JPH04321289A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPH04321289A
JPH04321289A JP9048291A JP9048291A JPH04321289A JP H04321289 A JPH04321289 A JP H04321289A JP 9048291 A JP9048291 A JP 9048291A JP 9048291 A JP9048291 A JP 9048291A JP H04321289 A JPH04321289 A JP H04321289A
Authority
JP
Japan
Prior art keywords
tube
gas
laser
double
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9048291A
Other languages
Japanese (ja)
Inventor
Hiroshi Makihara
洋 牧原
Minoru Danno
実 団野
Tetsuya Ikeda
哲哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9048291A priority Critical patent/JPH04321289A/en
Publication of JPH04321289A publication Critical patent/JPH04321289A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To contrive the improvement of the oscillation efficiency of a gas laser. CONSTITUTION:A gas laser is provided with a double tube 16 made of a dielectric, a gas circulator 5 which is connected to an inner tube of the double tube and supplies later medium gas, a cooling medium circulator 17 which is connected to an outer tube of the tube 16 and supplies a cooling medium having an insulator property, a microwave cavity resonator 1 encircling at least one part of the tube 16, a microwave generator 8, which is connected to the resonator, and a totally reflecting mirror 11 and a partial reflecting mirror 12, which are arranged in opposition to each other at both end parts of the tube 16. A discharge tube 2 is cooled in such a way, whereby the oscillation efficiency of the gas laser is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は気体にマイクロ波を照射
することで、気体を放電励起し、レーザ光を発振させる
気体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas laser device which excites a gas by discharge and oscillates laser light by irradiating the gas with microwaves.

【0002】0002

【従来の技術】図2に、従来提案されているマイクロ波
励起気体レーザの基本構成を示す。この例は、公開特許
公報昭61−220486に示されているものである。 電源6からの電力供給で作動するマイクロ波発生器8か
ら出力されるマイクロ波7を、導波管9を経由して空洞
共振器1に導き、同共振器1を貫通している放電管2の
内部に封入したレーザ媒質ガス3のマイクロ波放電10
を発生させるとともに、全反射鏡11と部分透過鏡12
を介してレーザ発振を生起させレーザ光13を取り出す
。またレーザ発振効率の低下をもたらすレーザ媒質ガス
の温度上昇を防ぐため、放電管2の一端からレーザ媒質
ガス3を引出し、ガス循環器5と熱交換器4を経てレー
ザ媒質ガスを冷却したのち、再び放電管2の他端に戻し
ている。
2. Description of the Related Art FIG. 2 shows the basic configuration of a conventionally proposed microwave-excited gas laser. An example of this is shown in Japanese Patent Publication No. 61-220486. Microwaves 7 output from a microwave generator 8 operated by power supply from a power source 6 are guided to a cavity resonator 1 via a waveguide 9, and a discharge tube 2 passes through the cavity resonator 1. Microwave discharge 10 of laser medium gas 3 sealed inside
The total reflection mirror 11 and the partial transmission mirror 12
Laser oscillation is caused and laser light 13 is extracted through the oscillator. In addition, in order to prevent the temperature of the laser medium gas from increasing, which would cause a decrease in laser oscillation efficiency, the laser medium gas 3 is drawn out from one end of the discharge tube 2, and after being cooled through the gas circulator 5 and the heat exchanger 4, It is returned to the other end of the discharge tube 2 again.

【0003】0003

【発明が解決しようとする課題】上記従来装置には次の
ような問題点があった。 (1)レーザ媒質ガスの比熱は一般に小さいため、放電
による比較的少量のエネルギ注入によって容易にガス温
度の上昇がもたらされる。したがって、所定値以下にガ
ス温度を押えようとすると、レーザ媒質ガスの流量を増
加させたり、熱交換器4において液体窒素のような特殊
な深冷媒体を用いてレーザ媒質ガス3の温度を十分低く
したのち、放電管に戻すことが必要となる。また、放電
管の単位長当りのマイクロ波入力とレーザ出力をほぼ一
定に保ったまま、レーザ出力を増大させるには、放電管
長を伸ばすことになるが、他方でレーザ媒質ガスの温度
上昇は放電管長にほぼ比例するので、レーザ発振につな
がる所定温度以下での放電を放電管全長にわたって確保
するためには、熱交換器4の能力に見合う放電管の長さ
以上には長くできない。
SUMMARY OF THE INVENTION The conventional device described above has the following problems. (1) Since the specific heat of the laser medium gas is generally small, a relatively small amount of energy injection by discharge can easily raise the gas temperature. Therefore, if an attempt is made to suppress the gas temperature below a predetermined value, the flow rate of the laser medium gas may be increased or a special cryogenic medium such as liquid nitrogen may be used in the heat exchanger 4 to maintain the temperature of the laser medium gas 3 sufficiently. After lowering it, it is necessary to return it to the discharge tube. In addition, in order to increase the laser output while keeping the microwave input and laser output per unit length of the discharge tube approximately constant, the length of the discharge tube must be lengthened, but on the other hand, the temperature increase of the laser medium gas Since it is approximately proportional to the tube length, in order to ensure discharge at a temperature below a predetermined temperature leading to laser oscillation over the entire length of the discharge tube, the length of the discharge tube cannot be longer than the length that corresponds to the capacity of the heat exchanger 4.

