JPH03289007A - Ceramics superconductor - Google Patents

Ceramics superconductor

Info

Publication number
JPH03289007A
JPH03289007A JP2089468A JP8946890A JPH03289007A JP H03289007 A JPH03289007 A JP H03289007A JP 2089468 A JP2089468 A JP 2089468A JP 8946890 A JP8946890 A JP 8946890A JP H03289007 A JPH03289007 A JP H03289007A
Authority
JP
Japan
Prior art keywords
spacers
ceramics
ceramic superconductor
superconductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2089468A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Wataru Komatsu
亘 小松
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2089468A priority Critical patent/JPH03289007A/en
Publication of JPH03289007A publication Critical patent/JPH03289007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To realize a ceramics superconductor which has excellent cooling ability and high Jc by concentrically placing a composite cylindrical substance, that ceramics superconductor layers are composed in a spiral or concentric manner in a metallic matrix, via at least two spacers. CONSTITUTION:A composite cylindrical substance 3 that ceramics superconductor layers 2 are composed in a spiral manner in a metallic matrix 1 is concentrically placed via several spacers 5 using a metallic pipe 4 as a core material. The spacers 5 are laid at preset spaces to cool a conductor with cooling medium distributed among the spacers 5. The composite cylindrical substance 3 can be manufacture in such a manner that, e.g. a ceramics conductive plate and a metal plate, kneaded with binder into paste, are laminated, wound up in a spiral shape and given extension if necessary and then the ends of the wound-up metal plate are welded. In this way, the cooling medium is distributed into gaps in which the spacers are laid and thereby the ceramics conductor layers 2 are cooled, then to realize high superconductive property such as critical current density Jc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷却能に優れ大容量通電が可能なセラミック
ス超電導々体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a ceramic superconductor that has excellent cooling ability and is capable of carrying a large amount of current.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年、液体窒素温度で超電導を示すY−BaCu−0系
やB 1−5r−Ca−Cu−0系等のセラミックス超
電導体が見出され、各分野で実用化研究が進められてい
る。
In recent years, ceramic superconductors such as Y-BaCu-0 series and B1-5r-Ca-Cu-0 series that exhibit superconductivity at liquid nitrogen temperatures have been discovered, and research on their practical application is progressing in various fields.

ところでこれらのセラミックス超電導体は脆い為、これ
を線状の超電導々体となすには、例えば加工性に冨んだ
AgやCu等の金属製パイプにセラミックス超電導体と
なし得る原料物質を充填し、次いでこれを伸延加工して
所望形状の線材となし、しかるのち、この線材に所定の
加熱処理を施して上記原料物質を超電導体に反応せしめ
る方法が用いられている。
By the way, these ceramic superconductors are brittle, so in order to make them into linear superconductors, for example, a pipe made of a metal such as Ag or Cu, which is rich in workability, is filled with a raw material that can be made into a ceramic superconductor. This is then stretched into a wire rod of a desired shape, and then this wire rod is subjected to a predetermined heat treatment to react the raw material material into a superconductor.

このような金属と複合したセラミックス超電導々体を用
いて大容量通電を行う場合のセラミックス超電導々体と
しては、例えば第3図イ2口に示したように金属マトリ
ックス1中に渦巻状又は同心状にセラミックス超電導体
層2を複合した構造のセラミックス超電導々体が提案さ
れている。
When carrying out large-capacity current flow using a ceramic superconductor composited with such a metal, the ceramic superconductor has a spiral or concentric shape in the metal matrix 1, for example, as shown in Figure 3 A2. A ceramic superconductor having a composite structure with a ceramic superconductor layer 2 has been proposed.

