JPH04321508A - Production of hydroxyapatite powder - Google Patents

Production of hydroxyapatite powder

Info

Publication number
JPH04321508A
JPH04321508A JP1691891A JP1691891A JPH04321508A JP H04321508 A JPH04321508 A JP H04321508A JP 1691891 A JP1691891 A JP 1691891A JP 1691891 A JP1691891 A JP 1691891A JP H04321508 A JPH04321508 A JP H04321508A
Authority
JP
Japan
Prior art keywords
powder
hap
calcium
tcp
aqueous slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1691891A
Other languages
Japanese (ja)
Inventor
Hiroyuki Irie
洋之 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1691891A priority Critical patent/JPH04321508A/en
Publication of JPH04321508A publication Critical patent/JPH04321508A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable conversion of beta-tricalcium phosphate (beta-TCP) into hydroxyapatite(HAP) under hydrothermal conditions at a low temperature under a low pressure in a short time. CONSTITUTION:An aqueous slurry containing 0.050mol calcium carbonate and 0.100mol calcium hydrogenphosphate dihydrate is placed in a ball mill pot and pulverized by rotation for a day to mechanochemically react the calcium carbonate with the calcium hydrogenphosphate dihydrate. After the reaction, the aqueous slurry is then dried at 80 deg.C for a day, subsequently repulverizd and burned at 750 deg.C for 10hr to afford beta-TCP powder having <=1mum grain diameter and 1.50 ratio (Ca/P). The beta-TCP powder in an amount of 2g, together with 1l pure water, is placed in a beaker. The resultant beaker is then installed in an autoclave and kept under reaction conditions of 130 deg.C and 0.27 MPa for 1hr to carry out hot-pressing treatment. After the above-mentioned treatment, the powder is collected and dried at 80 deg.C for about 1 day to afford the objective HAP powder composed of needlelike grains.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水酸化アパタイト粉末
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydroxyapatite powder.

【0002】0002

【従来の技術】水酸化アパタイト[Ca5 (PO4 
)3 (OH)](以下、HAPと記す)は、生体親和
性に優れ、かつ骨組織と直接結合する性質を有するため
、生体硬組織の代替材料として有用である。また、HA
Pのタンパク質の吸着性を利用して、クロマトグラフィ
ー用カラム充填材や細胞培養の担体、湿度センサ等にも
用いられている。
[Prior art] Hydroxylated apatite [Ca5 (PO4
)3(OH)] (hereinafter referred to as HAP) has excellent biocompatibility and has the property of directly bonding with bone tissue, so it is useful as a substitute material for biological hard tissue. Also, H.A.
Utilizing the protein adsorption properties of P, it is also used in chromatography column packing materials, cell culture carriers, humidity sensors, etc.

【0003】このような各種用途に応じてHAPの特性
を制御することは、HAP粉末の形態を制御することに
より達成される。例えば、タンパク質の吸着性は、HA
Pの結晶面で異なるとされている。
[0003] Controlling the properties of HAP according to such various uses is achieved by controlling the form of HAP powder. For example, protein adsorption is HA
It is said that it differs depending on the crystal plane of P.

【0004】従来、粉末の形態を制御してHAP粉末を
製造する方法としては、原料粉末を水の存在下で加圧・
加熱処理する、いわゆる水熱処理による方法が知られて
いる。例えば、湿式合成したHAP粉末を水熱処理して
アスペクト比3程度の柱状粒子よりなる粉末を得る方法
や、β−リン酸三カルシウム[Ca3(PO4 )2 
](以下、β−TCPと記す)の粉末に水熱処理を施し
てHAPに転化させる方法が知られている。このような
水熱処理によるHAPの製造方法によれば、粉末に形態
的な特性を付与することができる。
[0004] Conventionally, as a method for manufacturing HAP powder by controlling the powder form, raw material powder was pressurized in the presence of water.
A method using heat treatment, so-called hydrothermal treatment, is known. For example, a method of hydrothermally treating wet-synthesized HAP powder to obtain a powder consisting of columnar particles with an aspect ratio of about 3, and a method of obtaining a powder consisting of columnar particles with an aspect ratio of about 3,
] (hereinafter referred to as β-TCP) is subjected to hydrothermal treatment to convert it into HAP. According to the method for producing HAP using such hydrothermal treatment, morphological characteristics can be imparted to the powder.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、湿式合
成したHAP粉末を水熱処理して得たHAP粉末の粒子
は、アスペクト比が3〜4の柱状粒子のものしか得られ
ていない。また、β−TCPを原料とした場合、β−T
CPからHAPへの転化率を90%以上にするためには
、200℃、2MPa以上の厳しい反応条件を5時間以
上保持することが必要である。また、得られる粉末粒子
の形態も多種混合、不定形のものである。
[Problems to be Solved by the Invention] However, HAP powder particles obtained by hydrothermally treating wet-synthesized HAP powder are only columnar particles with an aspect ratio of 3 to 4. In addition, when β-TCP is used as a raw material, β-T
In order to achieve a conversion rate of CP to HAP of 90% or more, it is necessary to maintain severe reaction conditions of 200° C. and 2 MPa or more for 5 hours or more. Moreover, the morphology of the obtained powder particles is also a mixture of various types and irregular shapes.

