JP4363059B2 - Microwave discharge light source device - Google Patents

Microwave discharge light source device Download PDF

Info

Publication number
JP4363059B2
JP4363059B2 JP2003046945A JP2003046945A JP4363059B2 JP 4363059 B2 JP4363059 B2 JP 4363059B2 JP 2003046945 A JP2003046945 A JP 2003046945A JP 2003046945 A JP2003046945 A JP 2003046945A JP 4363059 B2 JP4363059 B2 JP 4363059B2
Authority
JP
Japan
Prior art keywords
microwave
discharge
light source
source device
discharge vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046945A
Other languages
Japanese (ja)
Other versions
JP2004259502A (en
Inventor
卓 住友
賢一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2003046945A priority Critical patent/JP4363059B2/en
Publication of JP2004259502A publication Critical patent/JP2004259502A/en
Application granted granted Critical
Publication of JP4363059B2 publication Critical patent/JP4363059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、マイクロ波放電を利用したマイクロ波放電光源装置に関するものであり、特にその放電容器の冷却に関する。
【0002】
【従来の技術】
マイクロ波放電を利用した光源装置は種々開示されている。
特開平7−182910号には石英ガラスのランプ容器内にHe、Ne、ArおよびFの混合ガス等を封入し、コバール製の冷却管をランプ容器に気密に貫通させ、冷却管内に水を流して水冷して使用する紫外域の発光をするマイクロ波放電光源装置が開示されている。
【0003】
しかしながら、当該公報においては、ランプ容器の封入ガス圧についての記述がなく、マイクロ波による電界の向きについても記述がない。マイクロ波放電においては、放電容器に封入されたガス圧の高さによっては均一放電とならず、特に、常温で10kPaを超える高封入ガス圧のときには糸状の放電が放電容器内に生じ、その放電がマイクロ波の進行方向及びマイクロ波の電界の向きによってどのように影響されるのかという考え方や問題認識がない。
【0004】
特許第2570373号公報では、マイクロ波放電する低圧水銀ランプの放電容器の管壁の一部を金属で生成し、その内面を冷却液体で冷却する方法が開示されている。
【0005】
この公報においては、放電容器の管壁の一部を金属で生成し、その金属部分がマイクロ波電界に垂直と思われる構成と思われる。しかし、エキシマ光を多く放射させるために常温で10kPa以上の封入圧でXe等のエキシマ放電ガスを封入した高圧放電ランプをこの公報の構成にした場合、放電容器内の糸状発光にマイクロ波進行方向に沿い、疎密が生じるという問題が生じることが推測される。
【0006】
なお、高圧エキシマランプのマイクロ波点灯する公知例として特許第2960829号公報がある。このランプは放電容器内に希ガスとハロゲンを組合わせて充填している。そして、樋状の反射器と反射器の開口側の金属メッシュとから構成されるマイクロ波空洞内に放電容器が配置されている。しかしながら、放電容器の冷却には空冷を採用しており、高出力の発光は望めない構成となっている。
【0007】
本発明者は、高圧のエキシマ放電ガスを封入した放電容器を有するマイクロ波放電光源装置においては、金属管などの導電性の冷却管と、マイクロ波の進行方向およびマイクロ波の電界の向きとの配置関係が放電に大きく影響することを見出し、マイクロ波放電光源装置の安定放電を実現すべく、鋭意研究した結果、本発明を完成したものである。
【0008】
【特許文献1】
特許第2570373号公報
【特許文献2】
特許第2960829号公報
【特許文献3】
特開平7−182910号公報
【0009】
【発明が解決しようとする課題】