【0004】上述のように従来装置では、レーザ媒質ガ
スの温度上昇を防止するためには、ガス流量を増加する
必要があり、このことはガス循環所要動力の増大を招く
こと、熱交換器の能力を高める必要があること、また放
電管長を長くとれないこと等の不利な点を有している。 (2)放電管外部からマイクロ波を透過させて、内部の
レーザ媒質ガスの放電を生起させる過程において、放電
管内壁面上にマイクロ波を吸収する壁境界層が形成され
る。この壁境界層の厚みはマイクロ波周波数および電子
と分子間の衝突周波数の関数となりガス圧力が高いほど
また電離度が高いほど薄くなる特性を有する。マイクロ
波放電励起の際、放電管2の放電区間に電子密度の高い
、強い吸収性の壁境界層が形成され境界層内のガス温度
が急激に上昇し、これによってレーザ動作が無効になる
ことが知られている(刊行物“Schock,W.,L
aser−Kolloquium  85,13DFV
LR−Institute  fuer  Techn
ische  Physik”)。 (3)レーザ媒質ガスの放電によって、ガスの電離が起
こり、放電管内にプラズマが形成されるが、プラズマ中
ではイオンと電子の再結合が生じにくいが、イオンと電
子が放電管の内壁に衝突する際壁面上で再結合が促進さ
れる現象が考えられる。壁面上で前述の再結合が起こる
と電離エネルギに相当する熱が壁面に与えられるため壁
面の温度が上昇し、レーザ出力の低下を招く。
As mentioned above, in the conventional apparatus, in order to prevent the temperature of the laser medium gas from rising, it is necessary to increase the gas flow rate, which leads to an increase in the power required for gas circulation and the heat exchanger. Disadvantages include the need to increase capacity and the inability to increase the length of the discharge tube. (2) In the process of transmitting microwaves from the outside of the discharge tube to cause discharge of the laser medium gas inside the discharge tube, a wall boundary layer that absorbs the microwaves is formed on the inner wall surface of the discharge tube. The thickness of this wall boundary layer is a function of the microwave frequency and the collision frequency between electrons and molecules, and has the characteristic that it becomes thinner as the gas pressure becomes higher and the degree of ionization becomes higher. During microwave discharge excitation, a strongly absorbing wall boundary layer with high electron density is formed in the discharge section of the discharge tube 2, and the gas temperature within the boundary layer rises rapidly, thereby rendering the laser operation ineffective. is known (publication “Schock, W., L.
aser-Kolloquium 85,13DFV
LR-Institute fuel Techn
(3) Due to the discharge of the laser medium gas, the gas is ionized and a plasma is formed in the discharge tube. Although recombination of ions and electrons is difficult to occur in the plasma, ions and electrons are discharged. A possible phenomenon is that recombination is promoted on the wall surface when it collides with the inner wall of the tube.When the above-mentioned recombination occurs on the wall surface, heat equivalent to ionization energy is given to the wall surface, so the temperature of the wall surface increases. This results in a decrease in laser output.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
[Means for Solving the Problems] The present invention takes the following means to solve the above problems.