【0006】本発明は、かかる点に鑑みてなされたもの
であり、従来に比べてより低温、低圧、短時間の水熱反
応条件でβ−TCPをHAPへ転化できると共に、粉末
粒子の形態を容易に制御し得るHAP粉末の製造方法を
提供するものである。
The present invention has been made in view of the above points, and it is possible to convert β-TCP to HAP under hydrothermal reaction conditions at lower temperature, lower pressure, and shorter time than in the past, and it also allows the morphology of powder particles to be changed. A method for producing HAP powder that can be easily controlled is provided.

【0007】[0007]

【課題を解決するための手段】本発明は、炭酸カルシウ
ム粉末およびリン酸水素カルシウムまたはリン酸水素カ
ルシウム二水和物の粉末をカルシウムとリンのモル比が
1.45〜1.60になるように秤量し、純水を加えて
所定濃度の水性スラリーを得る工程と、ボールミルを使
用して前記水性スラリーを回転粉砕することにより前記
炭酸カルシウム粉末と前記リン酸水素カルシウムまたは
前記リン酸水素カルシウム二水和物の粉末をメカノケミ
カル的に反応させる工程と、メカノケミカル的に反応さ
せた水性スラリーを所定温度で完全に乾燥した後粉砕し
て粉末にする工程と、該粉末を所定温度で焼成してβ−
リン酸三カルシウム微粉末を得る工程と、該β−リン酸
三カルシウム微粉末に水の存在下で加圧・加熱処理を施
すことにより水酸化アパタイト粉末を得る工程とを具備
することを特徴とする水酸化アパタイト粉末の製造方法
である。
[Means for Solving the Problems] The present invention provides calcium carbonate powder and calcium hydrogen phosphate or calcium hydrogen phosphate dihydrate powder in such a way that the molar ratio of calcium to phosphorus is 1.45 to 1.60. and adding pure water to obtain an aqueous slurry of a predetermined concentration; and rotary grinding of the aqueous slurry using a ball mill to form the calcium carbonate powder and the calcium hydrogen phosphate or the calcium hydrogen phosphate dihydrogen phosphate. A step of mechanochemically reacting the hydrate powder, a step of completely drying the mechanochemically reacted aqueous slurry at a predetermined temperature and then pulverizing it into powder, and firing the powder at a predetermined temperature. Teβ−
It is characterized by comprising a step of obtaining tricalcium phosphate fine powder, and a step of obtaining hydroxyapatite powder by applying pressure and heat treatment to the β-tricalcium phosphate fine powder in the presence of water. This is a method for producing hydroxyapatite powder.

【0008】また、粒子径が1μm以下であり、かつカ
ルシウムとリンのモル比が1.45〜1.60であるβ
−リン酸三カルシウム微粉末に水の存在下で加圧・加熱
処理を施すことにより水酸化アパタイト粉末を得ること
を特徴とする水酸化アパタイト粉末の製造方法である。
[0008] Further, β having a particle size of 1 μm or less and a molar ratio of calcium to phosphorus of 1.45 to 1.60 is also available.
- A method for producing hydroxyapatite powder, which is characterized in that hydroxyapatite powder is obtained by applying pressure and heat treatment to tricalcium phosphate fine powder in the presence of water.

【0009】ここで、β−TCP微粉末のカルシウムと
リンのモル比を、1.45〜1.60の範囲内に限定し
たのは、β−TCP微粉末のカルシウムとリンのモル比
を1.45未満にすると、目的としないピロリン酸カル
シウムが生成し易くなるためであり、1.60を越える
と、HAP粉末の形態制御性が低下するためである。
Here, the molar ratio of calcium to phosphorus in the β-TCP fine powder was limited to a range of 1.45 to 1.60 because the molar ratio of calcium to phosphorus in the β-TCP fine powder was 1. If it is less than .45, undesired calcium pyrophosphate is likely to be produced, and if it exceeds 1.60, the shape controllability of the HAP powder will deteriorate.