本発明は、マイクロ波電磁界の乱れを少なくした冷却方法を用いることによる高効率なマイクロ波放電光源装置を提供することを目的とし、特に高出力のエキシマ光放射を行う高圧エキシマ放電ガスを封入した放電容器を利用したマイクロ波放電光源装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明は、常温で10kPa以上の封入圧でエキシマ放電ガスが封入された放電容器とマイクロ波電源とを有するマイクロ波放電光源装置において、該放電容器は導波管内に収容されており、該放電容器に接して配置された直管状導電部材を有し、該直管状導電部材がマイクロ波進行方向に対して垂直、かつ電界の向きに垂直な方向に配置され、該放電容器にマイクロ波を出力期間(t)と停止期間(s)を有するよう所定の周期で間欠供給し、該直管状導電部材の中に冷却媒体を流すことを特徴とするマイクロ波放電光源装置とするものである。
【0012】
請求項に記載の発明は、前記出力期間(t)がt≦2.5×10−5secであって、かつ前記出力期間(t)と停止期間(s)をあわせた周期(L)がL≦2×10−4secであり、かつL>tであることを特徴とする請求項に記載のマイクロ波放電光源装置とするものである。
【0013】
【作用】
本発明において、エキシマ分子を生成する元の気体を放電容器内に多く含有される条件、すなわち10kPa以上の高ガス圧力とすることにより、エキシマ分子が多く生成され、高効率なマイクロ波放電光源装置が提供される。そして、冷却媒体を流す直管状の導電部材をマイクロ波進行方向に対して垂直で、かつ電界の向きに垂直な方向に配置すると、共振器内のマイクロ波電界が乱されることが少なく、10kPa以上の高ガス圧力としても放電容器からの安定した発光が得られる。また、マイクロ波電磁界を輻射することも少なくなるため、効率良くマイクロ波電磁界が放電容器に吸収される。
【0014】
そして、特にエキシマ分子は放電中のガスの温度が高くなると壊れやすい性質を有するので、放電容器に接した導電部材の内部に冷却媒体を流すという冷却をすることで、効果的な冷却を施すことができ、高効率なマイクロ波放電光源装置を提供することが可能となる。
【0015】
さらに、出力期間と停止期間を周期的とすることを特徴とするマイクロ波供給方法により、より高効率なマイクロ波放電光源装置を提供する。停止期間を設けることにより放電により生成されるエキシマ分子が冷却される期間を有し、高効率なマイクロ波放電光源装置が実現される。
【0016】
【発明の実施の形態】
本発明の実施の形態を示す典型的な例を図1に模式図的に示す。図1は実施例となるマイクロ波放電光源装置の概念図であるが、マイクロ波(2.45GHz)はマグネトロン2により生成され、アンテナ3から放射される。マグネトロン2を動作させるためにはマグネトロン2内部に熱電子を生成させるためのヒーター用電源(不図示)および生成された電子の加速用電源(不図示)などの動力源が必要であり、それらがマイクロ波電源1としてマグネトロン2に附属している。アンテナ3から放射されたマイクロ波は導波管4内を伝播し、放電容器5に給電される。導波管4にはJIS規格の矩形導波管を使用している。
【0017】
放電容器5は二重管構造をした直管からなる。外管51の外径がφ26mm、内管52の内径が14mm、長手方向長さ150mmの合成石英製であり、導波管4断面の長辺方向に対して平行方向に導波管4内に格納される。内管52の内径に密接して冷却管6としての直管状の銅管が挿入され、冷却管6は導波管4の断面の長辺方向に貫通し、外部から給水できる構造となっている。
【0018】
なおマイクロ波が導波管4から漏れ出でないよう、冷却管6と導波管4は接続されている。本実施例では冷却管6に銅管を使用したが、他の導電性材料からなる管を用いても、非導電性材料からなる管に導電性材料をコーティングしたものを用いても冷却効果が得られることは言うまでもない。導電性材料を使用する理由は冷却効果を高めるため、および安価な水を使用可能にするためである。
【0019】
放電容器5内には10kPaのキセノンガスが封入されており、マイクロ波放電によりキセノンエキシマ分子が生成され、放電からの光放射の一部に含まれるキセノンエキシマ分子からの172nmをピーク波長とした真空紫外光が放射される。
【0020】
真空紫外光は大気中の酸素により吸収されてしまうため、放電容器5はマイクロ波および真空紫外光に対して透明な、例えば合成石英からなる収納容器7に格納され、収納容器7内は大気圧程度の窒素ガスなどで充填される。マイクロ波に対しては不透明で、真空紫外光に対しては透明な、例えば金属メッシュ8を導波管4の一部に形成し、真空紫外光は金属メッシュ8を介して外部へ放射される。真空紫外光の酸素吸収をできる限り抑制するため、収納容器7は金属メッシュ8に略密接するように配設されている。
【0021】
放電容器5の中心は導波管4内に生成される電界の定在波の腹の位置、すなわち電界強度最大位置に設置され、もっとも効率良くマイクロ波を吸収するように設計されている。一般的には導波管に連設して形成された共振器内に放電容器5を配設するが、本実施例では放電容器5が導波管4に収まるため、導波管4をそのまま共振器に兼ねる構造としている。
【0022】