【0006】すなわち、気体レーザ装置として、(1)
誘電体製の二重管と、同二重管の内管に接続されレーザ
媒質ガスを供給するガス供給手段と、上記二重管の外管
に接続され絶縁体性冷却媒体を供給する冷却媒体供給手
段と、上記二重管の少なくとも一部を囲むマイクロ波空
洞共振器と、同空洞共振器にに接続されマイクロ波を供
給するマイクロ波源と、上記二重管の両端部に対向して
配置される全反射鏡および部分透過鏡とを設ける。 (2)請求項1において、二重管の長さを空洞共振器の
長さより長くする。
That is, as a gas laser device, (1)
a dielectric double tube; a gas supply means connected to the inner tube of the double tube to supply a laser medium gas; and a cooling medium connected to the outer tube of the double tube to supply an insulating cooling medium. a supply means, a microwave cavity resonator surrounding at least a portion of the double tube, a microwave source connected to the cavity resonator for supplying microwaves, and disposed opposite to both ends of the double tube. A total reflection mirror and a partial transmission mirror are provided. (2) In claim 1, the length of the double tube is made longer than the length of the cavity resonator.

【0007】[0007]

【作用】(1)上記手段により、二重管の内管内のレー
ザ媒質ガスが空洞共振器のマイクロ波により放電励起さ
れ光を発する。この光により全反射鏡および部分透過鏡
間でレーザ発振し、部分透過鏡からレーザ光として出力
する。
[Function] (1) By the above means, the laser medium gas in the inner tube of the double tube is discharge-excited by the microwave of the cavity resonator and emits light. This light causes laser oscillation between the total reflection mirror and the partial transmission mirror, and is output as a laser beam from the partial transmission mirror.

【0008】この間、二重管の外管には、冷却媒体供給
手段から冷却媒体が供給され、流れる。このことにより
レーザ媒質ガスの温度上昇が防止され効率の低下が防止
される。このとき内管のレーザ媒質ガスは外周面から冷
却されるため、高温上昇する壁境界層部が効率よく冷却
される。またレーザ媒質ガスはガス供給手段から冷却循
環供給することによっても冷却され、発光効率の低下が
防止される。 (2)二重管が空洞共振器から出ていることによって、
空洞共振器内で励起されるエネルギーがレーザ媒質ガス
中の発光媒体ガスに効率よく移乗し発振効率が向上する
During this time, the cooling medium is supplied from the cooling medium supply means to the outer pipe of the double pipe and flows therethrough. This prevents a rise in the temperature of the laser medium gas and prevents a decrease in efficiency. At this time, since the laser medium gas in the inner tube is cooled from the outer circumferential surface, the wall boundary layer portion, where the temperature rises, is efficiently cooled. Further, the laser medium gas is also cooled by supplying cooling circulation from the gas supply means, thereby preventing a decrease in luminous efficiency. (2) Due to the double tube coming out from the cavity resonator,
The energy excited within the cavity resonator is efficiently transferred to the light emitting medium gas in the laser medium gas, improving oscillation efficiency.

【0009】[0009]

【実施例】本発明の一実施例を図1により説明する。[Embodiment] An embodiment of the present invention will be explained with reference to FIG.

【0010】なお、従来例で説明した部分は、同一の番
号をつけ説明を省略し、この発明に関する部分を主体に
説明する。
[0010] The parts explained in the conventional example are given the same numbers and the explanation thereof is omitted, and the explanation will mainly be given to the parts related to the present invention.

【0011】空洞共振器1を貫通して誘電体製の二重管
16が設けられる。二重管16の内管は放電管2として
使用される。すなわち一端部から他端部に接続され、ガ
ス循環器5および熱交換器4(ガス供給手段)を持つガ
スサイクル管20が設けられる。また二重管16の外管
の一端部から他端部に接続され、冷却媒体循環器17お
よび放熱器18(冷却媒体供給手段)を持つ冷媒サイク
ル管15が設けられる。
A dielectric double tube 16 is provided passing through the cavity resonator 1. The inner tube of the double tube 16 is used as the discharge tube 2. That is, a gas cycle pipe 20 is provided which is connected from one end to the other end and has a gas circulator 5 and a heat exchanger 4 (gas supply means). Further, a refrigerant cycle pipe 15 is provided which is connected from one end of the outer pipe of the double pipe 16 to the other end and has a refrigerant circulator 17 and a radiator 18 (coolant supply means).