【0010】0010

【作用】本発明の水酸化アパタイトの製造方法によれば
、原料の水性スラリーを、ボールミルで回転粉砕して、
炭酸カルシウム粉末とリン酸水素カルシウムまたは前記
リン酸水素カルシウム二水和物の粉末をメカノケミカル
的に反応させ、これを乾燥後粉砕して得た粉末を焼成す
る、いわゆるメカノケミカル法(湿式摩砕法)により、
粒子径が1μm以下でかつカルシウムとリンのモル比が
1.45〜1.60であるβ−TCP微粉末を得ている
。このようなβ−TCP微粉末は、比表面積が大きく、
焼結特性に優れているため、以後の水熱処理工程におい
てHAPの核生成と結晶成長が速やかに進行する。 これにより、β−TCPからHAPの転化が容易になる
と共に、HAP粉末の形態を容易に制御できる。
[Operation] According to the method for producing hydroxyapatite of the present invention, the raw material aqueous slurry is rotary pulverized in a ball mill.
The so-called mechanochemical method (wet milling method) involves mechanochemically reacting calcium carbonate powder with calcium hydrogen phosphate or calcium hydrogen phosphate dihydrate powder, drying and pulverizing the resulting powder, and firing the resulting powder. ),
A β-TCP fine powder having a particle size of 1 μm or less and a calcium to phosphorus molar ratio of 1.45 to 1.60 is obtained. Such β-TCP fine powder has a large specific surface area,
Since it has excellent sintering properties, HAP nucleation and crystal growth proceed rapidly in the subsequent hydrothermal treatment process. This facilitates the conversion of β-TCP to HAP and allows easy control of the form of the HAP powder.

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below.

【0012】〔実施例1〕初めに、メカノケミカル法に
従ってβ−TCP粉末を次のように製造した。まず、カ
ルシウムおよびリンのモル比(以下、Ca/P比と記す
)が1.50となるように炭酸カルシウム(CaCO3
 )0.050モルとリン酸水素カルシウム二水和物(
CaHPO4 ・2H2 O)0.100モルを秤量す
る。次に、秤量した炭酸カルシウムおよびリン酸水素カ
ルシウム二水和物を、純水200mlと共にジルコニア
製ボールミルポットにより1日回転粉砕して水性スラリ
ーを得た。得られた水性スラリーを80℃で1日乾燥し
た後、再び粉砕し750℃で10時間焼成して粉末を得
た。この粉末をX線回折法により同定すると、β−TC
P粉末であることが確認された。このβ−TCP微粉末
は粒子径が1μm以下であり、Ca/P比が1.50で
あった。
[Example 1] First, β-TCP powder was produced according to the mechanochemical method as follows. First, calcium carbonate (CaCO3
) 0.050 mol and calcium hydrogen phosphate dihydrate (
Weigh out 0.100 mol of CaHPO4 .2H2 O). Next, the weighed calcium carbonate and calcium hydrogen phosphate dihydrate were rotary pulverized for one day in a zirconia ball mill pot with 200 ml of pure water to obtain an aqueous slurry. The resulting aqueous slurry was dried at 80° C. for one day, then ground again and calcined at 750° C. for 10 hours to obtain a powder. Identification of this powder by X-ray diffraction revealed that β-TC
It was confirmed that it was P powder. This β-TCP fine powder had a particle size of 1 μm or less and a Ca/P ratio of 1.50.

【0013】このようにして得たβ−TCP粉末2gを
純水1リットルと共にビーカーに入れてオートクレーブ
内に設置し、130℃、0.27MPaの反応条件下で
1時間保持して加圧・加熱処理を施した。処理後粉末を
分取し、80℃で約1日乾燥させてHAP粉末を得た。
2 g of the β-TCP powder thus obtained was placed in a beaker together with 1 liter of pure water, placed in an autoclave, and kept under reaction conditions of 130° C. and 0.27 MPa for 1 hour to pressurize and heat. Processed. After the treatment, the powder was collected and dried at 80° C. for about 1 day to obtain HAP powder.

