JPH0432096B2 - - Google Patents

Info

Publication number
JPH0432096B2
JPH0432096B2 JP20644887A JP20644887A JPH0432096B2 JP H0432096 B2 JPH0432096 B2 JP H0432096B2 JP 20644887 A JP20644887 A JP 20644887A JP 20644887 A JP20644887 A JP 20644887A JP H0432096 B2 JPH0432096 B2 JP H0432096B2
Authority
JP
Japan
Prior art keywords
polymerization
tank
prepolymerization
polymerization tank
aminododecanoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20644887A
Other languages
Japanese (ja)
Other versions
JPS6451433A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20644887A priority Critical patent/JPS6451433A/en
Publication of JPS6451433A publication Critical patent/JPS6451433A/en
Publication of JPH0432096B2 publication Critical patent/JPH0432096B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、12−アミノドデカン酸の連続重合方
法及び装置に関するもので、より詳細には、12−
アミノドデカン酸をモノマー原料として、高い分
子量と高い品質とを有するナイロン−12を連続的
に製造するための連続重合方法及び装置に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a continuous polymerization method and apparatus for 12-aminododecanoic acid, and more specifically, to a continuous polymerization method and apparatus for 12-aminododecanoic acid.
The present invention relates to a continuous polymerization method and apparatus for continuously producing nylon-12 having a high molecular weight and high quality using aminododecanoic acid as a monomer raw material.

(従来の技術) 従来、ナイロン−12はドデカラクタム(ラウリ
ンラクタム)あるいは12−アミノドデカン酸を加
熱重合することにより製造されている。この内12
−アミノドデカン酸をモノマー原料とする方法で
は、アミノ基とカルボキシ基との縮合に伴ない水
が副生する。
(Prior Art) Nylon-12 has conventionally been produced by heating and polymerizing dodecalactam (laurinlactam) or 12-aminododecanoic acid. 12 of these
- In the method using aminododecanoic acid as a monomer raw material, water is produced as a by-product due to the condensation of amino groups and carboxy groups.

12−アミノドデカン酸を連続的に加熱重合させ
ると、重合槽内下部においては反応水により加圧
状態となり、或る程度の重合度までしか重縮合反
応が進まない。
When 12-aminododecanoic acid is continuously polymerized by heating, the reaction water creates a pressurized state in the lower part of the polymerization tank, and the polycondensation reaction proceeds only up to a certain degree of polymerization.

そこで、12−アミノドデカン酸から高重合度の
ナイロン−12を得るためには、予備重合と後重合
との二段重合法によらざるを得ない。
Therefore, in order to obtain nylon-12 with a high degree of polymerization from 12-aminododecanoic acid, it is necessary to use a two-stage polymerization method of prepolymerization and postpolymerization.

従来の二段重合法では、重合容器内で12−アミ
ノドデカン酸を加熱融解して予備重合を行わせ、
次いで同じ重合容器中で常圧または減圧下に更に
高い温度に加熱して重合度を高めるための後重合
を行わせる。
In the conventional two-stage polymerization method, 12-aminododecanoic acid is heated and melted in a polymerization container to perform preliminary polymerization.
Next, in the same polymerization vessel, the mixture is heated to a higher temperature under normal pressure or reduced pressure to perform post-polymerization to increase the degree of polymerization.

(発明が解決しようとする問題点) 従来の二段重合法は不連続法であつて生産性が
低いという問題があり、更に後重合の終了後生成
重合体を放出した後にも、重合容器壁に生成重合
体の一部が付着して残留し、予備重合−後重合を
反復すると、残留重合体が熱履歴により劣化し、
最終重合体製品の品質を低下させるという欠点が
ある。この欠点を避けるためには、重合容器の定
期的な洗浄が必要となり、これにより生産性は著
しく低いものとなる。
(Problems to be Solved by the Invention) The conventional two-stage polymerization method is a discontinuous method and has the problem of low productivity.Furthermore, even after the post-polymerization is completed and the produced polymer is released, the walls of the polymerization container A part of the produced polymer adheres and remains, and when the prepolymerization and postpolymerization are repeated, the residual polymer deteriorates due to thermal history.
It has the disadvantage of reducing the quality of the final polymer product. To avoid this drawback, regular cleaning of the polymerization vessel is required, which significantly reduces productivity.

12−アミノドデカン酸から高重合度ナイロン−
12を製造する点で最も問題となる点は、重縮合系
からの副生水分の除去の点であり、ナイロン−12
の重縮合が進行する程、この系の溶融粘度が高く
なり、副生水分の除去が困難となることである。
12-Highly polymerized nylon from aminododecanoic acid-
The most problematic point in producing nylon-12 is the removal of by-product water from the polycondensation system.
As the polycondensation progresses, the melt viscosity of this system increases, making it difficult to remove by-product water.

従つて、本発明の目的は、12−アミノドデカン
酸の重縮合過程で副生する水分を有効に除去し、
これにより高重合度でしかも高品質のナイロン−
12を連続的に製造することを可能にする12−アミ
ノドデカン酸の連続重合法及び装置を提供するに
ある。
Therefore, the object of the present invention is to effectively remove water by-produced in the polycondensation process of 12-aminododecanoic acid,
This results in a high polymerization degree and high quality nylon.
An object of the present invention is to provide a method and apparatus for continuous polymerization of 12-aminododecanoic acid, which enables the continuous production of 12-aminododecanoic acid.

本発明の他の目的は、12−アミノドデカン酸の
連続二段重合に際して、後重合が進行しつつある
12−アミノドデカン酸重合物からの水分の除去が
該重合物の低重合度域から高重合度域への円滑な
移動を妨げることなしに効率良く行われるような
重合方法及び装置を提供するにある。
Another object of the present invention is that during the continuous two-stage polymerization of 12-aminododecanoic acid, post-polymerization is progressing.
To provide a polymerization method and apparatus in which water can be efficiently removed from a 12-aminododecanoic acid polymer without interfering with the smooth movement of the polymer from a low polymerization degree region to a high polymerization degree region. be.

(問題点を解決するための手段) 本発明によれば、12−アミノドデカン酸を縦型
の第一重合槽に連続的に供給して前重合させる第
1工程と、第1工程で得られる溶融状態の前重合
生成物を、上部にヘツドスペースを有し且つ水平
軸を中心に回転する撹拌機構を備えた横型第二重
合槽にその一端から供給し、溶融重合体中の水分
をヘツドスペースに揮散させながら溶融重合体の
後重合を行ない、第二重合槽の他端から高分子量
ナイロン−12を連続的に取出す第2工程とからな
ることを特徴とする12−アミノドデカン酸の連続
重合方法が提供される。
(Means for Solving the Problems) According to the present invention, a first step of continuously supplying 12-aminododecanoic acid to a vertical first polymerization tank and prepolymerizing it; The molten prepolymerization product is supplied from one end to a horizontal second polymerization tank that has a head space at the top and is equipped with a stirring mechanism that rotates around a horizontal axis, and the water in the molten polymer is removed from the head space. Continuous polymerization of 12-aminododecanoic acid, characterized in that it consists of a second step of post-polymerizing the molten polymer while volatilizing it, and continuously taking out high molecular weight nylon-12 from the other end of the second polymerization tank. A method is provided.

