterized by the fact that

【0011】本発明において用いられる酸化物超電導体
としては、超電導状態を実現できるものであれば特に限
定されるものではなく、例えば希土類元素含有のペロブ
スカイト構造を有する酸化物超電導体や、 Bi−Sr
−Ca−Cu−O系酸化物超電導体、Tl−Ba−Ca
−Cu−O系酸化物超電導体等が適用される。
The oxide superconductor used in the present invention is not particularly limited as long as it can realize a superconducting state; for example, an oxide superconductor having a perovskite structure containing rare earth elements, Bi-Sr, etc.
-Ca-Cu-O based oxide superconductor, Tl-Ba-Ca
-Cu-O based oxide superconductor etc. are applied.

【0012】上記した希土類元素を含有しペロブスカイ
ト構造を有する酸化物超電導体としては、例えばRE 
M2 Cu3 O 7−δ系(REは Y、La、Sc
、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、
Yb、Lu等の希土類元素から選ばれた少なくとも 1
種の元素を、M はBa、Sr、Caから選ばれた少な
くとも 1種の元素を、δは酸素欠陥を表し通常 1以
下の数、Cuの一部はTi、V 、Cr、Mn、Fe、
Co、Ni、Zn等で置換可能)の酸化物等が例示され
る。
Examples of the above-mentioned oxide superconductor containing rare earth elements and having a perovskite structure include RE
M2 Cu3 O 7-δ system (RE is Y, La, Sc
, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm,
At least 1 selected from rare earth elements such as Yb and Lu
M is at least one element selected from Ba, Sr, Ca, δ is an oxygen defect and is usually a number of 1 or less, a part of Cu is Ti, V, Cr, Mn, Fe,
Examples include oxides of Co, Ni, Zn, etc.) which can be substituted with Co, Ni, Zn, etc.

【0013】また、Bi系酸化物超電導体は、化学式:
Bi2 (Sr,Ca)3 Cu2  Ox Bi2 
Sr2 Ca2 Cu3  Ox Bi2 Sr2 C
a3 Cu4  Ox (式中、Biの一部はPb等で
、またSrやCaの一部は希土類元素等で置換可能)等
で表されるものであり、また Tl−Ba−Ca−Cu
−O系酸化物超電導体も同様な構造を有するものである
[0013] Furthermore, the Bi-based oxide superconductor has the chemical formula:
Bi2 (Sr,Ca)3 Cu2 Ox Bi2
Sr2 Ca2 Cu3 Ox Bi2 Sr2 C
a3 Cu4 Ox (in the formula, part of Bi can be replaced with Pb, etc., and part of Sr and Ca can be replaced with rare earth elements, etc.), and Tl-Ba-Ca-Cu
The -O-based oxide superconductor also has a similar structure.

【0014】また、本発明における酸素透過層の構成材
料としては、例えば銀、金、白金、ニッケル等の金属材
を用いることが可能である。例えば銀は、酸化物超電導
体のシース材にも用いられていることからも分るように
、それ自身が酸化されにくく、酸素を透過させて、酸化
物超電導体への酸素供給源として機能する。また、酸化
物超電導体を還元して超電導性を失わせることもないと
共に、酸化物超電導体と化合して新たな化合物をつくる
こともない。さらに、電気抵抗が小さい上に延性や展性
に富み、酸化物超電導体との十分な接触が得られる。
Further, as the constituent material of the oxygen permeable layer in the present invention, it is possible to use, for example, metal materials such as silver, gold, platinum, and nickel. For example, silver itself is difficult to oxidize, as can be seen from the fact that it is also used as a sheath material for oxide superconductors, and it allows oxygen to permeate through it, functioning as an oxygen supply source for oxide superconductors. . Further, the oxide superconductor is not reduced to lose its superconductivity, and the oxide superconductor is not combined with the oxide superconductor to form a new compound. Furthermore, it has low electrical resistance and is rich in ductility and malleability, so that sufficient contact with the oxide superconductor can be obtained.

【0015】本発明の超電導部材の具体的な形態として
は、例えば図1に示すように、酸化物超電導体層1と酸
素透過層2とを交互に積層すると共に、これらを一体化
したものが挙げられる。また、全体の形状としては、適
用する部材に応じて選択すればよく、例えば電流リード
に利用するのであれば、筐体状のようなリード形状とす
ればよい。また、限流素子として使用するのであれば、
同様な形状としたり、あるいはミアンダ形状等としても
よい。また、酸素透過層の形態としては、単にシート状
としてもよいが、例えばネット状やパンチングシート状
等の、隣接する酸化物超電導体どうしが直接接触し得る
ような形状のものを使用することが好ましい。これによ
り、超電導部材(焼結体)の健全性をより一層確保する
ことが可能となる。
A specific form of the superconducting member of the present invention is, for example, as shown in FIG. 1, in which oxide superconductor layers 1 and oxygen permeable layers 2 are alternately laminated and these are integrated. Can be mentioned. Further, the overall shape may be selected depending on the member to which it is applied; for example, if it is used as a current lead, the lead shape may be casing-like. Also, if used as a current limiting element,
It may have a similar shape or may have a meander shape or the like. In addition, the oxygen permeable layer may be in the form of a sheet, but it is also possible to use a shape such as a net or a punched sheet that allows adjacent oxide superconductors to come into direct contact with each other. preferable. This makes it possible to further ensure the soundness of the superconducting member (sintered body).