また、放電容器5の位置が電界強度の最大位置となるように移動可能な反射板(不図示)が設けられたり、マイクロ波が放電容器放電に効率良く供給されるよう整合器(不図示)が設けられたり、放電容器5の側から反射されるマイクロ波がアンテナ3に戻ってマグネトロン2を破壊しないように方向性結合器(不図示)などが設けられることがあるが、本実施例では以上のような課題に対策を施し、ここでの図示および説明は省略している。
【0023】
導波管4内および放電容器5に伝播するマイクロ波電界の様子を図2に示す。図中の矢印の長さは電界強度を示している。JIS規格矩形導波管4内にはTE10モードの電磁界が伝播し、導波管4の断面の短辺に平行な電界が伝播する。
【0024】
図2中でA−A'面での断面図を図3に示す。導波管4内を伝播してきたマイクロ波電界は、導波管4を上下に二分するように配置された細い冷却管6により、図示するように上下に二分される。このとき冷却管6がマイクロ波電界に対して垂直に配設されているため、マイクロ波電界がほとんど乱さずに二分されるところが特長的である。
【0025】
もし冷却管6のマイクロ波電界に対する垂直性が維持されなければ、マイクロ波電界により冷却管6内に電流が流れ、電流損が生じるとともに、その電流により冷却管6がアンテナとなってマイクロ波が輻射されることとなり、大幅な電力損失が生じるとともにマイクロ波電力が放電容器5に効率良く吸収されない。
【0026】
マイクロ波電力200Wをアンテナ3から放射した場合、冷却管6を挿入しない場合には、放射温度計にて測定した放電容器5の表面温度は260℃、金属メッシュ8付近で測定した真空紫外光強度は3mW/cm2である。一方、冷却管6を挿入し、1リットル/分の水を流したところ放電容器5の表面温度は200℃、真空紫外光強度は6mW/cm2と改善効果が得られた。以上の方法により、マイクロ波電磁界の乱れが少ない液体冷却方法を提供することが可能となり、高効率なエキシマ光放射を利用するマイクロ波放電光源装置を提供することを可能となる。
【0027】
エキシマ分子発光を得るためにはガス圧力が高いほうが効率的であることが知られている。しかしながらガス圧力が高くなると放電生成・維持が困難になり、電磁波により放電にエネルギーを供給するマイクロ波方式ではその困難さがより顕著になる。例えば20kPaのキセノンガスを封入したキセノンエキシマランプの放電断面は図4のようになる。図中の上向き矢印はマイクロ波電界を示す。
【0028】
放電容器5外部から入射するマイクロ波は、放電容器5内部に入ってすぐに放電を形成するが、ガス圧力が高いために放電が広がらず放電容器5近傍にのみ放電が形成される。入射波と反射波の両方において同様の現象が発生し、同図のように放電容器5のマイクロ波入射側および反射側の2箇所に局所的な放電が形成される。
【0029】
ところが、このとき出力期間と停止期間が周期的に変化するようにマイクロ波を供給すると、マイクロ波が放電容器5内部に入ってすぐの箇所に放電を維持されず、図5のように放電容器内でもっとも電界強度の高い導電性の冷却管6近傍に放電維持される。
【0030】
例えばマイクロ波出力期間を3μ秒、停止期間を20μ秒とした供給とすることにより、キセノンエキシマの真空紫外光の強度は定常的な連続マイクロ波供給時の6mW/cm2から10mW/cm2へと大幅な改善が見られた。マイクロ波出力期間と停止期間をパラメータとして、マイクロ波の定常的供給時に対する真空紫外光強度比をまとめると図6のような結果が得られた。
【0031】
図6において、縦軸をマイクロ波の出力期間(t)と停止期間(s)をあわせた周期(L)、横軸をマイクロ波出力期間として、定常的な連続マイクロ波供給時の真空紫外光強度に対し、マイクロ波を出力期間(t)と停止期間(s)を有するよう所定の周期で間欠供給した場合の真空紫外光強度をプロットしたものである。各点の数値は定常的な連続マイクロ波供給時の真空紫外光強度を1.0としたときの相対値を示す。
【0032】
図中の斜線部分の領域、即ち(t)がt≦2.5×10−5secであって、かつ周期(L)がL≦2×10−4secかつ、L>tである領域のマイクロ波供給条件であれば、キセノンエキシマの真空紫外光の強度は定常的な連続マイクロ波供給時の当該強度に比べて50%を超える改善が見られるのである。50%を超える改善は省エネルギー効果が大きい。
【0033】
【発明の効果】
以上のように、放電容器に照射されるマイクロ波電界に対して略垂直に管状導電性冷却管を配設することにより、マイクロ波電界を乱さずに冷却することが可能となり、高効率なマイクロ波放電光源装置が提供されることとなった。
【0034】
特にガス圧力が高いエキシマ分子からの放射光を利用するマイクロ波放電光源装置においては、マイクロ波を定常的に供給せずに停止期間を設けて供給する方がより高効率とすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を模式図的に示した図である。
【図2】本発明の実施の形態における導波管内および放電容器に伝播するマイクロ波電界分布概念図である。
【図3】図2のA−A´断面図である。
【図4】高ガス圧力における放電容器中央部に導電性冷却管を通過させたマイクロ波放電光源装置の放電の様子である。