しかしながらこのような渦巻状のセラミックス超電導々
体は全体の容積が大きくなる為、液体窒素等の冷却媒体
中に浸漬し冷却して使用するような場合においては、冷
却が内部まで十分に行き届かず、この為超電導状態が局
部的に破壊するクエンチが起き易く通電容量を大きく取
れないという問題があった。
However, since the overall volume of such a spiral ceramic superconductor is large, when it is immersed in a cooling medium such as liquid nitrogen to cool it, the cooling cannot reach the inside sufficiently. Therefore, there was a problem that quenching, in which the superconducting state is locally destroyed, easily occurs, and a large current carrying capacity cannot be obtained.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はか−る状況に鑑み鋭意研究の結果なされたもの
で、その目的とするところは安定して大xfLを通電し
得る冷却能に優れたセラミックス超電導体を提供するこ
とにある。
The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a ceramic superconductor with excellent cooling ability that can stably conduct a large current xfL.

すなわち、本発明は、金属マトリックス中に渦巻状又は
同心状にセラミックス超電導体層を複合した複合筒状体
を、少なくとも2個スペーサーを介して同心状に配置し
たことを特徴とするものである。
That is, the present invention is characterized in that at least two composite cylindrical bodies in which ceramic superconductor layers are spirally or concentrically composited in a metal matrix are arranged concentrically with a spacer interposed therebetween.

以下に本発明を図を参照して具体的に説明する。The present invention will be specifically explained below with reference to the drawings.

第1図は本発明導体の一態捧を示す横断面図である。図
において2はセラミックス超電導体層である。
FIG. 1 is a cross-sectional view showing one form of the conductor of the present invention. In the figure, 2 is a ceramic superconductor layer.

金属マトリックス1内に渦巻状にセラミックス超電導体
層2を複合した複合円筒体3が金属製パイプ4を芯材と
して複数個スペーサー5を介して同心状に配置されてい
る。
A plurality of composite cylindrical bodies 3 in which a ceramic superconductor layer 2 is spirally composited in a metal matrix 1 are arranged concentrically with a metal pipe 4 as a core material via spacers 5.

上記においてスペーサー5は所定間隔をあけて介在させ
、スペーサー5間に冷媒を通流させて導体の冷却がなさ
れる。
In the above, the spacers 5 are interposed at predetermined intervals, and the conductor is cooled by flowing a coolant between the spacers 5.

上記複合円筒体3は、例えばバインダーと混練してペー
スト状となしたセラミックス超電導板状体と金属板状体
とを積層し、これを渦巻状に巻上げ、必要に応じ伸延加
工を施したのち、この巻回体の金属板状体端部を溶接し
て製造される。
The composite cylindrical body 3 is made by laminating a ceramic superconducting plate-like body and a metal plate-like body, which have been kneaded with a binder to form a paste, for example, and then winding this up into a spiral shape and subjecting it to stretching as necessary. It is manufactured by welding the ends of the metal plate-like body of this wound body.

この他金属製パイプ内にセラミックス超電導体となし得
る原料物質を充填し、これをテープ状に加工して、これ
を渦巻状に成形する方法等が用いられる。
In addition, a method is used in which a metal pipe is filled with a raw material that can be made into a ceramic superconductor, processed into a tape shape, and formed into a spiral shape.

第2図は本発明導体の他の態様を示す横断面図である。FIG. 2 is a cross-sectional view showing another embodiment of the conductor of the present invention.

この導体は、複合円筒体3が円環状の金属マトリックス
1層とセラミックス超電導体層2とを各々複数個交互に
、且つ金属マトリックス1層が表面にでるように同心状
に複合した構成から成るものである。
This conductor has a structure in which a composite cylindrical body 3 is composed of a plurality of annular metal matrix layers and a plurality of ceramic superconductor layers 2 arranged concentrically so that one layer of the metal matrix is exposed on the surface. It is.