【0014】得られたHAP粉末を、粉末X線回折法に
より同定すると共に、SEMで該HAP粉末の粒子形態
を観察した。その結果、粉末X線回析パターンは、主に
HAP相が現われ、わずかにβ−TCPの残存を示すも
のであった。また、HAPとβ−TCPとの第1ピーク
のX線回折強度比から求めたHAP転化率は90%であ
った。また、HAP粉末は、図1に示す如く、針状粒子
からなることが確認された。HAP粉末の粒子サイズは
、短径が0.5〜1μm、長径は3〜15μmであった
The obtained HAP powder was identified by powder X-ray diffraction, and the particle morphology of the HAP powder was observed by SEM. As a result, the powder X-ray diffraction pattern mainly showed a HAP phase, with a slight amount of β-TCP remaining. Further, the HAP conversion rate determined from the X-ray diffraction intensity ratio of the first peak of HAP and β-TCP was 90%. Furthermore, it was confirmed that the HAP powder was composed of acicular particles as shown in FIG. The particle size of the HAP powder was 0.5 to 1 μm in the short axis and 3 to 15 μm in the long axis.

【0015】さらに、得られたHAP粉末の粉末X線回
折パターンにおいて、第1ピークである(211)面の
回折強度を100としたときの他のピーク強度比は、(
300)面で97、(002)面で24であり、AST
MのHAPの標準パターンでは、(300)面は60、
(002)面は40となっている。これらを比較すると
、得られたHAP粒子の粉末X線回析パターンが(30
0)面におけるピーク強度比に大きく偏っていることが
わかった。この結果、HAP粒子の長軸方向は、結晶に
おけるC軸に相当していることが確認された。
Furthermore, in the powder X-ray diffraction pattern of the obtained HAP powder, when the diffraction intensity of the (211) plane, which is the first peak, is taken as 100, the other peak intensity ratios are (
300) plane is 97, (002) plane is 24, and AST
In the standard HAP pattern of M, the (300) plane is 60,
The (002) plane is 40. When these are compared, the powder X-ray diffraction pattern of the obtained HAP particles is (30
It was found that the peak intensity ratio was largely biased toward the 0) plane. As a result, it was confirmed that the long axis direction of the HAP particles corresponded to the C axis in the crystal.

【0016】以上のように、メカノケミカル法により製
造したCa/P比が1.50であり、粒子径が1μm以
下であるβ−TCP粉末は、比表面積が大きく、焼結特
性に優れている。このため、HAPの核生成や結晶生成
が速やかに進行するので、比較的低温、低圧、短時間の
水熱反応条件下でβ−TCPをHAPに転化させること
ができる。この結果、オートクレーブのような簡易な装
置でも、β−TCPからHAPへの転化反応を容易に行
うことができる。また、得られたHAP粉末は、形態的
に異方性の大きな針状粒子であった。このように、HA
P粉末の形態を容易に制御できることは、用途に応じて
HAP粉末の特性を制御できるので有益である。
As described above, the β-TCP powder produced by the mechanochemical method and having a Ca/P ratio of 1.50 and a particle size of 1 μm or less has a large specific surface area and excellent sintering properties. . Therefore, since nucleation and crystal formation of HAP proceed rapidly, β-TCP can be converted to HAP under hydrothermal reaction conditions at relatively low temperature, low pressure, and short time. As a result, even in a simple device such as an autoclave, the conversion reaction from β-TCP to HAP can be easily carried out. Moreover, the obtained HAP powder was acicular particles with large anisotropy in morphology. In this way, H.A.
Being able to easily control the morphology of the P powder is beneficial because it allows the properties of the HAP powder to be controlled depending on the application.

【0017】〔実施例2〕炭酸カルシウム0.053モ
ル、リン酸水素カルシウム二水和物         
 (CaHPO4 ・2H2 O)0.100モルを秤
量し、以下第1実施例と同様にして、Ca/P比が1.
53であるβ−TCP粉末を製造した。得られた粉末は
、X線回折法で同定することによって、β−TCPに1
0%程度のHAPを含むものであることが確認された。
[Example 2] Calcium carbonate 0.053 mol, calcium hydrogen phosphate dihydrate
Weigh out 0.100 mol of (CaHPO4 .2H2 O), and proceed as in Example 1 until the Ca/P ratio is 1.
A β-TCP powder of No. 53 was produced. The obtained powder was identified by X-ray diffraction method, and it was determined that β-TCP had 1
It was confirmed that it contained approximately 0% HAP.