【図5】出力期間と停止期間が周期的に変化するようにマイクロ波供給した場合のマイクロ波放電光源装置の放電の様子である。
【図6】マイクロ波定常供給時に対する、周期変調時の真空紫外光強度比を示した図である。
【符号の説明】
1 マイクロ波電源
2 マグネトロン
3 アンテナ
4 導波管
5 放電容器
51 外管
52 内管
6 冷却管
7 収納容器
8 金属メッシュ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave discharge light source device using microwave discharge, and particularly to cooling of the discharge vessel.
[0002]
[Prior art]
Various light source devices using microwave discharge have been disclosed.
In JP-A-7-182910, a mixed gas of He, Ne, Ar and F 2 is enclosed in a quartz glass lamp vessel, a Kovar cooling tube is passed through the lamp vessel in an airtight manner, and water is poured into the cooling tube. A microwave discharge light source device that emits light in the ultraviolet region that is used after flowing and cooling with water is disclosed.
[0003]
However, in this publication, there is no description about the gas pressure enclosed in the lamp vessel, and there is no description about the direction of the electric field by the microwave. In the microwave discharge, the discharge does not become uniform depending on the height of the gas pressure sealed in the discharge vessel. In particular, when the gas pressure exceeds 10 kPa at room temperature, a filamentous discharge is generated in the discharge vessel. There is no idea or problem recognition of how is affected by the direction of microwave travel and the direction of the microwave electric field.
[0004]
Japanese Patent No. 2570373 discloses a method in which a part of a tube wall of a discharge vessel of a low-pressure mercury lamp that performs microwave discharge is generated with metal and the inner surface thereof is cooled with a cooling liquid.
[0005]
In this publication, it is considered that a part of the tube wall of the discharge vessel is made of metal, and the metal part seems to be perpendicular to the microwave electric field. However, when a high-pressure discharge lamp in which an excimer discharge gas such as Xe is sealed at an ambient pressure of 10 kPa or more to emit a large amount of excimer light is configured as described in this publication, the direction of microwave propagation in the filamentous light emission in the discharge vessel It is speculated that there will be a problem of density.