【0012】二重管16は、いづれも石英ガラス製でそ
れぞれ、内径18.5mmφ×外径21.5mmφ、内
径31.5mmφ×外径35.5mmφであり、放電部
有効長200mm、全長400mm(放電部長さの2倍
)とした。また、マイクロ波用の空洞共振器は銅製で、
内径100mmφ×放電部長さ200mmであった。二
重管16の外管部に流通させる冷却媒体としては、CC
l4 液体を用い内管部の流速が略5cm/sになるよ
うに調整した。レーザ媒質ガスとしては、CO2 /N
2 /Heの混合物を用いて、その組成は、流量割合で
20/40/150(単位は、それぞれNl/min)
であり、圧力と温度は、放電管2上流入口部で、それぞ
れ10Torr、20℃であった。
The double tubes 16 are all made of quartz glass and have an inner diameter of 18.5 mmφ x outer diameter of 21.5 mmφ, an inner diameter of 31.5 mmφ x an outer diameter of 35.5 mmφ, an effective length of the discharge section of 200 mm, and a total length of 400 mm ( (twice the length of the discharge section). In addition, the cavity resonator for microwaves is made of copper.
The inner diameter was 100 mmφ×the length of the discharge section was 200 mm. The cooling medium to be circulated through the outer tube portion of the double tube 16 is CC.
The flow rate in the inner tube was adjusted to approximately 5 cm/s using the l4 liquid. As the laser medium gas, CO2/N
Using a mixture of
The pressure and temperature at the upstream entrance of the discharge tube 2 were 10 Torr and 20° C., respectively.

【0013】さらに、使用したマイクロ波発生器8は、
工業用加熱炉や家庭用電子レンジ用として多用されてい
る周波数2.45GHzに注目し、これを連続動作させ
ることでリップル±105%以下の連続マイクロ波を得
、空洞共振器1に導入してレーザ発振させた。
Furthermore, the microwave generator 8 used is
We focused on the frequency of 2.45 GHz, which is often used in industrial heating furnaces and household microwave ovens, and by operating it continuously, we obtained continuous microwaves with ripples of ±105% or less, and introduced them into the cavity resonator 1. The laser oscillated.

【0014】以上の構成において、電源6で駆動される
マイクロ波発生器8から出力されるマイクロ波7を導波
管9を通じて、空洞共振器1に導く。空洞共振器1の内
部には二重管16が配置されており、マイクロ波7は二
重管16の外管壁から浸透し、続いて冷媒液体中を伝播
し、さらに放電管2を透過して、その内部に封入されて
いるレーザ媒質ガスを放電・励起する。上述のようなマ
イクロ波の伝播過程において、マイクロ波を反射、吸収
しない放電管材質と冷却媒体を選定することが重要であ
る。
In the above configuration, the microwave 7 output from the microwave generator 8 driven by the power source 6 is guided to the cavity resonator 1 through the waveguide 9. A double tube 16 is arranged inside the cavity resonator 1, and the microwave 7 penetrates through the outer tube wall of the double tube 16, then propagates through the refrigerant liquid, and further passes through the discharge tube 2. The laser medium gas sealed inside is discharged and excited. In the microwave propagation process as described above, it is important to select a discharge tube material and a cooling medium that do not reflect or absorb microwaves.

【0015】本実施例では石英とCCl4 を使ったが
、その他このような材質の例としては、高純度のアルミ
ナ、酸化ベリリウム等や極性モーメントを持たない球対
称分子であるSF6 などの液体を用いてもよい。
In this example, quartz and CCl4 were used, but other examples of such materials include high-purity alumina, beryllium oxide, etc., and liquids such as SF6, which is a spherically symmetric molecule with no polar moment. You can.

【0016】放電管2の壁は常時、冷却媒体3で冷却さ
れているため、放電管2の内壁と接触しているレーザ媒
質ガスを冷やし続けることが可能になる。冷却媒体15
を二重管16の右端で取り出し、冷却媒体循環器17を
経て放熱器18で放熱させたあと再び二重管16の左端
に戻すことで冷却媒体15による冷却サイクルが完了す
る。
Since the wall of the discharge tube 2 is constantly cooled by the cooling medium 3, it is possible to keep cooling the laser medium gas in contact with the inner wall of the discharge tube 2. Cooling medium 15
is taken out at the right end of the double tube 16, passed through the coolant circulator 17, radiated by the radiator 18, and then returned to the left end of the double tube 16, thereby completing the cooling cycle using the coolant 15.