【0016】本発明の超電導部材は、例えば以下に示す
ような方法により製造される。
The superconducting member of the present invention is manufactured, for example, by the method shown below.

【0017】すなわち、まず個々の酸化物超電導体層を
成形する。この酸化物超電導体層としては、酸化物超電
導体粉末をドクターブレード法等によってシート状に成
形したものや、また酸化物超電導体粉末の圧粉体等を用
いてもよい。次に、これら酸化物超電導体層と、同様な
外形形状を有する酸素透過層とを交互に積層した後、酸
素含有雰囲気中にて焼成し、一体化すると共に焼結させ
る。また、焼結後に必要に応じて、酸素中での熱処理等
を施す。
That is, first, individual oxide superconductor layers are formed. This oxide superconductor layer may be formed by forming oxide superconductor powder into a sheet by a doctor blade method or the like, or may be a green compact of oxide superconductor powder. Next, these oxide superconductor layers and oxygen permeable layers having similar external shapes are alternately laminated, and then fired in an oxygen-containing atmosphere to integrate and sinter them. Further, after sintering, heat treatment in oxygen or the like is performed as necessary.

【0018】[0018]

【作用】本発明の超電導部材においては、酸化物超電導
体間に銀等からなる酸素透過層を介在させているため、
酸化物超電導体を焼結する際に、上記酸素透過層によっ
て酸化物超電導体の内部まで酸素が均一に供給される。 よって、酸化物超電導体全体が健全な超電導特性を示す
ようになり、超電導部材の例えば臨界電流密度等の向上
を図ることが可能となる。
[Operation] In the superconducting member of the present invention, since an oxygen permeable layer made of silver or the like is interposed between the oxide superconductors,
When sintering the oxide superconductor, oxygen is uniformly supplied to the inside of the oxide superconductor by the oxygen permeable layer. Therefore, the entire oxide superconductor comes to exhibit healthy superconducting characteristics, and it becomes possible to improve, for example, the critical current density of the superconducting member.

【0019】[0019]

【実施例】以下、本発明の超電導部材の実施例について
説明する。
[Embodiments] Hereinafter, embodiments of the superconducting member of the present invention will be described.

【0020】実施例 まず、酸化物超電導体の原料粉を以下のようにして作製
した。 Y2 O3 粉末、BaCO3 粉末およびC
uO 粉末を、原子比で Y:Ba:Cu=1:2:3
となるように所定量秤量し、十分に混合した後、大気中
にて 860℃×24時間の条件で熱処理を施し、ミル
によって粉砕して仮焼粉とした。次いで、上記仮焼粉に
適量の有機バインダおよび分散媒を加え、十分に混合し
た後、ドクターブレード法によって 130mm×13
mm×0.9mmtのシート状物を成形した。
Example First, raw material powder for an oxide superconductor was prepared as follows. Y2 O3 powder, BaCO3 powder and C
uO powder in atomic ratio Y:Ba:Cu=1:2:3
After weighing out a predetermined amount and thoroughly mixing it, it was heat-treated in the atmosphere at 860° C. for 24 hours, and ground in a mill to obtain calcined powder. Next, an appropriate amount of an organic binder and a dispersion medium were added to the above calcined powder, and after thorough mixing, a 130 mm x 13 piece was prepared using a doctor blade method.
A sheet-like product measuring mm×0.9 mmt was molded.

【0021】次に、上記シート状物と、同一の外形形状
を有する厚さ0.5mmtの銀製ネットとを、最外層が
それぞれ酸化物超電導体層となるように交互に積層する
と共に、加圧プレスによっておおよそ一体化し、15層
の積層物を作製した。この後、上記積層物を酸素中にて
 900℃×24時間条件で焼成し、さらに降温途中に
 500℃にて12時間保持して、目的とする超電導部
材を得た。
Next, the above-mentioned sheet-like material and a silver net having a thickness of 0.5 mm and having the same external shape were laminated alternately so that the outermost layer was an oxide superconductor layer, and the sheets were pressed together. They were roughly integrated by pressing to produce a 15-layer laminate. Thereafter, the above laminate was fired in oxygen at 900°C for 24 hours, and further held at 500°C for 12 hours during cooling to obtain the desired superconducting member.