[0006]
Japanese Patent No. 2960829 is a publicly known example of microwave lighting of a high-pressure excimer lamp. In this lamp, the discharge vessel is filled with a combination of a rare gas and a halogen. And the discharge vessel is arrange | positioned in the microwave cavity comprised from a bowl-shaped reflector and the metal mesh of the opening side of a reflector. However, air cooling is employed for cooling the discharge vessel, and high power emission cannot be expected.
[0007]
In a microwave discharge light source device having a discharge vessel filled with a high-pressure excimer discharge gas, the present inventor has a conductive cooling tube such as a metal tube, a microwave traveling direction, and a microwave electric field direction. The present inventors have completed the present invention as a result of finding out that the arrangement relationship has a great influence on the discharge and intensively researching to realize a stable discharge of the microwave discharge light source device.
[0008]
[Patent Document 1]
Japanese Patent No. 2570373 [Patent Document 2]
Japanese Patent No. 2960829 [Patent Document 3]
JP-A-7-182910 [0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-efficiency microwave discharge light source device by using a cooling method with less disturbance of a microwave electromagnetic field, and in particular, encloses a high-pressure excimer discharge gas that performs high-power excimer light emission. An object of the present invention is to provide a microwave discharge light source device using the discharged discharge vessel.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 is directed to a microwave discharge light source device having a discharge vessel in which an excimer discharge gas is sealed at a normal pressure and a sealed pressure of 10 kPa or more, and a microwave power source. The container is accommodated in the waveguide, and has a straight tubular conductive member disposed in contact with the discharge container, and the straight tubular conductive member is perpendicular to the microwave traveling direction and perpendicular to the electric field direction. The microwave is intermittently supplied to the discharge vessel at a predetermined cycle so as to have an output period (t) and a stop period (s), and a cooling medium is caused to flow through the straight tubular conductive member. A microwave discharge light source device is provided.
[0012]
According to a second aspect of the present invention, the output period (t) is t ≦ 2.5 × 10 −5 sec, and the cycle (L) is a combination of the output period (t) and the stop period (s). The microwave discharge light source device according to claim 1 , wherein L ≦ 2 × 10 −4 sec and L> t.
[0013]
[Action]
In the present invention, a high-efficiency microwave discharge light source device in which a large amount of excimer molecules is generated by setting a high gas pressure of 10 kPa or more under conditions where the original gas for generating excimer molecules is contained in the discharge vessel. Is provided. When the straight tubular conductive member through which the cooling medium flows is arranged in a direction perpendicular to the microwave traveling direction and perpendicular to the direction of the electric field, the microwave electric field in the resonator is less likely to be disturbed, and 10 kPa Even with the above high gas pressure, stable light emission from the discharge vessel can be obtained. Moreover, since it is less likely to radiate the microwave electromagnetic field, the microwave electromagnetic field is efficiently absorbed by the discharge vessel.
[0014]
In particular, excimer molecules have the property of being easily broken when the temperature of the gas during discharge increases, so that cooling is performed by flowing a cooling medium inside the conductive member in contact with the discharge vessel, thereby providing effective cooling. Therefore, it is possible to provide a highly efficient microwave discharge light source device.
[0015]
Furthermore, a microwave discharge light source device with higher efficiency is provided by a microwave supply method characterized in that the output period and the stop period are periodic. By providing the stop period, the excimer molecules generated by the discharge are cooled, and a highly efficient microwave discharge light source device is realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A typical example showing an embodiment of the present invention is schematically shown in FIG. FIG. 1 is a conceptual diagram of a microwave discharge light source device as an embodiment. Microwaves (2.45 GHz) are generated by a magnetron 2 and radiated from an antenna 3. In order to operate the magnetron 2, a power source such as a heater power source (not shown) for generating thermionic electrons inside the magnetron 2 and an acceleration power source (not shown) for the generated electrons is required. A microwave power source 1 is attached to the magnetron 2. The microwave radiated from the antenna 3 propagates in the waveguide 4 and is fed to the discharge vessel 5. The waveguide 4 is a JIS standard rectangular waveguide.