【0018】このようにして得たβ−TCP粉末2gを
、純水1lと共にビーカーに入れてオートクレーブ内に
配置し、100℃、0.10MPaの反応条件下で1時
間保持して加圧・加熱処理を施した。処理後、粉末を分
取して80℃で約1日乾燥してHAP粉末を得た。
2 g of the β-TCP powder thus obtained was placed in a beaker together with 1 liter of pure water, placed in an autoclave, and held under reaction conditions of 100° C. and 0.10 MPa for 1 hour to pressurize and heat. Processed. After the treatment, the powder was collected and dried at 80° C. for about 1 day to obtain HAP powder.

【0019】得られたHAP粉末を、実施例1と同様に
、粉末X線回折およびSEMにより評価した。その結果
、第1実施例の反応条件よりも低温、低圧の水熱反応条
件にもかかわらず、得られた粉末のX線回折パターンは
、100%HAP相からなるものであり、β−TCPの
残存は認められなかった。また、得られたHAP粉末は
、図2に示す如く、1μm以下の微粒子からなり、その
粒子形態は針状、柱状、板状結晶等が混在していた。
The obtained HAP powder was evaluated by powder X-ray diffraction and SEM in the same manner as in Example 1. As a result, despite the hydrothermal reaction conditions being lower temperature and lower pressure than the reaction conditions of the first example, the X-ray diffraction pattern of the obtained powder was composed of 100% HAP phase, indicating that of β-TCP. No residue was observed. Further, as shown in FIG. 2, the obtained HAP powder consisted of fine particles of 1 μm or less, and the particle morphology was a mixture of needle-like, columnar, and plate-like crystals.

【0020】[0020]

【発明の効果】以上説明した如くに、本発明の水酸化ア
パタイト粉末の製造方法によれば、メカノケミカル法に
より製造した、所定のCa/P比を有するβ−TCP粉
末を水熱処理することにより、従来よりも低温、低圧、
短時間の水熱反応条件でも容易にHAPへ転化させるこ
とができる。また、Ca/P比を適宜選択することによ
って、HAP粉末の形態制御を容易に行うことができる
。この結果、HAP粉末の特性を各種用途に応じて容易
に変更することができる等顕著な効果を有するものであ
る。
As explained above, according to the method for producing hydroxyapatite powder of the present invention, β-TCP powder having a predetermined Ca/P ratio produced by a mechanochemical method is hydrothermally treated. , lower temperature and pressure than before,
It can be easily converted to HAP even under short-term hydrothermal reaction conditions. Further, by appropriately selecting the Ca/P ratio, the shape of the HAP powder can be easily controlled. As a result, it has remarkable effects such as the ability to easily change the properties of HAP powder according to various uses.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の水酸化アパタイトの製造方法の第1の
実施例で得られた水酸化アパタイト粉末の粒子構造を示
す写真。
FIG. 1 is a photograph showing the particle structure of hydroxyapatite powder obtained in a first example of the method for producing hydroxyapatite of the present invention.

【図2】本発明の水酸化アパタイトの製造方法の第2の
実施例で得られた水酸化アパタイト粉末の粒子構造を示
す写真。
FIG. 2 is a photograph showing the particle structure of hydroxyapatite powder obtained in the second example of the method for producing hydroxyapatite of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭酸カルシウム粉末およびリン酸水素
カルシウムまたはリン酸水素カルシウム二水和物の粉末
をカルシウムとリンのモル比が1.45〜1.60にな
るように秤量し、純水を加えて所定濃度の水性スラリー
を得る工程と、ボールミルを使用して前記水性スラリー
を回転粉砕することにより前記炭酸カルシウム粉末と前
記リン酸水素カルシウムまたは前記リン酸水素カルシウ
ム二水和物の粉末をメカノケミカル的に反応させる工程
と、メカノケミカル的に反応させた水性スラリーを所定
温度で完全に乾燥した後粉砕して粉末にする工程と、該
粉末を所定温度で焼成してβ−リン酸三カルシウム微粉
末を得る工程と、該β−リン酸三カルシウム微粉末に水
の存在下で加圧・加熱処理を施すことにより水酸化アパ
タイト粉末を得る工程とを具備することを特徴とする水
酸化アパタイト粉末の製造方法。
Claim 1: Weigh calcium carbonate powder and calcium hydrogen phosphate or calcium hydrogen phosphate dihydrate powder so that the molar ratio of calcium to phosphorus is 1.45 to 1.60, and add pure water. obtaining an aqueous slurry of a predetermined concentration using a ball mill; and rotary pulverizing the aqueous slurry using a ball mill to mechanochemically process the calcium carbonate powder and the calcium hydrogen phosphate or the calcium hydrogen phosphate dihydrate powder. a step of completely drying the mechanochemically reacted aqueous slurry at a predetermined temperature and then pulverizing it into a powder; and a step of baking the powder at a predetermined temperature to form a fine β-tricalcium phosphate. Hydroxylated apatite powder, comprising a step of obtaining a powder, and a step of obtaining a hydroxyapatite powder by applying pressure and heat treatment to the β-tricalcium phosphate fine powder in the presence of water. manufacturing method.
【請求項2】  粒子径が1μm以下であり、かつカル
シウムとリンのモル比が1.45〜1.60であるβ−
リン酸三カルシウム微粉末に水の存在下で加圧・加熱処
理を施すことにより水酸化アパタイト粉末を得ることを
特徴とする水酸化アパタイト粉末の製造方法。
2. β- particles having a particle size of 1 μm or less and a molar ratio of calcium to phosphorus of 1.45 to 1.60.
A method for producing hydroxyapatite powder, which comprises obtaining hydroxyapatite powder by pressurizing and heating tricalcium phosphate fine powder in the presence of water.
JP1691891A 1991-01-18 1991-01-18 Production of hydroxyapatite powder Withdrawn JPH04321508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1691891A JPH04321508A (en) 1991-01-18 1991-01-18 Production of hydroxyapatite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1691891A JPH04321508A (en) 1991-01-18 1991-01-18 Production of hydroxyapatite powder