【0022】一方、本発明との比較として、上記した仮
焼粉を用いて、プレス成形によって同様な形状の成形体
を作製した後、酸素中にて 900℃×24時間条件で
焼成し、降温途中に同様な保持処理をして、焼成後の上
記超電導部材と同一形状の酸化物超電導体の焼結体を得
た。
On the other hand, as a comparison with the present invention, a molded product having a similar shape was produced by press molding using the above-mentioned calcined powder, and then fired in oxygen at 900°C for 24 hours. A similar holding treatment was performed during the firing to obtain a sintered body of an oxide superconductor having the same shape as the above-mentioned superconducting member after firing.

【0023】このようにして得た実施例および比較例の
超電導部材の臨界電流密度を、77K、0Tの条件で測
定したところ、実施例による超電導部材は2000A/
cm2 と良好な値を示したのに対し、比較例による超
電導部材では 500A/cm2 と低い値しか得られ
なかった。
[0023] When the critical current density of the superconducting members of Examples and Comparative Examples thus obtained was measured under the conditions of 77K and 0T, it was found that the superconducting members of Examples had a critical current density of 2000A/
cm2, which was a good value, whereas the superconducting member according to the comparative example only obtained a low value of 500 A/cm2.

【0024】[0024]

【発明の効果】以上説明したように、本発明の超電導部
材によれば、酸素透過層の酸素供給能によって、内部ま
で均一な超電導状態が得られるため、超電導部材全体と
しての超電導特性の向上を図ることが可能となる。よっ
て、電流リードや限流素子等を初めとして、各種の超電
導部材に酸化物超電導体のバルク材を利用することが可
能となる。
As explained above, according to the superconducting member of the present invention, a uniform superconducting state can be obtained throughout the interior due to the oxygen supplying ability of the oxygen permeable layer, so that the superconducting properties of the superconducting member as a whole can be improved. It becomes possible to achieve this goal. Therefore, it becomes possible to use the bulk material of the oxide superconductor for various superconducting members including current leads, current limiting elements, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による超電導部材の一例の構成を示す一
部断面斜視図である。
FIG. 1 is a partially cross-sectional perspective view showing the configuration of an example of a superconducting member according to the present invention.

【符号の説明】[Explanation of symbols]

1……酸化物超電導体 2……酸素透過層 1...Oxide superconductor 2...Oxygen permeable layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化物超電導体を用いた超電導部材で
あって、前記酸化物超電導体と酸素透過層とが交互に積
層一体化されて構成されていることを特徴とする超電導
部材。
1. A superconducting member using an oxide superconductor, characterized in that the oxide superconductor and oxygen permeable layers are alternately laminated and integrated.
JP3088401A 1991-04-19 1991-04-19 Superconducting member Withdrawn JPH04321552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088401A JPH04321552A (en) 1991-04-19 1991-04-19 Superconducting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088401A JPH04321552A (en) 1991-04-19 1991-04-19 Superconducting member

Publications (1)

Publication Number Publication Date
JPH04321552A true JPH04321552A (en) 1992-11-11

Family

ID=13941777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088401A Withdrawn JPH04321552A (en) 1991-04-19 1991-04-19 Superconducting member

Country Status (1)

Country Link
JP (1) JPH04321552A (en)

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
EP0472333A2 (en) Elongate superconductor elements comprising oxide superconductors, superconducting coils and methods of making such elements
JPH0643268B2 (en) Oxide high temperature superconductor
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
CA2339246A1 (en) Protected superconducting component and method for producing the same
EP0377359B1 (en) Oxide superconducting material, process for preparing the same and applications thereof
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
JPH04321552A (en) Superconducting member
JP2636057B2 (en) Manufacturing method of oxide superconductor
EP0404966A1 (en) Method of producing ceramic-type superconductive wire
CA1341636C (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JPH0816022B2 (en) Method for manufacturing oxide superconductor
JP2653448B2 (en) Oxide superconducting element
JPH01143308A (en) Oxide superconducting coil
JP2763075B2 (en) Oxide superconductor
JPH01246173A (en) Oxide superconductor and production thereof
Leu et al. Fabrication of a superconducting coil for solenoid applications
JPH05135627A (en) Superconductive member
JPH06251929A (en) Manufacture of oxide superconducting coil
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JPH03289007A (en) Ceramics superconductor
JPH0616419A (en) Infinite-layer superconductor
JP3313908B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
JP2828631B2 (en) Manufacturing method of superconducting material
JP2855124B2 (en) Oxide superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711