本発明導体において、セラミックス超電導体層には前述
のBi系、Y系等のセラミックス超電導体の他に、Tl
−Ba−Ca−Cu−0系、  LnBa−Cu−0系
等の任意のセラミックス超電導体が用いられる。又上記
セラミックス超電導体層を複合する金属マトリックス材
料には、Ag。
In the conductor of the present invention, the ceramic superconductor layer includes not only the above-mentioned Bi-based and Y-based ceramic superconductors but also Tl
Any ceramic superconductor such as -Ba-Ca-Cu-0 series, LnBa-Cu-0 series, etc. can be used. In addition, the metal matrix material that composes the ceramic superconductor layer includes Ag.

Au、Cu及びその合金等の熱良導性金属材料が用いら
れる。中でもAgは酸素が透過し易い為、セラミックス
超電導体への酸素供給が十分になされて、高い超電導特
性が得られ、又熱及び電気伝導性にも優れるので使用中
のクエンチに対しても有利である。
A thermally conductive metal material such as Au, Cu, or an alloy thereof is used. Among them, Ag is easily permeable to oxygen, so oxygen is sufficiently supplied to the ceramic superconductor, resulting in high superconducting properties.Also, it has excellent thermal and electrical conductivity, so it is advantageous for quenching during use. be.

本発明導体において、複合筒状体1個当たりのセラミッ
クス超電導体層の巻回数は1〜3巻きに留めて上記複合
円筒体の厚さを薄くしておくのが冷却が良(効いて好ま
しいものである。
In the conductor of the present invention, it is preferable to limit the number of turns of the ceramic superconductor layer per composite cylinder to 1 to 3 to keep the thickness of the composite cylinder thin for better cooling (preferably). It is.

本発明導体において、複合筒状体間に介在させるスペー
サーにはナイロン等が低温強度に優れて好ましく、か\
るスペーサーは、例えばナイロン線を上記複合筒状体周
囲に間隙をあけて蛇行させて巻付ける等により取付ける
方法や、ナイロン製ブロンクを点在させる方法等により
取付けられ、冷媒が上記間隙を通流して冷却がなされる
In the conductor of the present invention, nylon or the like is preferable for the spacer interposed between the composite cylindrical bodies because of its excellent low-temperature strength.
The spacer can be installed, for example, by winding a nylon wire around the composite cylindrical body in a meandering manner with gaps in between, or by interspersing nylon bronches, so that the refrigerant flows through the gaps. Cooling is performed.

〔作用〕[Effect]

本発明導体は、金属マトリックス中にセラミックス超電
導体層を渦巻状又は同心状に複合した複合筒状体をスペ
ーサーを介して同心状に配置したセラミックス超電導々
体なので、スペーサーを介在させた間隙部分に冷媒を通
流させることによってセラミックス超電導体層が冷却さ
れ、Jc等の超電導特性が高い値のものとなる。
The conductor of the present invention is a ceramic superconductor in which a composite cylindrical body in which a ceramic superconductor layer is spirally or concentrically combined in a metal matrix is arranged concentrically with a spacer interposed therebetween. The ceramic superconductor layer is cooled by flowing the coolant, and the superconducting properties such as Jc become high values.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 Biz○3.5rCO:+ 、CaCO3,CuOの原
料粉をBi :Sr :Ca :Cuが原子比で2:2
:1:2になるように配合し混合したのち、800°C
X20H大気中で仮焼成し、これを粉砕分級して仮焼成
粉となした。次に、この仮焼成粉を種々形状の角型Ag
パイプ内に充填し、これらを圧延加工して厚さが0.2
mm、幅が18圓、20am、  38mm、  39
.5mm、  56mm、57mmの6種のテープ状複
合体を作製した。
Example 1 Biz○3.5rCO:+, CaCO3, CuO raw material powder with Bi:Sr:Ca:Cu in atomic ratio of 2:2
: After mixing in a ratio of 1:2, heat at 800°C.
It was pre-calcined in the atmosphere of X20H, and then pulverized and classified to obtain a pre-calcined powder. Next, this pre-sintered powder is mixed into angular Ag of various shapes.
filled into the pipe and rolled to a thickness of 0.2
mm, width 18mm, 20am, 38mm, 39
.. Six types of tape-shaped composites of 5 mm, 56 mm, and 57 mm were produced.

しかるのち、上記のうちの幅が18mmと20髄のテー
プを重ねて、芯材となす5mmφのAg製丸棒の周囲に
縦に巻付け、各々のテープの縁端部を溶接してセラミッ
クス超電導体層が2層環状にAg層を介して複合された
外径5゜8鵬の複合円筒体を成形した。又幅38+am
と39.5 mのテープは、重ねて縦に丸め縁端部を溶
接して内径11鴫の複合円筒体に、又56mmと57m
mのテープは同様にして内径17mの複合円筒体にそれ
ぞれ成形した。
After that, the above tapes with widths of 18 mm and 20 mm are overlapped and wrapped vertically around a 5 mmφ Ag round bar serving as a core material, and the edges of each tape are welded to form a ceramic superconductor. A composite cylindrical body with an outer diameter of 5° and 8 mm was formed by forming two annular body layers with an Ag layer interposed therebetween. Also width 38+am
and 39.5 m of tape were stacked and rolled vertically and welded at the edges to form a composite cylinder with an inner diameter of 11 mm, and 56 mm and 57 m of tape were
Each of the m tapes was formed into a composite cylindrical body having an inner diameter of 17 m in the same manner.

次いで上記3種の複合円筒体を大気中で845’CX 
30時間加熱処理して、超電導体への反応並びに焼結を
行い、しかるのち上記の3種の複合円筒体を、各々の間
隙に線状ナイロンをスペーサーとして介在させて、同心
状に配置してセラミックス超電導々体となした。
Next, the above three types of composite cylinders were subjected to 845'CX in the atmosphere.
Heat treatment was performed for 30 hours to react and sinter the superconductor, and then the three types of composite cylinders described above were arranged concentrically with linear nylon interposed as a spacer in each gap. It was made into a ceramic superconductor.

実施例2 実施例1において、幅18mと20mのテープ状複合体
を巻付けた芯材となすAg製棒を、外径5m、内径3閣
のAg製パイプに代えた他は実施例1と同し方法により
セラミックス超電導々体を製造した。
Example 2 The same as Example 1 except that the Ag rod serving as the core material around which the tape-shaped composites with widths of 18 m and 20 m were wound was replaced with an Ag pipe with an outer diameter of 5 m and an inner diameter of 3 mm. A ceramic superconductor was manufactured using the same method.

実施例3 実施例1と同し方法により厚さが0.2m、幅が3 a
rm、  75mm、  113xrmの3種のテープ
状複合体を作製し、これらテープ状複合体を縦にして渦
巻状に2回巻いて縁端部を溶接して、それぞれ外径1t
tm、内径5m+、外径13III11.内径ILs外
径19a、内径17閣の複合円筒体を作製した。次に、
この複合円筒体を845°C×30時間大気中で加熱処
理して超電導体への反応及び焼結を行い、しかるのち各
々の複合円筒体を間隙に線状のナイロン製スペーサーを
介在させて配置してセラミックス超電導々体となした。
Example 3 The thickness was 0.2 m and the width was 3 a by the same method as in Example 1.
Three types of tape-shaped composites of rm, 75mm, and 113xrm were prepared, and these tape-shaped composites were wound vertically twice in a spiral shape and the edges were welded, each having an outer diameter of 1 t.
tm, inner diameter 5m+, outer diameter 13III11. A composite cylindrical body with an inner diameter ILs, an outer diameter of 19a, and an inner diameter of 17 mm was produced. next,
This composite cylindrical body is heat-treated in the atmosphere at 845°C for 30 hours to react and sinter into a superconductor, and then each composite cylindrical body is placed with a linear nylon spacer interposed in the gap. It was made into a ceramic superconductor.