Publications (1)

Publication Number Publication Date
JPH04321508A true JPH04321508A (en) 1992-11-11

Family

ID=11929513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1691891A Withdrawn JPH04321508A (en) 1991-01-18 1991-01-18 Production of hydroxyapatite powder

Country Status (1)

Country Link
JP (1) JPH04321508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126211A1 (en) * 2006-05-03 2007-11-08 Megagen Co., Ltd. Method for fabricating calcium phosphate and calcium phosphate fabricated by using the same
CN112125290A (en) * 2020-09-15 2020-12-25 上海摩漾生物科技有限公司 Calcium-phosphorus microsphere material containing defect sites and preparation and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126211A1 (en) * 2006-05-03 2007-11-08 Megagen Co., Ltd. Method for fabricating calcium phosphate and calcium phosphate fabricated by using the same
KR100786312B1 (en) * 2006-05-03 2007-12-17 박진우 Method for fabricating calcium phosphate and calcium phosphate fabricated by using the same
CN112125290A (en) * 2020-09-15 2020-12-25 上海摩漾生物科技有限公司 Calcium-phosphorus microsphere material containing defect sites and preparation and application thereof

Similar Documents

Publication Publication Date Title
US8337904B2 (en) Magnesium-substituted hydroxyapatites
Tadic et al. Continuous synthesis of amorphous carbonated apatites
US20050226939A1 (en) Production of nano-sized hydroxyapatite particles
US9040156B2 (en) Whitlockite and method for manufacturing the same
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
US5322675A (en) Method of preparing calcium phosphate
US4717556A (en) Method for producing of β-tricalcium phosphate
Nakahira et al. Synthesis and evaluation of various layered octacalcium phosphates by wet-chemical processing
KR101907408B1 (en) Manufacturing Method Of Calcium Phosphate Using Eggshell And Phosphate-ammonia solution
KR100977195B1 (en) Method for manufacturing hydroxy apatite
KR20200018922A (en) Calcium phosphate-based composition and method for producing the same
JPH04321508A (en) Production of hydroxyapatite powder
JP2756703B2 (en) Spherical apatite, method for producing the same, and molded article with porous structure
JPH0415166B2 (en)
JPH0940408A (en) Production of hydroxyapatite platelike large-sized crystal
Larson et al. Non-stirred synthesis of Na-and Mg-doped, carbonated apatitic calcium phosphate
JP4870294B2 (en) Method for producing plate-like hydroxyapatite particles
JPS63159207A (en) Production of hydroxyapatite
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPH05310410A (en) Production of strontium hydroxyapatite powder
JP3247896B2 (en) Method for producing hydroxyapatite
JP3262233B2 (en) Method for producing calcium phosphate
KR20040051381A (en) Sythesis of Hydroxyapatite Nanopowder
Mahmud et al. The threonine effect on calcium phosphate preparation from a solution containing Ca/P= 1.33 molar ratio
JP2572793B2 (en) Method for producing hydroxyapatite fine particles

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514