[0017]
The discharge vessel 5 is a straight tube having a double tube structure. The outer tube 51 has an outer diameter of 26 mm, the inner tube 52 has an inner diameter of 14 mm, and a longitudinal length of 150 mm. The outer tube 51 is made of synthetic quartz, and is parallel to the long side direction of the waveguide 4 cross section. Stored. A straight tubular copper pipe as the cooling pipe 6 is inserted in close contact with the inner diameter of the inner pipe 52, and the cooling pipe 6 penetrates in the long side direction of the cross section of the waveguide 4 so that water can be supplied from the outside. .
[0018]
The cooling tube 6 and the waveguide 4 are connected so that the microwave does not leak from the waveguide 4. In this embodiment, a copper pipe is used as the cooling pipe 6. However, even if a pipe made of another conductive material is used or a pipe made of a non-conductive material is coated with a conductive material, the cooling effect can be obtained. It goes without saying that it is obtained. The reason for using the conductive material is to enhance the cooling effect and to make it possible to use inexpensive water.
[0019]
A 10 kPa xenon gas is sealed in the discharge vessel 5, xenon excimer molecules are generated by microwave discharge, and a vacuum having a peak wavelength of 172 nm from the xenon excimer molecules contained in a part of light emission from the discharge. Ultraviolet light is emitted.
[0020]
Since the vacuum ultraviolet light is absorbed by oxygen in the atmosphere, the discharge vessel 5 is stored in a storage vessel 7 made of, for example, synthetic quartz that is transparent to microwaves and vacuum ultraviolet light, and the inside of the storage vessel 7 is atmospheric pressure. Filled with about nitrogen gas. For example, a metal mesh 8 is formed on a part of the waveguide 4 and is opaque to the microwave and transparent to the vacuum ultraviolet light. The vacuum ultraviolet light is radiated to the outside through the metal mesh 8. . In order to suppress oxygen absorption of vacuum ultraviolet light as much as possible, the storage container 7 is disposed so as to be in close contact with the metal mesh 8.
[0021]
The center of the discharge vessel 5 is installed at the antinode of the standing wave of the electric field generated in the waveguide 4, that is, the position where the electric field strength is maximum, and is designed to absorb the microwave most efficiently. In general, the discharge vessel 5 is disposed in a resonator formed continuously with the waveguide. However, in this embodiment, the discharge vessel 5 is accommodated in the waveguide 4, so that the waveguide 4 is left as it is. The structure also serves as a resonator.
[0022]
In addition, a reflector (not shown) that can move so that the position of the discharge vessel 5 is the maximum position of the electric field strength is provided, or a matching unit (not shown) so that microwaves are efficiently supplied to the discharge vessel discharge. Or a directional coupler (not shown) may be provided so that the microwave reflected from the discharge vessel 5 does not return to the antenna 3 and destroy the magnetron 2. Measures are taken for the above problems, and illustration and description are omitted here.
[0023]
A state of the microwave electric field propagating in the waveguide 4 and the discharge vessel 5 is shown in FIG. The length of the arrow in the figure indicates the electric field strength. A TE 10 mode electromagnetic field propagates in the JIS standard rectangular waveguide 4, and an electric field parallel to the short side of the cross section of the waveguide 4 propagates.
[0024]
FIG. 3 shows a cross-sectional view taken along the plane AA ′ in FIG. The microwave electric field propagating through the waveguide 4 is divided into two as shown in the figure by a thin cooling pipe 6 arranged to divide the waveguide 4 into two. At this time, since the cooling pipe 6 is arranged perpendicular to the microwave electric field, it is characteristic that the microwave electric field is divided into two without being disturbed.
[0025]
If the perpendicularity of the cooling tube 6 to the microwave electric field is not maintained, a current flows in the cooling tube 6 due to the microwave electric field, causing a current loss. As a result, the power is radiated and a large power loss occurs, and the microwave power is not efficiently absorbed by the discharge vessel 5.