【0017】前述の冷却サイクルにおいて、冷却効果を
高めるには放電管2内部でのレーザ媒質ガスの流速を高
め、放電管2外部では冷却媒体の流速を高めることによ
って、境膜伝熱係数を大きくするのが有効である。放電
管2外部は冷却媒体を液体状で用い、液体の蒸発を伴う
伝熱様式とするのが効果的であることから、伝熱の律速
段階は放電管内壁面上のガス境膜に存在することになる
。したがって、冷却媒体15の流速は、放電管内レーザ
媒質ガスの流速に比較して2桁オーダ低い値で済むこと
となる。かくして、十分な冷却効果を得るため、レーザ
媒質ガス3はガス循環器5および熱交換器4を経由して
放電管2に戻すようにし、放電管2内でのレーザ媒質ガ
ス3の高速流動を可能としている。比較的小出力のレー
ザの場合には、前述の冷却媒体15による放電管壁の冷
却サイクルのみで十分な冷却効果が得られるため、前記
レーザ媒質ガスのサイクル系において、熱交換器4を省
略することも可能である。
In the above-mentioned cooling cycle, in order to enhance the cooling effect, the flow rate of the laser medium gas inside the discharge tube 2 is increased, and the flow rate of the cooling medium outside the discharge tube 2 is increased, thereby increasing the film heat transfer coefficient. It is effective to do so. Since it is effective to use a liquid cooling medium outside the discharge tube 2 and use a heat transfer mode that involves evaporation of the liquid, the rate-determining step of heat transfer is found to exist in the gas film on the inner wall surface of the discharge tube. become. Therefore, the flow rate of the cooling medium 15 can be two orders of magnitude lower than the flow rate of the laser medium gas in the discharge tube. Thus, in order to obtain a sufficient cooling effect, the laser medium gas 3 is returned to the discharge tube 2 via the gas circulator 5 and the heat exchanger 4, and the high-speed flow of the laser medium gas 3 within the discharge tube 2 is controlled. It is possible. In the case of a relatively low output laser, a sufficient cooling effect can be obtained only by the cooling cycle of the discharge tube wall using the cooling medium 15, so the heat exchanger 4 is omitted in the laser medium gas cycle system. It is also possible.

【0018】図において、二重管16の右側がある区間
にわたって空洞共振器1内部に収納れていない。これは
、次の理由による。一般的な炭酸ガスレーザを例として
説明する。炭酸ガスレーザのレーザ媒質は、ある組成比
のHe+N2+CO2 の混合物が用いられるが、これ
を放電励起する過程は、電子との衝突で直接CO2 分
子が励起されるよりも、むしろ最初にN2 分子が励起
され、次にN2 −CO2 間の衝突でN2 からCO
2 にエネルギ移乗が起こり、CO2 分子の励起状態
に反転分布が形成されレーザ発振に至ることが知られて
いる。従って、励起されたN2 分子を十分に活用して
レーザ発振効率を高めるには、放電管の長さよりも、冷
却部の長さを長くとり、空洞共振器1をはみ出した二重
管16の区間において、放電管2壁を冷却しつつ、励起
N2 分子からCO2 分子へのエネルギ移乗を行なう
のが有効である。
In the figure, a certain section of the right side of the double tube 16 is not housed inside the cavity resonator 1. This is due to the following reason. A general carbon dioxide laser will be explained as an example. The laser medium of a carbon dioxide laser uses a mixture of He+N2+CO2 with a certain composition ratio, but the process of discharge excitation of this is such that the N2 molecules are first excited rather than the CO2 molecules being directly excited by collision with electrons. , then in the collision between N2 and CO2, N2 to CO
It is known that energy transfer occurs in CO2 molecules, and population inversion is formed in the excited state of CO2 molecules, leading to laser oscillation. Therefore, in order to fully utilize the excited N2 molecules and increase the laser oscillation efficiency, the length of the cooling section should be longer than the length of the discharge tube, and the section of the double tube 16 that protrudes from the cavity resonator 1. In this case, it is effective to transfer energy from excited N2 molecules to CO2 molecules while cooling the discharge tube 2 wall.

【0019】また、空洞共振器1の両端において、二重
管16が貫通する端板部分にマイクロ波漏洩防止筒16
を設置しているが、これの目的は言うまでもなく、人体
に対する安全面、電波障害防止の観点からマイクロ波の
外部漏洩を避ける手段であり、防止筒の径と長さを調整
することで、マイクロ波の漏洩量を所定値以下にするこ
とができる。さらに、実機では、図1の構成をケーシン
グ内に納め、マイクロ波を完全に封じ込める対策がとら
れる。
Further, at both ends of the cavity resonator 1, microwave leakage prevention tubes 16 are provided at the end plate portions through which the double tubes 16 pass.
Needless to say, the purpose of this is to prevent external leakage of microwaves from the viewpoint of human safety and prevention of radio wave interference.By adjusting the diameter and length of the prevention tube, it is possible to The amount of wave leakage can be reduced to a predetermined value or less. Furthermore, in an actual device, the configuration shown in FIG. 1 is housed in a casing, and measures are taken to completely contain microwaves.