本発明によればまた、上部に12−アミノドデカ
ン酸供給口と排気口とを有し、下部に前重合生成
物排出口を有し、内部に撹拌機を有し、外周壁に
加熱用ジヤケツトを有する縦型第一重合槽と;横
方向一端部に溶融前重合生成物供給口を有し、横
方向他端部に高分子量ナイロン−12排出口を有
し、内部に、溶融重合体の収容部、その上のヘツ
ドスペース及び実質上水平方向に延びている軸を
中心として回転し得る溶融重合体の撹拌機構を備
え、槽内のヘツドスペースの一端部に通ずる不活
性ガス供給口と該ヘツドスペースの他端部に通ず
る不活性ガスと水分との排出口とを有し且つ外周
壁に加熱用ジヤケツトを有する横型第二重合槽
と;該第一重合槽の前重合生成物排出口と該第二
重合槽の前重合生成物供給口とを連結する前重合
生成物を移送するためのポンプおよび管と;から
成ることを特徴とする12−アミノドデカン酸の連
続重合装置が提供される。
According to the present invention, the upper part has a 12-aminododecanoic acid supply port and the exhaust port, the lower part has a prepolymerization product discharge port, a stirrer is provided inside, and a heating jacket is provided on the outer peripheral wall. a vertical first polymerization tank; having a pre-melted polymerization product supply port at one horizontal end and a high molecular weight nylon-12 discharge port at the other horizontal end; The container comprises a housing part, a head space thereon, a stirring mechanism for the molten polymer which can rotate about an axis extending substantially horizontally, and an inert gas supply port communicating with one end of the head space in the tank. a horizontal second polymerization tank having an inert gas and moisture outlet communicating with the other end of the head space and a heating jacket on the outer peripheral wall; a prepolymerization product outlet of the first polymerization tank; A continuous polymerization apparatus for 12-aminododecanoic acid is provided, comprising: a pump and a pipe for transferring the prepolymerization product, which are connected to the prepolymerization product supply port of the second polymerization tank. .

(作用) 本発明においては、12−アミノドデカン酸の重
合を、第一重合槽での前重合と、第二重合槽での
後重合との二段の工程で連続的に行なうが、第二
重合槽として上部にヘツドスペースを備え且つ水
平軸を中心に回転する撹拌機構を備えた横型重合
槽を使用し且つこの横型重合槽の一端から溶融状
態の前重合生成物を供給し、その他端から高分子
量の最終重合生成物を取出すことが顕著な特徴で
ある。
(Function) In the present invention, the polymerization of 12-aminododecanoic acid is carried out continuously in two steps: prepolymerization in the first polymerization tank and postpolymerization in the second polymerization tank. A horizontal polymerization tank equipped with a head space at the top and a stirring mechanism rotating around a horizontal axis is used as the polymerization tank, and the molten prepolymerization product is supplied from one end of this horizontal polymerization tank, and the prepolymerization product is supplied from the other end. A distinctive feature is the removal of high molecular weight final polymerization products.

先ず、第二重合槽として横型重合槽を用いるこ
とにより、この重合槽の前重合生成物供給域(低
重合度域)から最終重合生成物取出域(高重合度
域)に至る全ての域にヘツドスペースを形成させ
ることが可能となり、充分に大きな反応水の蒸発
面積を確保することが可能となる。
First, by using a horizontal polymerization tank as the second polymerization tank, all areas from the pre-polymerization product supply area (low polymerization degree area) to the final polymerization product take-out area (high polymerization degree area) of this polymerization tank are It becomes possible to form a head space, and it becomes possible to secure a sufficiently large evaporation area of reaction water.

また、横型重合槽内に水平軸を中心に回転する
撹拌機構を設けたことにより、重合槽底部の溶融
重合生成物がヘツドスペースに向けて強制的に上
昇撹拌され、溶融物と気相との接触界面がたえず
更新されることにより、溶融重合生成物に含まれ
る反応水の蒸発は著しく促進される。この際溶融
重合生成物相の上方のヘツドスペース内に乾燥窒
素ガス等を流すようにし、或いは減圧に維持する
と、ヘツドスペース中の水圧が低下して、水分の
蒸発が一層効率よく行われることになる。
In addition, by providing a stirring mechanism that rotates around a horizontal axis in the horizontal polymerization tank, the molten polymerization product at the bottom of the polymerization tank is forcibly stirred upward toward the head space, and the melt and gas phase are mixed. The constant renewal of the contact interface significantly accelerates the evaporation of the reaction water contained in the molten polymerization product. At this time, if dry nitrogen gas or the like is flowed into the head space above the molten polymerization product phase, or if the pressure is maintained at reduced pressure, the water pressure in the head space will be reduced and water evaporation will be carried out more efficiently. Become.

更に、溶融重合生成物相の撹拌は底部→上部→
底部の上下方向にのみ行われることから、第二重
合槽内で重合の完結に必要な滞留時間を確保でき
ると共に、溶融重合生成物は重合槽一端からの前
重合生成物の供給量に相当する量の最終重合生成
物が重合槽他端から重合体自体の自己流動性によ
り排出され、重合生成物の移送は、低重合度域か
ら高重合度域へと順次逆混合なしに円滑に行われ
ることになる。既に指摘した通り、一般にナイロ
ン−12の重合度が高くなる程、溶融物が粘稠とな
り、その中の水分の除去が困難となる傾向がある
が、本発明によれば、前述したヘツドスペースの
設置と横型撹拌機構の使用との組合せにより高重
合度溶融物からの水分の蒸発除去も容易に行われ
ることになる。
Furthermore, the stirring of the molten polymerization product phase is performed from the bottom → top →
Since it is carried out only in the vertical direction of the bottom, it is possible to secure the residence time necessary for the completion of polymerization in the second polymerization tank, and the amount of molten polymerization product is equivalent to the amount of prepolymerization product supplied from one end of the polymerization tank. A certain amount of the final polymerization product is discharged from the other end of the polymerization tank due to the self-flowing properties of the polymer itself, and the polymerization product is smoothly transferred from the low polymerization degree area to the high polymerization degree area without back mixing. It turns out. As already pointed out, generally speaking, the higher the degree of polymerization of nylon-12, the more viscous the melt becomes, making it difficult to remove water from it. However, according to the present invention, the aforementioned head space can be reduced. The combination of the installation and the use of a horizontal stirring mechanism also facilitates the evaporative removal of water from the highly polymerized melt.