実施例4 実施例1において、Bi系の1反焼成粉に代えて、YB
a2Cu、O,組成の仮焼成粉を用いた他は実施例1と
同じ方法によりセラミックス超電導体層 尚、上記の仮焼成粉は、原料にY 、Ba、Cυの各々
の酸化物を所定量配合し混合した混合粉体を大気中で9
00°C×10時間加熱して作製した。
Example 4 In Example 1, instead of the Bi-based single-sintered powder, YB
Ceramic superconductor layer was formed by the same method as in Example 1 except that a pre-sintered powder having the composition of a2Cu, O, was used.The above pre-sintered powder was prepared by blending a predetermined amount of each oxide of Y, Ba, and Cυ into the raw material. The mixed powder was mixed in the air for 9 minutes.
It was produced by heating at 00°C for 10 hours.

比較例1 実施例1と同し方法により厚さが0.2 m 、幅が種
々異なる6種のテープ状複合体を作製し、この幅の異な
る6種の複合体を外形5閣内径3面のAg製バイブの周
囲に同心状に巻き、各々の縁端部をそれぞれ溶接してセ
ラミックス超電導体層がAg層を介して6層同心状に配
置されたセラミ、クス超電導々体を製造した。
Comparative Example 1 Six types of tape-shaped composites with a thickness of 0.2 m and various widths were produced by the same method as in Example 1, and these six types of composites with different widths were divided into 5 external dimensions and 3 internal diameters. A ceramic superconductor in which six ceramic superconductor layers were concentrically arranged with an Ag layer in between was manufactured by winding the probe concentrically around an Ag vibrator and welding each edge.

比較例2 実施例1と同し方法により、厚さ0.2m+n、幅12
0mのテープ状複合体を作製し、この複合体を縦にして
外径5en、内径3aのAg製パイプに渦巻状に巻いて
セラミックス超電導々体となした。
Comparative Example 2 By the same method as Example 1, thickness 0.2 m + n, width 12
A tape-shaped composite having a length of 0 m was prepared, and this composite was vertically wound in a spiral shape around an Ag pipe having an outer diameter of 5 en and an inner diameter of 3 a to form a ceramic superconductor.

比較例3 比較例2において、仮焼成粉にY B a t Cu 
:+ Oxを用いた他は実施例1と同し方法によりセラ
ミックス超電導々体を製造した。
Comparative Example 3 In Comparative Example 2, Y Bat Cu was added to the pre-fired powder.
:+ A ceramic superconductor was manufactured in the same manner as in Example 1 except that Ox was used.

斯くの如くして得られた各々のセラミ・7クス超電導々
体について液体窒素中、0磁場下で臨界電流密度(Jc
)を測定した。結果は第1表に示した。
For each of the ceramic 7x superconductors thus obtained, the critical current density (Jc
) was measured. The results are shown in Table 1.

尚、液体窒素は各々のセラミックス超電導々体の外周、
Ag製パイプ内、更に本発明導体にあってはスペーサー
を介在させた複合円筒体の間隙に通流させた。
In addition, liquid nitrogen is applied to the outer periphery of each ceramic superconductor,
In the case of the conductor of the present invention, the flow was allowed to flow through the Ag pipe and, in the case of the conductor of the present invention, through the gap in the composite cylinder with a spacer interposed therebetween.

第1表より明らかなように、本発明品(実施例1〜4)
は比較品(比較例1〜3)に較べて超電導体の材種別に
みてそれぞれJcが高い値のものとなった。
As is clear from Table 1, the products of the present invention (Examples 1 to 4)
Compared to the comparative products (Comparative Examples 1 to 3), Jc was higher for each type of superconductor.

材種がBi系のものの中では芯材がパイプ状のもの(実
施例2)は冷却がより十分になされてJCが特に高い値
を示した。
Among the Bi-based materials, the material with a pipe-shaped core material (Example 2) was more effectively cooled and exhibited a particularly high JC value.

これに対し比較品は、芯材にAg製パイプを用いて中心
部からも冷却したとは言え、超電導体6層が一体構造の
複合円筒体に形成された為、複合円筒体内部からの冷却
が全くなされずいずれも高いJcが得られなかった。
On the other hand, although the comparative product used an Ag pipe as the core material and was cooled from the center, since the six layers of superconductors were formed into a composite cylinder with an integrated structure, cooling from inside the composite cylinder was not possible. was not achieved at all, and a high Jc could not be obtained in either case.

〔効果] 以上述べたように、本発明導体によれば冷却性に優れ、
依ってJcの高いセラミックス超電導々体が得られ、工
業上顕著な効果を奏する。
[Effects] As described above, the conductor of the present invention has excellent cooling properties,
Therefore, a ceramic superconductor having a high Jc can be obtained, which has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明導体の態様例を示すそれぞ
れ横断面図、第3図イ5口は、それぞれ従来の導体の横
断面図である。 1・・・金属マトリックス、2・・・セラミンクス超電
導体層、3・・・複合円筒体、4・・・金属製パイプ、
5・・・スペーサー
1 and 2 are cross-sectional views showing embodiments of the conductor of the present invention, and FIG. 3A-5 is a cross-sectional view of a conventional conductor. DESCRIPTION OF SYMBOLS 1... Metal matrix, 2... Ceraminx superconductor layer, 3... Composite cylinder, 4... Metal pipe,
5...Spacer

Claims (1)

【特許請求の範囲】[Claims] 金属マトリックス中に渦巻状又は同心状にセラミックス
超電導体層を複合した複合筒状体を、少なくとも2個ス
ペーサーを介して同心状に配置したことを特徴とするセ
ラミックス超電導々体。
A ceramic superconductor characterized in that at least two composite cylindrical bodies in which ceramic superconductor layers are spirally or concentrically combined in a metal matrix are arranged concentrically with a spacer interposed therebetween.
JP2089468A 1990-04-04 1990-04-04 Ceramics superconductor Pending JPH03289007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089468A JPH03289007A (en) 1990-04-04 1990-04-04 Ceramics superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089468A JPH03289007A (en) 1990-04-04 1990-04-04 Ceramics superconductor

Publications (1)

Publication Number Publication Date
JPH03289007A true JPH03289007A (en) 1991-12-19

Family

ID=13971545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089468A Pending JPH03289007A (en) 1990-04-04 1990-04-04 Ceramics superconductor

Country Status (1)

Country Link
JP (1) JPH03289007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019508A1 (en) * 2016-07-27 2018-02-01 Siemens Aktiengesellschaft Wound conductor assembly having a spacer element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279732A (en) * 1988-09-14 1990-03-20 Toshiba Corp Uninterruptible power supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279732A (en) * 1988-09-14 1990-03-20 Toshiba Corp Uninterruptible power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019508A1 (en) * 2016-07-27 2018-02-01 Siemens Aktiengesellschaft Wound conductor assembly having a spacer element

Similar Documents

Publication Publication Date Title
US5232908A (en) Method of manufacturing an oxide superconductor/metal laminate
JPH01163910A (en) Superconductive composite and its manufacture
JPH0643268B2 (en) Oxide high temperature superconductor
JPH03289007A (en) Ceramics superconductor
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3099891B2 (en) Superconducting material
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH0195409A (en) Superconducting wire
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JP2966068B2 (en) Manufacturing method of ceramic superconductors
JP2583311B2 (en) Manufacturing method of oxide superconducting conductor
JPH0317910A (en) Oxide superconductor and manufacture thereof
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH04321552A (en) Superconducting member
JP2519741B2 (en) Manufacturing method of superconducting material
JPH04196015A (en) Ceramic superconductive wire
JPH01143308A (en) Oxide superconducting coil
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH01206518A (en) Manufacture of linear superconductive material
JPH05166426A (en) Manufacture for ceramics superconductor
JPH01206513A (en) Superconductive material
EP0468428A2 (en) Oxide superconductor material and manufacturing method thereof