[0026]
When microwave power 200W is radiated from the antenna 3 and the cooling tube 6 is not inserted, the surface temperature of the discharge vessel 5 measured with a radiation thermometer is 260 ° C and the vacuum ultraviolet light intensity measured near the metal mesh 8 Is 3 mW / cm 2 . On the other hand, when the cooling tube 6 was inserted and water of 1 liter / min was flowed, the surface temperature of the discharge vessel 5 was 200 ° C., and the vacuum ultraviolet light intensity was 6 mW / cm 2, and an improvement effect was obtained. With the above method, it is possible to provide a liquid cooling method with less disturbance of the microwave electromagnetic field, and it is possible to provide a microwave discharge light source device that uses highly efficient excimer light radiation.
[0027]
It is known that higher gas pressure is more efficient for obtaining excimer molecular light emission. However, when the gas pressure increases, it becomes difficult to generate and maintain the discharge, and the difficulty becomes more prominent in the microwave system that supplies energy to the discharge by electromagnetic waves. For example, a discharge cross section of a xenon excimer lamp filled with 20 kPa of xenon gas is as shown in FIG. The upward arrow in the figure indicates the microwave electric field.
[0028]
The microwave incident from the outside of the discharge vessel 5 forms a discharge immediately after entering the inside of the discharge vessel 5, but the discharge does not spread due to the high gas pressure, and a discharge is formed only in the vicinity of the discharge vessel 5. The same phenomenon occurs in both the incident wave and the reflected wave, and local discharge is formed at two locations on the microwave incident side and the reflection side of the discharge vessel 5 as shown in FIG.
[0029]
However, if the microwave is supplied so that the output period and the stop period periodically change at this time, the discharge is not maintained immediately after the microwave enters the inside of the discharge container 5, and the discharge container as shown in FIG. Discharge is maintained in the vicinity of the conductive cooling tube 6 having the highest electric field strength.
[0030]
For example microwave output period 3μ seconds, by the supply was 20μ sec stop period, the intensity of the vacuum ultraviolet light of the xenon excimer from 6 mW / cm 2 at the time of steady continuous microwave supply to 10 mW / cm 2 And a great improvement was seen. The results shown in FIG. 6 were obtained by summarizing the vacuum ultraviolet light intensity ratio with respect to the steady supply of microwaves using the microwave output period and the stop period as parameters.
[0031]
In FIG. 6, the vertical axis represents the period (L) of the microwave output period (t) and the stop period (s), and the horizontal axis represents the microwave output period. It is a plot of the vacuum ultraviolet light intensity when the microwave is intermittently supplied at a predetermined period so as to have an output period (t) and a stop period (s). The numerical value of each point shows a relative value when the vacuum ultraviolet light intensity at the time of steady continuous microwave supply is 1.0.
[0032]
The hatched area in the figure, that is, the area where (t) is t ≦ 2.5 × 10 −5 sec and the period (L) is L ≦ 2 × 10 −4 sec and L> t. Under the microwave supply conditions, the intensity of the vacuum ultraviolet light of xenon excimer is improved by more than 50% compared to the intensity at the time of steady continuous microwave supply. Improvements exceeding 50% have a significant energy saving effect.
[0033]
【The invention's effect】
As described above, by disposing the tubular conductive cooling tube substantially perpendicular to the microwave electric field irradiated to the discharge vessel, it becomes possible to cool the microwave electric field without disturbing it, and a high-efficiency microwave A wave discharge light source device was provided.
[0034]
In particular, in a microwave discharge light source device that uses emitted light from excimer molecules having a high gas pressure, it is possible to achieve higher efficiency by providing a stop period without supplying the microwave constantly.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a microwave electric field distribution propagating in the waveguide and in the discharge vessel in the embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.
FIG. 4 is a state of discharge of a microwave discharge light source device in which a conductive cooling tube is passed through the center of a discharge vessel at a high gas pressure.
FIG. 5 shows a discharge state of the microwave discharge light source device when microwaves are supplied so that the output period and the stop period periodically change.