所望の分子量に到達した重合体は、排出装置を
通して第二重合槽から抜出され、それ自他公知の
方法でシート状、フイルム状或いは紐状に引取
り、冷却固化させ、或いは更に必要に応じて小片
に切断される。
The polymer that has reached the desired molecular weight is taken out from the second polymerization tank through a discharge device, taken out in the form of a sheet, film, or string by other known methods, cooled and solidified, or further processed as necessary. cut into small pieces.

第一重合槽としては、任意のタイプの重合槽が
使用されるが、粉末上の12−アミノドデカン酸を
重合槽内に均一に拡散分散させて加熱溶融し、こ
れを重合させるという目的には縦型の重合槽、特
に上部に前期モノマー原料の供給口と水分に対す
る排気口とを有し、下部に前重合生成物排出口を
有し、内部に撹拌機を有し、且つ外周壁に加熱用
ジヤケツトを有する縦型重合槽を用いることが望
ましい。
Any type of polymerization tank can be used as the first polymerization tank, but it is not suitable for the purpose of uniformly diffusing and dispersing powdered 12-aminododecanoic acid in the polymerization tank, heating and melting it, and polymerizing it. A vertical polymerization tank, in particular, has a supply port for the monomer raw material and an exhaust port for moisture at the top, a prepolymerization product discharge port at the bottom, a stirrer inside, and a heating device on the outer peripheral wall. It is preferable to use a vertical polymerization tank with a jacket for the polymerization.

第一重合槽から第二重合槽への前重合生成物の
移送は、ポンプ及び配管を経て行われる。
The prepolymerization product is transferred from the first polymerization tank to the second polymerization tank via a pump and piping.

(発明の好適態様) 本発明を、添付図面について説明する。(Preferred embodiment of the invention) The invention will now be described with reference to the accompanying drawings.

第1図は、本発明の連続重合方法を実施するた
めに使用される本発明の連続重合装置の一例の縦
断面図であり、第2図は第1図のA−A線断面図
であり、第3図は第1図のB−B線断面図であ
る。
FIG. 1 is a longitudinal cross-sectional view of an example of the continuous polymerization apparatus of the present invention used to carry out the continuous polymerization method of the present invention, and FIG. 2 is a cross-sectional view taken along the line A-A in FIG. , FIG. 3 is a sectional view taken along the line B--B in FIG. 1.

第1図、第2図および第3図において、縦型の
第一重合槽1の上部には単量体供給口2および排
気口3が設けられ、下部には前重合生成物排出口
4が設けられ、その外周側壁には熱媒供給口5′
及び熱媒供給口5″を備えた加熱用ジヤケツト5
が設けられている。第一重合槽1の内部の中央よ
りやゝ上方には、加熱器6が設けられており、加
熱器6は、第一重合槽1の縦中心軸を軸心とする
同心状に配設された、4個の内部に熱媒流通路7
を有する円筒状の加熱板8と各加熱板8の下部に
連結された熱媒流通路7に熱媒を供給するための
3本の熱媒供給管9と、さらに各加熱板8の下部
に連結された熱媒を排出するための3本の熱媒排
出管10とから構成されている。加熱器6の上方
部には、水平に配置された撹拌アーム13と、各
加熱板8の間並びに加熱器6と第一重合槽1の内
壁との間に位置し回動する撹拌羽根11とを有す
る回転撹拌機12が設けられ、モーターM1によ
つて回転されるようになつている。単量体供給口
2の上部には、単量体計量フイーダー14と、単
量体計量フイーダー14の単量体出口に連結され
た不活性ガス供給管15および不活性ガス供給管
15の他端に連結された不活性ガス計量フイーダ
ー16が設けられ、単量体供給管17によつて単
量体供給口2に連結されている。
1, 2, and 3, a monomer supply port 2 and an exhaust port 3 are provided at the top of a vertical first polymerization tank 1, and a prepolymerization product discharge port 4 is provided at the bottom. A heating medium supply port 5' is provided on the outer peripheral side wall.
and a heating jacket 5 equipped with a heating medium supply port 5''
is provided. A heater 6 is provided slightly above the center of the interior of the first polymerization tank 1, and the heater 6 is arranged concentrically with the vertical central axis of the first polymerization tank 1 as its axis. In addition, there are heat medium flow passages 7 inside the four pieces.
A cylindrical heating plate 8 with It is composed of three heat medium discharge pipes 10 for discharging the connected heat medium. At the upper part of the heater 6, a stirring arm 13 arranged horizontally, and a rotating stirring blade 11 located between each heating plate 8 and between the heater 6 and the inner wall of the first polymerization tank 1 are provided. A rotary stirrer 12 having a rotary agitator 12 is provided and is adapted to be rotated by a motor M1 . At the upper part of the monomer supply port 2, there is provided a monomer measuring feeder 14, an inert gas supply pipe 15 connected to the monomer outlet of the monomer measuring feeder 14, and the other end of the inert gas supply pipe 15. An inert gas metering feeder 16 is provided, which is connected to the monomer supply port 2 by a monomer supply pipe 17 .

第二重合槽30は横向きに配置された略円筒形
の形状を有しており、その内部には溶融重合体の
収容部31、その上のヘツドスペース32及び実
質上水平方向に延びている軸33を中心として回
転し得る溶融重合体の撹拌機構34を備えてい
る。撹拌機構34の軸33はモーターM2により
駆動回転される。
The second polymerization tank 30 has a generally cylindrical shape and is arranged horizontally, and includes a storage section 31 for the molten polymer, a head space 32 above it, and a shaft extending substantially horizontally. A stirring mechanism 34 for stirring the molten polymer is provided which can rotate around a rotation axis 33. The shaft 33 of the stirring mechanism 34 is driven and rotated by a motor M2 .

重合槽30の横方向一端部、この具体例では左
方端部の下方には溶融状態の前重合生成物の供給
口35が設けられ、該槽の横方向他端部、この具
体例では右方端部の下方には最終重合生成物、即
ち高重合度ナイロン−12の排出口36が設けられ
る。
A supply port 35 for the pre-polymerized product in a molten state is provided below one lateral end of the polymerization tank 30, the left end in this specific example, and a supply port 35 for the prepolymerized product in a molten state is provided at the other lateral end of the tank, in this specific example the right end. A discharge port 36 for the final polymerized product, that is, highly polymerized nylon-12, is provided below one end.

また、重合槽30には、槽内のヘツドスペース
32の一端部に通ずるN2等の不活性ガスの供給
口37と、該ヘツドスペース32の他端部に通ず
る不活性ガスと蒸発水分との排出口38とが設け
られている。更に、第二重合槽の外周壁39に
は、槽内の前重合生成物を高温に加熱して後重合
を続行させるための加熱用ジヤケツト40が設け
られている。
The polymerization tank 30 also has a supply port 37 for inert gas such as N 2 that communicates with one end of the head space 32 in the tank, and a supply port 37 for inert gas and evaporated water that communicates with the other end of the head space 32. A discharge port 38 is provided. Further, the outer peripheral wall 39 of the second polymerization tank is provided with a heating jacket 40 for heating the prepolymerization product in the tank to a high temperature to continue the postpolymerization.

高分子量ナイロン−12の排出口36にはナイロ
ン−12の排出管41が設けられ、この排出管41
内にはモーターM3で駆動される搬送スクリユー
42が設けられており、最終製品ナイロン−12を
系外に取出す。
A discharge pipe 41 of nylon-12 is provided at the discharge port 36 of high molecular weight nylon-12, and this discharge pipe 41
A conveyance screw 42 driven by a motor M3 is installed inside the system to take out the final product, nylon-12, out of the system.

撹拌機構34は槽内の溶融重合体をデツドスペ
ースなしに撹拌し得るものであれば何れでもよ
く、単軸或いは二軸等の多軸で槽底壁に近接して
移動する撹拌翼43を備えたものが望ましい。
The stirring mechanism 34 may be any mechanism as long as it can stir the molten polymer in the tank without leaving a dead space, and is equipped with a stirring blade 43 that has multiple shafts such as a single shaft or two shafts and moves close to the bottom wall of the tank. Something is desirable.

第一重合槽1の前重合生成物排出口4と、第二
重合槽30の前重合生成物供給口35とは重合体
移送管20およびモーターM4で駆動されるギヤ
ーポンプ21によつて連結されている。重合体移
送管20およびギヤーポンプ21の周りには、重
合体を溶融状態に維持するための加熱用ジヤケツ
ト22が設けられている。
The prepolymerization product outlet 4 of the first polymerization tank 1 and the prepolymerization product supply port 35 of the second polymerization tank 30 are connected by a polymer transfer pipe 20 and a gear pump 21 driven by a motor M4 . ing. A heating jacket 22 is provided around the polymer transfer tube 20 and gear pump 21 to maintain the polymer in a molten state.

重合に際して、粉体状の12−アミノドデカン酸
原料ADAは配管18を通して計量フイーダー1
4に供給され、所定の供給速度に計量された単量
体ADAは単量体供給管15に排出される。一方、
N2等の不活性ガスは管19を経て、不活性ガス
計量フイーダー16で所定の流量に調節され、供
給管15を通して単量体供給管15内に送られ
る。単量体供給管15内で単量体ADAと不活性
ガスN2とは混合され、単量体ADAは搬送ガスと
しての不活性ガス流にのせられて単量体供給口1
2から第一重合槽1内に供給される。槽内に供給
された単量体ADAは、撹拌機12のアーム13
及び羽根11により重合槽1の溶融液面全体にわ
たつて均一に拡散、分散される。
During polymerization, powdered 12-aminododecanoic acid raw material ADA is passed through pipe 18 to metering feeder 1.
4 and metered at a predetermined supply rate, the monomer ADA is discharged into a monomer supply pipe 15. on the other hand,
An inert gas such as N 2 passes through a pipe 19, is adjusted to a predetermined flow rate by an inert gas metering feeder 16, and is sent into the monomer supply pipe 15 through a supply pipe 15. The monomer ADA and the inert gas N2 are mixed in the monomer supply pipe 15, and the monomer ADA is carried by the inert gas flow as a carrier gas to the monomer supply port 1.
2 into the first polymerization tank 1. The monomer ADA supplied into the tank is transferred to the arm 13 of the stirrer 12.
The particles are uniformly diffused and dispersed by the blades 11 over the entire surface of the molten liquid in the polymerization tank 1.

熱媒供給口5′を通して加熱用ジヤケツト5に
熱媒を供給することにより、第一重合槽1全体を
所定の温度に加熱すると共に、熱媒供給管9を通
して同心状に配置された複数個の加熱板8をも所
定の温度に加熱する。
By supplying a heating medium to the heating jacket 5 through the heating medium supply port 5', the entire first polymerization tank 1 is heated to a predetermined temperature, and a plurality of concentrically arranged heating mediums are heated through the heating medium supply pipe 9. The heating plate 8 is also heated to a predetermined temperature.

粉末状の単量体は各加熱板8からの熱伝導によ
り加熱溶融され、重縮合が開始される。重縮合に
より生成する反応水は溶融相内を上昇して重合槽
頂部に達し、不活性ガスに随伴されて排気口3を
経て槽外に排出される。一方溶融物は、重縮合反
応されながら重合槽底部に達する。
The powdered monomer is heated and melted by heat conduction from each heating plate 8, and polycondensation is started. The reaction water produced by polycondensation rises in the molten phase, reaches the top of the polymerization tank, and is discharged to the outside of the tank through the exhaust port 3 accompanied by the inert gas. Meanwhile, the melt reaches the bottom of the polymerization tank while undergoing a polycondensation reaction.

12−アミノドデカン酸の前重合は、180℃以上、
特に好適には180乃至260℃の重合温度で且つ1.5
気圧(絶対)以下、好適には1.0〜1.5気圧(絶
対)の圧力下で行うのがよい。前重合に要する重
合時間は一般に3乃至10時間である。前重合にお
けるナイロン−12の重合の程度は、相対粘度
(ηrel)で2.0未満、一般に数平均分子量が5000乃
至20000となるように行なう。
Prepolymerization of 12-aminododecanoic acid is carried out at 180°C or higher;
Particularly preferred is a polymerization temperature of 180 to 260°C and 1.5
It is preferable to carry out the reaction under a pressure of at most atmospheric pressure (absolute), preferably 1.0 to 1.5 atm (absolute). The polymerization time required for prepolymerization is generally 3 to 10 hours. The degree of polymerization of nylon-12 in the prepolymerization is such that the relative viscosity (ηrel) is less than 2.0 and the number average molecular weight is generally 5,000 to 20,000.

尚、本明細書において相対粘度(ηrel)とは、
次の方法で測定されたものを言う。
In addition, in this specification, relative viscosity (ηrel) is
It refers to something measured using the following method.

相対粘度測定方法(JIS K 6810に準拠) (1) 試料(前重合生成物或いはナイロン12)約
250mgを0.1mgまで精秤し、100ml共栓フラスコ
に移す。
Relative viscosity measurement method (based on JIS K 6810) (1) Sample (prepolymerized product or nylon 12) approx.
Accurately weigh 250mg to 0.1mg and transfer to a 100ml stoppered flask.

(2) 次に98%硫酸を1g/100mlの濃度になる様
に加える。
(2) Next, add 98% sulfuric acid to a concentration of 1g/100ml.

(3) 回転子を入れマグネチツクスターラーを用い
て4時間以上撹拌し完全に溶解する。
(3) Add a rotor and stir using a magnetic stirrer for at least 4 hours to completely dissolve.

(4) 6時間経過した後溶解液を15mlホールピベツ
トでとりキヤノンフエンスケ粘度計に移す。
(4) After 6 hours, remove 15 ml of the solution using a whole pipette and transfer to a Canon Fuenske viscometer.

(5) 25±0.05℃に調節した恒温水槽中に入れ30分
間放置する。
(5) Place in a constant temperature water bath adjusted to 25±0.05℃ and leave for 30 minutes.

(6) 粘度管の上部刻線から下部刻線間の流下所要
秒数をストツプウオツチで3回測定し、その平
均値をとる。
(6) Measure the number of seconds required for the flow to flow between the upper and lower marked lines of the viscosity tube three times with a stopwatch, and take the average value.

(7) 同様に溶媒である硫酸の所要秒数を測定す
る。
(7) Similarly, measure the number of seconds required for the solvent sulfuric acid.

(8) 次式により相対粘度を求める。(8) Calculate the relative viscosity using the following formula.

相対粘度=試料溶液の流下秒数/98%硫酸の流
下秒数 また、N2等の不活性ガスは、0.003〜0.02N
m3/Kg単量体原料の流量で供給して、反応水と共
に排出させるようにするのがよい。第一重合槽の
諸寸法は、特に制限されないが、高さと内径との
比が2:1乃至5:1の範囲内にあるのがよい。
Relative viscosity = Number of seconds for sample solution to flow down / Number of seconds for 98% sulfuric acid to flow down In addition, inert gas such as N2 is 0.003 to 0.02N
It is preferable to supply the monomer raw material at a flow rate of m 3 /Kg and discharge it together with the reaction water. The dimensions of the first polymerization tank are not particularly limited, but the ratio of height to inner diameter is preferably in the range of 2:1 to 5:1.

第一重合槽1の底部に到達した前重合生成物
は、溶融状態で排出口4から抜き出され、ギヤポ
ンプ21により移送管20を経て第二重合槽30
の一端部の底部に設けられた供給口35を経て第
二重合槽30内に供給される。第二重合槽30は
加熱ジヤケツト40内に供給される熱媒により、
第一重合槽1の重合温度よりも高い所定の重合温
度に維持されるようになつている。
The prepolymerization product that has reached the bottom of the first polymerization tank 1 is extracted from the outlet 4 in a molten state, and is transferred to the second polymerization tank 30 via the transfer pipe 20 by the gear pump 21.
It is supplied into the second combination tank 30 through a supply port 35 provided at the bottom of one end. The second combination tank 30 is heated by the heating medium supplied into the heating jacket 40.
The polymerization temperature is maintained at a predetermined polymerization temperature higher than that of the first polymerization tank 1.

第二重合槽30内に供給された前重合生成物は
上記温度に加熱されると共に、回転軸33に付設
された撹拌翼43の槽底壁などに沿つた回動によ
り上方に持上げられ、ヘツドスペース32との接
触界面に到達する。これにより、その後の重縮合
により生じた反応水はヘツドスペース32中に蒸
発し、ヘツドスペース32中に供給口37を通し
て供給される不活性ガスに随伴されて、排出口3
8を経て槽外に排出される。重縮合しつつ溶融物
相中の水分が除去されるに伴なつて、溶融ナイロ
ン−12の後重合は容易に進行する。ナイロン−12
の溶融物は第二重合槽底部からヘツドスペース3
2はの上下移動を反復しつつ系中の水分の除去と
後重合の進行とが行われるが、供給口35から供
給される前重合生成物の量に見合つた量だけ重合
体自体の自己流動性により槽の水平方向、即ち排
出口36へ向けて横方向に送られる。後重合生成
物は排出口36を経て槽外に排出される。
The prepolymerization product supplied into the second polymerization tank 30 is heated to the above temperature, and is lifted upward by the rotation of the stirring blade 43 attached to the rotating shaft 33 along the bottom wall of the tank, and the prepolymerization product is heated to the above temperature. A contact interface with space 32 is reached. As a result, the reaction water produced by the subsequent polycondensation evaporates into the head space 32, is accompanied by the inert gas supplied into the head space 32 through the supply port 37, and is then evaporated into the discharge port 3.
8 and is discharged outside the tank. As water in the melt phase is removed during polycondensation, postpolymerization of the molten nylon-12 proceeds easily. Nylon-12
The melt is transferred from the bottom of the second polymerization tank to head space 3.
2, the water in the system is removed and the post-polymerization progresses by repeating the vertical movement of the polymer. Due to its nature, it is sent in the horizontal direction of the tank, ie, laterally towards the outlet 36. The post-polymerization product is discharged to the outside of the tank through the discharge port 36.

前重合生成物の後重合は、前重合の温度よりも
高温で且つ一般に200乃至360℃、特に230乃至280
℃の温度で、且つ常圧乃至減圧下に行うのがよ
い。後重合に要する重合時間は一般に2乃至8時
間が適当であり、この後重合により一般に数平均
分子量14000乃至39000の高重合度ナイロン−12が
得られる。供給する窒素ガス等の不活性ガス0.03
m3/Kg原料迄の範囲が適当である。尚、ヘツドス
ペースからの水分の除去は、乾燥不活性ガスを通
じながら行うことが望ましいが、減圧脱気によつ
ても行い得ることが理解されるべきである。
The postpolymerization of the prepolymerization product is carried out at a higher temperature than the prepolymerization temperature and generally from 200 to 360°C, especially from 230 to 280°C.
It is preferable to carry out the reaction at a temperature of .degree. C. and under normal pressure to reduced pressure. The polymerization time required for the post-polymerization is generally 2 to 8 hours, and a highly polymerized nylon-12 having a number average molecular weight of 14,000 to 39,000 is generally obtained by the post-polymerization. Inert gas such as nitrogen gas supplied 0.03
A range up to m 3 /Kg raw material is suitable. It is to be understood that the removal of moisture from the headspace is preferably accomplished by passing dry inert gas through the headspace, but may also be accomplished by vacuum degassing.

第二重合槽30における撹拌翼43としては、
底壁39に沿つて回転移動する翼を備えたもので
あれば任意のものでよく、例えばコントロ型、テ
ーパーロール型、スクリユーネジ型、らせん管
型、円板型等のものを用いることができる。この
内でも、溶融重合体の逆混合が可及的に生じない
形状のものが好ましい。
As the stirring blades 43 in the second combination tank 30,
Any type may be used as long as it has wings that rotate and move along the bottom wall 39, such as a control type, a tapered roll type, a screw thread type, a spiral tube type, and a disc type. Among these, preferred is a shape that prevents back mixing of the molten polymer as much as possible.

本発明の第二重合槽に使用し得る撹拌機構とし
て、平行に配置された二軸の撹拌翼を備え、ナイ
ロン−12溶融物は槽の中心部を通つてヘツドスペ
ースとの界面に移動され、次いで槽の側部を通つ
て槽の底部に移動する撹拌形式のものを挙げるこ
とができる。第4図はこのタイプの撹拌機構を示
すもので、第二重合槽30内には、横方向に間隔
をおいて2本の撹拌軸33a及び33bが平行に
配置されており、夫々に撹拌翼43a,43bが
設けられている。軸33aは時計方向に、また軸
33bは反時計方向に回転され、撹拌翼43aと
撹拌翼43bとは位相が90度ずれるように設けら
れている。かくして、軸33a(或いは33b)
の各1回転毎に、ナイロン−12溶融物のヘツドス
ペースへの4回の持上げを生ずることが明らかで
あり、ナイロン−12溶融物中に重縮合の進行に伴
なつて副生する水分を効率よく除去できることが
了解されよう。
The stirring mechanism that can be used in the second polymerization tank of the present invention includes two parallel stirring blades, and the nylon-12 melt is moved through the center of the tank to the interface with the head space, Mention may be made of the stirring type, which then moves through the sides of the tank to the bottom of the tank. FIG. 4 shows this type of stirring mechanism, in which two stirring shafts 33a and 33b are arranged in parallel with an interval in the lateral direction in the second combination tank 30, and stirring blades are mounted on each stirring shaft. 43a and 43b are provided. The shaft 33a is rotated clockwise and the shaft 33b is rotated counterclockwise, and the stirring blades 43a and 43b are provided so as to be out of phase by 90 degrees. Thus, the shaft 33a (or 33b)
It is clear that the nylon-12 melt is lifted into the head space four times for each rotation of the It will be appreciated that it can be easily removed.

(発明の効果) 本発明によれば、12−アミノドデカン酸の重合
を、第一重合槽による前重合と、横型の第二重合
槽による後重合との二段の重合で行ない、しかも
第二重合槽による後重合に際して、上部にヘツド
スペース及びその下にナイロン−12溶融物収容部
を有し且つ水平軸を中心に回転する撹拌機構を備
えた横型重合槽を用いることにより、前重合物の
重縮合により副生する水分が重合物が極めて粘稠
な溶融物である場合にも、ヘツドスペース中に有
効に揮散除去され、高重合度のナイロン−12を製
造することができる。
(Effects of the Invention) According to the present invention, the polymerization of 12-aminododecanoic acid is carried out in two stages: prepolymerization in a first polymerization tank and postpolymerization in a horizontal second polymerization tank. During post-polymerization in a polymerization tank, the pre-polymerized product is Even when the polymer is an extremely viscous melt, water produced as a by-product of polycondensation is effectively volatilized and removed in the head space, making it possible to produce nylon-12 with a high degree of polymerization.

また、第一重合槽で得られる12−アミノドデカ
ン酸の前重合物を連続的に取出して、横型重合槽
の一端部に供給し、他端部から最終重合物を重合
体自体の自己流動性により取出すことにより、重
合生成物の移送が低重合域から高重合度域へと順
次逆混合なしに円滑に行わゑるという利点があ
る。
In addition, the prepolymerized product of 12-aminododecanoic acid obtained in the first polymerization tank is continuously taken out and supplied to one end of the horizontal polymerization tank, and the final polymer is fed from the other end due to the self-flowing properties of the polymer itself. This method has the advantage that the polymerization product can be smoothly transferred from the low polymerization area to the high polymerization degree area without back mixing.

(実施例) 実施例 1 第1図に示すような12−アミノドデカン酸の連
続重合装置を使用して、12−アミノドデカン酸の
連続重合を行なつた。
(Examples) Example 1 Using a 12-aminododecanoic acid continuous polymerization apparatus as shown in FIG. 1, 12-aminododecanoic acid was continuously polymerized.

第一重合槽1の内径は1.15mであり、その内高
は3.8mであり、内容積は2.9m3であり、加熱板8
の厚さは0.5cmであり、縦方向の幅は50cmであり、
撹拌羽根11はくし型形状で、加熱板と重なり合
つた部分の長さは25cmであつた。
The first polymerization tank 1 has an inner diameter of 1.15 m, an inner height of 3.8 m, an inner volume of 2.9 m3 , and a heating plate 8.
The thickness of is 0.5cm, the vertical width is 50cm,
The stirring blades 11 were comb-shaped, and the length of the portion overlapping the heating plate was 25 cm.

第二重合槽30の内径は0.61mであり、その内
長は1.75mであり、撹拌機はメガネ型形状の撹拌
翼20個を有するものであつた。
The inner diameter of the second mixing tank 30 was 0.61 m, the inner length was 1.75 m, and the stirrer had 20 glasses-shaped stirring blades.

第一重合槽の内容物を、約1.9m3でその液面が
加熱板の上端より約10cm上方になるように維持し
ながら、加熱用ジヤケツトおよび加熱板に熱媒と
して約230℃のKSK−OILを循環させ、撹拌機を
6r.p.mで回転させた。
While maintaining the contents of the first polymerization tank at a volume of approximately 1.9 m 3 with the liquid level approximately 10 cm above the upper end of the heating plate, the heating jacket and heating plate were heated to a temperature of approximately 230°C. Circulate the OIL and turn on the stirrer
Rotated at 6r.pm.

単量体供給口2から粉体状の12−アミノドカン
酸を1時間当り250Kgの供給速度で、1時間当り
2Nm3の窒素ガスと共に第一重合槽に連続的に装
入した。第一重合槽の気相部の温度は190℃で、
圧力は10mmH2O Gであり、液相部(内容物)の
温度は、最上部210℃、中央部230℃、下部240℃
に維持した。第一重合槽内の滞留時間が約18時間
になるようにして12−アミノドデカン酸を重縮さ
せ、前重合生成物排出口からギヤーポンプ21の
回転数を調節することによつて1時間当り250Kg
の速度で前重合生成物を取り出した。
Powdered 12-aminodocanoic acid is supplied from the monomer supply port 2 at a rate of 250 kg per hour.
The first polymerization tank was continuously charged with 2Nm 3 of nitrogen gas. The temperature of the gas phase of the first polymerization tank is 190℃.
The pressure is 10mmH 2 O G, and the temperature of the liquid phase (contents) is 210℃ at the top, 230℃ at the center, and 240℃ at the bottom.
maintained. 12-aminododecanoic acid was polycondensed so that the residence time in the first polymerization tank was about 18 hours, and by adjusting the rotation speed of the gear pump 21 from the prepolymerization product outlet, 250 kg per hour was produced.
The prepolymerized product was taken out at a rate of .

前重合生成物の数平均分子量は10000(相対粘度
1.67)、水分は0.4重量%、融点は176℃であつた。
The number average molecular weight of the prepolymerization product is 10000 (relative viscosity
1.67), water content was 0.4% by weight, and melting point was 176°C.

前期前重合生成物を前記と同じ250Kg/hrの速
度で移送管20を経て第二重合槽30に供給し
た。ナイロン−12排出口41からナイロン−12を
連続的に排出しながら、第二重合槽内の重合体の
量が約830Kgに維持され上部にヘツドスペース3
2が形成されるように調節した。
The pre-polymerization product was supplied to the second polymerization tank 30 via the transfer pipe 20 at the same rate of 250 kg/hr as described above. While continuously discharging nylon-12 from the nylon-12 discharge port 41, the amount of polymer in the second polymerization tank is maintained at approximately 830 kg, and a head space 3 is provided at the top.
Adjustments were made so that 2.

加熱用ジヤケツト40に熱媒を通して第二重合
槽内の重合体の温度を255℃に調節した。不活性
ガス供給口37を閉止して不活性ガスを供給する
ことなく、排気口38から重合反応に伴つて副生
する水蒸気を除去しながら、第二重合槽の気相部
の圧力を常圧に維持した。
A heating medium was passed through the heating jacket 40 to adjust the temperature of the polymer in the second polymerization tank to 255°C. Without closing the inert gas supply port 37 and supplying inert gas, the pressure in the gas phase of the second polymerization tank is maintained at normal pressure while removing water vapor produced by the polymerization reaction from the exhaust port 38. maintained.

撹拌軸33を8r.p.mで回転させた。 The stirring shaft 33 was rotated at 8 r.p.m.

ナイロン−12排出口41からスクリユー抜出機
42によつて取り出されたナイロン−12は、数平
均分子量が15600(相対粘度1.95)、末端アミノ機
が1.54×10-5eq/g、末端カルボキシル基が11.26
×10-5eq/g、融点が177℃であつた。
The nylon-12 taken out from the nylon-12 discharge port 41 by the screw extractor 42 has a number average molecular weight of 15600 (relative viscosity 1.95), a terminal amino group of 1.54×10 -5 eq/g, and a terminal carboxyl group. is 11.26
×10 -5 eq/g, and the melting point was 177°C.

上記の状態で180日間安定に連続運転すること
ができた。
It was possible to operate stably and continuously for 180 days under the above conditions.

実施例 2 ギヤーポンプ21の回転数を調節することによ
り、前重合生成物の供給速度を1時間当り140Kg
に変え(12−アミノドデカン酸の供給速度も変更
した)、不活性ガス供給口37から窒素ガスを3N
m3/hrの速度で第二重合槽に供給し、第二重合槽
の重合体の温度を265℃に変えた他は、実施例1
と同様にして12−アミノドデカン酸を連続重合さ
せた。
Example 2 By adjusting the rotation speed of the gear pump 21, the supply rate of the prepolymerization product was adjusted to 140 kg per hour.
(the supply rate of 12-aminododecanoic acid was also changed), and nitrogen gas was added at 3N from the inert gas supply port 37.
Example 1 except that the polymer was supplied to the second polymerization tank at a rate of m 3 /hr and the temperature of the polymer in the second polymerization tank was changed to 265°C.
12-aminododecanoic acid was continuously polymerized in the same manner as described above.

第二重合槽から得られたナイロン−12は、数平
均分子量が37900(相対粘度3.20)、末端アミノ基
が2.20×10-5eq/g、末端カルボキシル基が3.07
×10-5eq/g、融点が178℃であつた。
The nylon-12 obtained from the second polymerization tank has a number average molecular weight of 37900 (relative viscosity 3.20), a terminal amino group of 2.20×10 -5 eq/g, and a terminal carboxyl group of 3.07.
×10 -5 eq/g, and the melting point was 178°C.

上記の状態で180日間安定に連続運転すること
ができた。
It was possible to operate stably and continuously for 180 days under the above conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の連続重合方法を実施するた
めに使用される本発明の連続重合装置の1例の縦
断面図であり、第2図は、第1図のA−A線断面
図であり、第3図は、第1図のB−B線断面図で
あり、第4図は、第二重合槽の好適な他の例の断
面図である。 1は第一重合槽、2は単量体供給口、3は排気
口、4は前重合生成物排出口、5は加熱用ジヤケ
ツト、6は加熱器、7は熱媒流通路、8は加熱
板、9は熱媒供給管、10は熱媒排出管、11は
撹拌羽根、12は回転撹拌機、13は撹拌アー
ム、14は単量体計量フイーダー、15は不活性
ガス供給管、16は不活性ガス計量フイーダー、
17は単量体供給管、20は重合体移送管、21
はギヤーポンプ、22は加熱用ジヤケツト、30
は第二重合槽、31は溶融重合物、32はヘツド
スペース、34は撹拌機、35は前重合生成物供
給口、36はナイロン−12排出口、37は不活性
ガス供給口、38は排気口、40は加熱用ジヤケ
ツト、41はスクリユー抜出機である。
FIG. 1 is a longitudinal cross-sectional view of an example of the continuous polymerization apparatus of the present invention used to carry out the continuous polymerization method of the present invention, and FIG. 2 is a cross-sectional view taken along the line A-A in FIG. FIG. 3 is a sectional view taken along the line BB in FIG. 1, and FIG. 4 is a sectional view of another preferred example of the second combination tank. 1 is a first polymerization tank, 2 is a monomer supply port, 3 is an exhaust port, 4 is a prepolymerization product discharge port, 5 is a heating jacket, 6 is a heater, 7 is a heat medium flow path, and 8 is a heating plate, 9 is a heat medium supply pipe, 10 is a heat medium discharge pipe, 11 is a stirring blade, 12 is a rotary stirrer, 13 is a stirring arm, 14 is a monomer metering feeder, 15 is an inert gas supply pipe, 16 is a inert gas metering feeder,
17 is a monomer supply pipe, 20 is a polymer transfer pipe, 21
is a gear pump, 22 is a heating jacket, 30
is the second polymerization tank, 31 is the molten polymer, 32 is the head space, 34 is the stirrer, 35 is the prepolymerization product supply port, 36 is the nylon-12 discharge port, 37 is the inert gas supply port, and 38 is the exhaust port. 40 is a heating jacket, and 41 is a screw extractor.

Claims (1)

【特許請求の範囲】 1 12−アミノドデカン酸を縦型の第一重合槽に
連続的に供給して前重合させる第1工程と、第1
工程で得られる溶融状態の前重合生成物を、上部
にヘツドスペースを有し且つ水平軸を中心に回転
する撹拌機構を備えた横型第二重合槽にその一端
から供給し、溶融重合体中の水分をヘツドスペー
スに揮散させながら溶融重合体の後重合を行な
い、第二重合槽の他端から高分子量ナイロン−12
を連続的に取出す第2工程とからなることを特徴
とする12−アミノドデカン酸の連続重合方法。 2 前重合を180乃至260℃の温度で行ない後重合
を200乃至360℃の温度で行なう特許請求の範囲第
1項記載の方法。 3 前重合を、98%硫酸中1g/100mlの濃度で
25℃で測定したナイロン−12の相対粘度が2.0未
満となるように行ない、後重合をナイロン−12の
相対粘度が前重合のそれよりも高くなるように行
なう特許請求の範囲第1項記載の方法。 4 上部に12−アミノドデカン酸供給口と排気口
とを有し、下部に前重合生成物排出口を有し、内
部に撹拌機を有し、外周壁に加熱用ジヤケツトを
有する縦型第一重合槽と;横方向一端部に溶融前
重合生成物供給口を有し、横方向他端部に高分子
量ナイロン−12排出口を有し、内部に、溶融重合
体の収容部、その上のヘツドスペース及び実質上
水平方向に延びている軸を中心として回転し得る
溶融重合体の撹拌機構を備え、槽内のヘツドスペ
ースの一端部に通ずる不活性ガス供給口と該ヘツ
ドスペースの他端部に通ずる不活性ガスと水分と
の排出口とを有し且つ外周壁に加熱用ジヤケツト
を有する横型第二重合槽と;該第一重合槽の前重
合生成物排出口と該第二重合槽の前重合生成物供
給口とを連結する前重合生成物を移送するための
ポンプおよび管と;から成ることを特徴とする12
−アミノドデカン酸の連続重合装置。
[Scope of Claims] 1. A first step of continuously supplying 12-aminododecanoic acid to a first vertical polymerization tank for prepolymerization;
The molten prepolymerization product obtained in the process is fed from one end to a horizontal second polymerization tank that has a head space at the top and is equipped with a stirring mechanism that rotates around a horizontal axis. Post-polymerization of the molten polymer is carried out while the moisture is evaporated into the head space, and high molecular weight nylon-12 is added from the other end of the second polymerization tank.
1. A continuous polymerization method for 12-aminododecanoic acid, comprising a second step of continuously taking out 12-aminododecanoic acid. 2. The method according to claim 1, wherein the prepolymerization is carried out at a temperature of 180 to 260°C and the postpolymerization is carried out at a temperature of 200 to 360°C. 3 Prepolymerization at a concentration of 1 g/100 ml in 98% sulfuric acid
The method according to claim 1, wherein the relative viscosity of nylon-12 measured at 25°C is less than 2.0, and the post-polymerization is carried out such that the relative viscosity of nylon-12 is higher than that of the pre-polymerization. Method. 4 Vertical type 1 having a 12-aminododecanoic acid supply port and an exhaust port at the top, a prepolymerization product discharge port at the bottom, a stirrer inside, and a heating jacket on the outer peripheral wall. Polymerization tank: It has a pre-melted polymerization product supply port at one lateral end, a high molecular weight nylon-12 discharge port at the other lateral end, and has a molten polymer storage section inside and above it. A headspace and a stirring mechanism for the molten polymer that can rotate about an axis extending substantially horizontally, an inert gas supply port communicating with one end of the headspace in the tank and the other end of the headspace. a horizontal second polymerization tank having an inert gas and moisture outlet communicating with the first polymerization tank and a heating jacket on the outer peripheral wall; a pump and a pipe for transferring the prepolymerization product connected to the prepolymerization product supply port; 12
- Continuous polymerization equipment for aminododecanoic acid.
JP20644887A 1987-08-21 1987-08-21 Process and apparatus for continuous polymerization of 12-aminododecanoic acid Granted JPS6451433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20644887A JPS6451433A (en) 1987-08-21 1987-08-21 Process and apparatus for continuous polymerization of 12-aminododecanoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20644887A JPS6451433A (en) 1987-08-21 1987-08-21 Process and apparatus for continuous polymerization of 12-aminododecanoic acid

Publications (2)

Publication Number Publication Date
JPS6451433A JPS6451433A (en) 1989-02-27
JPH0432096B2 true JPH0432096B2 (en) 1992-05-28

Family

ID=16523543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20644887A Granted JPS6451433A (en) 1987-08-21 1987-08-21 Process and apparatus for continuous polymerization of 12-aminododecanoic acid

Country Status (1)

Country Link
JP (1) JPS6451433A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530780B2 (en) * 1991-08-22 1996-09-04 宇部興産株式会社 Method and apparatus for continuous polymerization of laurolactam
JP4774596B2 (en) * 2001-01-18 2011-09-14 三菱瓦斯化学株式会社 Method for producing polyamide
FR2963349B1 (en) * 2010-07-27 2012-07-27 Rhodia Operations PROCESS FOR PRODUCING POLYAMIDE
DE102011110946A1 (en) 2011-08-15 2016-01-21 Evonik Degussa Gmbh Biotechnological synthesis of omega-functionalized carboxylic acids and carboxylic acid esters from simple carbon sources
CN109963896B (en) 2017-10-12 2021-10-19 株式会社吴羽 Method and apparatus for continuously producing aromatic cyclic oligomer, and method for producing aromatic polymer

Also Published As

Publication number Publication date
JPS6451433A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
US2530409A (en) Method for polymerizing styrene
US8297832B2 (en) Process for producing polyamide
EP0027274B1 (en) Continuous bulk polymerization process for preparing a copolymer of an aromatic vinyl monomer and maleic anhydride
JP2530780B2 (en) Method and apparatus for continuous polymerization of laurolactam
JPH0432096B2 (en)
JP4774596B2 (en) Method for producing polyamide
JP2002516365A (en) Control system for continuous polyamideation process.
US4321344A (en) Continuous bulk polymerization of thermoplastic resins
US3987021A (en) Process utilizing a stirring reactor
Dunlop et al. Continuous polymerization in Germany
JP3572141B2 (en) Reactor for lactide synthesis
US3840509A (en) Process for preparing polymers from styrene
SU1715197A3 (en) Reactor for catalytic polymerization in systems with high polymer concentration
JPH0438766B2 (en)
US20040228204A1 (en) Large-volume reactor having a plurality of process spaces
US3294756A (en) Continuous polymerization of epsilon-caprolactam
EP0337343B1 (en) Process and apparatus for manufacturing polymers
US20230054441A1 (en) Continuous solid-state polymerization process and reactor column for use therein
JP2002220465A (en) Polymerizing apparatus for polyamide resin and polymerizing method for the same resin
JPH045686B2 (en)
JPS5953286B2 (en) Continuous preparation method of polyimide solution
CN214765465U (en) Nano polymer apparatus for producing
JPH0438765B2 (en)
US3130180A (en) Continuous method and apparatus for the production of polyhexamethylene adipamide
JPH1087821A (en) Apparatus for solid-state polymerization of polymide resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20080528