【0020】以上において、二重管16の外管部に冷却
媒体CCl4 を流通させて強制冷却した場合と、外管
部から完全に冷却媒体を排出した場合とで、レーザ出力
がどの程度異なるかを測定してみた。その結果、マイク
ロ波入力300Wのとき、本実施例のレーザ構成で放電
管2を冷却した場合はレーザ出力が35.5Wであった
のに対し、放電管冷却なしの場合はレーザ出力は18.
3Wと半減する現象が見られた。マイクロ波入力を前記
の値から約50%増減させてみても、上述の冷却効果は
ほぼ同様であった。
In the above, how much does the laser output differ between when the cooling medium CCl4 is forced to flow through the outer tube portion of the double tube 16 and when the cooling medium is completely discharged from the outer tube portion? I tried measuring. As a result, when the microwave input was 300 W, the laser output was 35.5 W when the discharge tube 2 was cooled with the laser configuration of this example, whereas the laser output was 18.5 W when the discharge tube was not cooled.
A phenomenon in which the power was halved to 3W was observed. Even when the microwave input was increased or decreased by about 50% from the above value, the cooling effect described above was almost the same.

【0021】次に、二重管16を放電部長さよりも長く
とることの効果を見るため、二重管16の全長が400
mmの場合と300mmの場合とを比較してみたところ
、前者の方が約20%レーザ出力が大であった。
Next, in order to see the effect of making the double tube 16 longer than the discharge length, the total length of the double tube 16 was set to 400 mm.
When comparing the case of mm and the case of 300 mm, the laser output of the former was about 20% higher.

【0022】前述したとおり、放電管2外部の外管部空
間に冷却媒体を流通させたときと、冷却媒体を同空間か
ら排出したとき、つまり放電管を強制冷却しないときと
では、明らかにレーザ出力に差が見られ、冷却媒体流通
によって放電管を冷却することでレーザ出力が増大する
効果が確認された。
As mentioned above, it is clear that the laser radiation is different when the cooling medium is passed through the outer tube space outside the discharge tube 2 and when the cooling medium is discharged from the same space, that is, when the discharge tube is not forcibly cooled. A difference was observed in the output, confirming the effect of increasing the laser output by cooling the discharge tube through cooling medium flow.

【0023】また、放電部の下流側に、管壁を冷却媒体
で強制冷却した放電管を延長することで、同延長区間に
おいて励起N2 分子からCO2 分子へのエネルギ移
乗が起ってレーザ発振に必要な励起CO2 分子の反転
分布形成が促進されるため、レーザ出力が増大する効果
が確認された。
Furthermore, by extending a discharge tube whose tube wall is forcibly cooled with a cooling medium to the downstream side of the discharge section, energy transfer from excited N2 molecules to CO2 molecules occurs in the extended section, resulting in laser oscillation. The effect of increasing laser output was confirmed because the necessary population inversion formation of excited CO2 molecules was promoted.

【0024】[0024]

【発明の効果】以上に説明したように本発明によれば、
次の効果を奏する。 (a)内管が外管を通る冷却媒体で冷却され、レーザ媒
質ガスの温度上昇が有効に防止されるため、発振効率が
大幅に向上した。 (b)二重管の長さを空洞共振器の長さより長くするこ
とで、発光媒体ガスへのエネルギの移乗が有効に行われ
、発振効率が大幅に向上した。
[Effects of the Invention] As explained above, according to the present invention,
It has the following effects. (a) The inner tube is cooled by the cooling medium passing through the outer tube, effectively preventing a rise in the temperature of the laser medium gas, resulting in a significant improvement in oscillation efficiency. (b) By making the length of the double tube longer than the length of the cavity resonator, energy was effectively transferred to the luminescent medium gas, and oscillation efficiency was significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来例の構成図である。FIG. 2 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1  空洞共振器 2  放電管 4  熱交換器 5  ガス循環器 8  マイクロ波発生器 11  全反射鏡 12  部分透過鏡 16  二重管 17  冷却媒体循環器 18  放熱器 1 Cavity resonator 2 Discharge tube 4 Heat exchanger 5 Gas circulator 8 Microwave generator 11 Total reflection mirror 12 Partially transparent mirror 16 Double pipe 17 Cooling medium circulator 18 Heatsink

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  誘電体製の二重管と、同二重管の内管
に接続されレーザ媒質ガスを供給するガス供給手段と、
上記二重管の外管に接続され絶縁体性冷却媒体を供給す
る冷却媒体供給手段と、上記二重管の少なくとも一部を
囲むマイクロ波空洞共振器と、同空洞共振器に接続され
マイクロ波を供給するマイクロ波源と、上記二重管の両
端部に対向して配置される全反射鏡および部分透過鏡と
を備えてなることを特徴とする気体レーザ装置。
[Claim 1] A double pipe made of dielectric; a gas supply means connected to the inner pipe of the double pipe for supplying a laser medium gas;
a cooling medium supply means connected to the outer tube of the double tube for supplying an insulating cooling medium; a microwave cavity resonator surrounding at least a part of the double tube; What is claimed is: 1. A gas laser device comprising: a microwave source that supplies a microwave source; and a total reflection mirror and a partial transmission mirror that are placed opposite to each other at both ends of the double tube.
【請求項2】  請求項1において、二重管の長さを空
洞共振器の長さより長くしたことを特徴とする気体レー
ザ装置。
2. The gas laser device according to claim 1, wherein the length of the double tube is longer than the length of the cavity resonator.
JP9048291A 1991-04-22 1991-04-22 Gas laser Withdrawn JPH04321289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9048291A JPH04321289A (en) 1991-04-22 1991-04-22 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9048291A JPH04321289A (en) 1991-04-22 1991-04-22 Gas laser

Publications (1)

Publication Number Publication Date
JPH04321289A true JPH04321289A (en) 1992-11-11

Family

ID=13999782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9048291A Withdrawn JPH04321289A (en) 1991-04-22 1991-04-22 Gas laser

Country Status (1)

Country Link
JP (1) JPH04321289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19625603A1 (en) * 1995-06-27 1997-01-02 Matsushita Electric Ind Co Ltd Microwave pumped gas, e.g. carbon di:oxide, laser oscillator for industrial use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19625603A1 (en) * 1995-06-27 1997-01-02 Matsushita Electric Ind Co Ltd Microwave pumped gas, e.g. carbon di:oxide, laser oscillator for industrial use
DE19625603C2 (en) * 1995-06-27 2001-10-11 Matsushita Electric Ind Co Ltd Gas laser for emitting a laser beam due to the excitation of gas by means of microwaves

Similar Documents

Publication Publication Date Title
Bridges et al. CO2 waveguide lasers
Hodges et al. Waveguide laser for the far infrared (FIR) pumped by a CO2 laser
US4233567A (en) Face-cooled laser device having increased energy storage and output
US5706305A (en) Gas laser oscillating apparatus for discharging laser beam by exciting gas with microwave
JPH01173771A (en) Method of activating laser gas electrically and gas laser
US3936772A (en) High flow metal halide vapor laser
US3229222A (en) Lasers utilizing a resonator with a heat sink
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
JPH04321289A (en) Gas laser
JPH09172214A (en) Rectangular emission gas laser
US3493845A (en) Coherent light source utilizing microwave pumping of an element having a metastable state as its first excited level
Cookson et al. Mechanical vibration measurements using a fibre optic laser-Doppler probe
Sarkisyan et al. Efficient cw sodium dimer Raman laser operation in a high-temperature sapphire cell
JPH0246785A (en) Method of electric excitation of gas laser and gas laser
RU2354019C1 (en) Active medium for electric discharge co laser or amplifier and method of its pumping
US3483481A (en) Radiation source for producing continuous coherent radiations
JP3221347B2 (en) Gas laser oscillation device
JP2001168431A (en) Laser and microwave generator
JPH02129979A (en) Microwave laser device
Luo et al. High-power room-temperature operating cw CO laser excited by microwave discharge
JP3519116B2 (en) Microwave excitation light source device
JP4363059B2 (en) Microwave discharge light source device
JP2792457B2 (en) Microwave-excited gas laser device
JPH02129976A (en) Microwave laser device
JPH11220189A (en) Gas laser

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711