FIG. 6 is a diagram showing a vacuum ultraviolet light intensity ratio at the time of periodic modulation with respect to the time of steady microwave supply.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microwave power supply 2 Magnetron 3 Antenna 4 Waveguide 5 Discharge vessel 51 Outer tube 52 Inner tube 6 Cooling tube 7 Storage container 8 Metal mesh

Claims (2)

常温で10kPa以上の封入圧でエキシマ放電ガスが封入された放電容器とマイクロ波電源とを有するマイクロ波放電光源装置において、
該放電容器は導波管内に収容されており、該放電容器に接して配置された直管状導電部材を有し、該直管状導電部材がマイクロ波進行方向に対して垂直、かつ電界の向きに垂直な方向に配置され、該放電容器にマイクロ波を出力期間(t)と停止期間(s)を有するよう所定の周期で間欠供給し、該直管状導電部材の中に冷却媒体を流すことを特徴とするマイクロ波放電光源装置。
In a microwave discharge light source device having a discharge vessel in which excimer discharge gas is sealed at a sealed pressure of 10 kPa or more at room temperature and a microwave power source,
The discharge vessel is accommodated in a waveguide, and has a straight tubular conductive member disposed in contact with the discharge vessel. The straight tubular conductive member is perpendicular to the microwave traveling direction and in the direction of the electric field. It is arranged in a vertical direction, the microwave is intermittently supplied to the discharge vessel at a predetermined cycle so as to have an output period (t) and a stop period (s), and a cooling medium is caused to flow through the straight tubular conductive member. A microwave discharge light source device.
前記出力期間(t)がt≦2.5×10−5secであって、かつ前記出力期間(t)と停止期間(s)をあわせた周期(L)がL≦2×10−4secであり、かつL>tであることを特徴とする請求項に記載のマイクロ波放電光源装置。The output period (t) is t ≦ 2.5 × 10 −5 sec, and the cycle (L) of the output period (t) and the stop period (s) is L ≦ 2 × 10 −4 sec. The microwave discharge light source device according to claim 1 , wherein L> t.
JP2003046945A 2003-02-25 2003-02-25 Microwave discharge light source device Expired - Fee Related JP4363059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046945A JP4363059B2 (en) 2003-02-25 2003-02-25 Microwave discharge light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046945A JP4363059B2 (en) 2003-02-25 2003-02-25 Microwave discharge light source device

Publications (2)

Publication Number Publication Date
JP2004259502A JP2004259502A (en) 2004-09-16
JP4363059B2 true JP4363059B2 (en) 2009-11-11

Family

ID=33113326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046945A Expired - Fee Related JP4363059B2 (en) 2003-02-25 2003-02-25 Microwave discharge light source device

Country Status (1)

Country Link
JP (1) JP4363059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867384B2 (en) * 2006-02-16 2012-02-01 凸版印刷株式会社 Plasma light emitting device

Also Published As

Publication number Publication date
JP2004259502A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4714868B2 (en) Discharge lamp equipment
Hodges et al. Waveguide laser for the far infrared (FIR) pumped by a CO2 laser
JPH01173771A (en) Method of activating laser gas electrically and gas laser
KR100524407B1 (en) Producing apparatus for an electrodeless uv lighting source
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
US7081702B2 (en) Electrodeless lighting system
JP4363059B2 (en) Microwave discharge light source device
JP2007080705A (en) Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp
JP3173362B2 (en) Microwave discharge light source device
JP4294998B2 (en) Electrodeless lighting system
JP4800099B2 (en) Light source device
JP5493101B2 (en) Microwave discharge lamp
JP6263788B2 (en) Microwave electrodeless lamp and light irradiation device using the same
JP3159809B2 (en) Electrodeless light source
KR20120030461A (en) Discharge lamp and discharge lamp device
JP2604051Y2 (en) Excimer lamp discharger
JP2005285349A (en) Microwave electrodeless discharge lamp device
JPH0226359B2 (en)
JPH10106508A (en) Microwave electrodeless light source device
JPH0411330Y2 (en)
JP2008053014A (en) Light irradiation device
JPS6228045Y2 (en)
JP5585928B2 (en) Microwave discharge lamp device
JP2005339951A (en) Microwave electrodeless discharge lamp apparatus
JPS6350839B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees