JPH0431A - Rotary damping device - Google Patents

Rotary damping device

Info

Publication number
JPH0431A
JPH0431A JP9899590A JP9899590A JPH0431A JP H0431 A JPH0431 A JP H0431A JP 9899590 A JP9899590 A JP 9899590A JP 9899590 A JP9899590 A JP 9899590A JP H0431 A JPH0431 A JP H0431A
Authority
JP
Japan
Prior art keywords
rotor
fixed
hollow cylindrical
housing
cylindrical shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9899590A
Other languages
Japanese (ja)
Inventor
Saburo Okada
岡田 三郎
Teruo Umehara
梅原 輝雄
Yoshihiro Kida
義弘 来田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Proterial Ltd
Original Assignee
Shimizu Construction Co Ltd
Hitachi Metals Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Hitachi Metals Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP9899590A priority Critical patent/JPH0431A/en
Publication of JPH0431A publication Critical patent/JPH0431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To make a device compact, and obtain excellent damping work by fixing a hollow cylindrical rotor made of semi-rigid cellular magnetic material to an end of a ball screw threaded with a ball nut, and arranging this rotor in a cavity freely to rotate. CONSTITUTION:When oscillation or a relative movement in right and left directions is given between an arm 7 and a stay pipe 6, a shaft 8 is rotated by threading a ball screw 8a with a ball nut 10. A holding member 13 is also rotated, and a rotor 14 is rotated in a cavity 5 formed between permanent magnets 4, 4. Eddy current is generated in the rotor 14 with the described rotation. Since a magnetic field excited by the eddy current works in the direction reverse to a magnetic field of the permanent magnet 4, braking work is generated in the rotor 14. On the other hand, since N, S alternating magnetic field is applied in the circumferential direction by the rotation of the rotor 14, magnetic hysteresis is generated in the rotor 14, and a hysteresis loss corresponding to an area of a magnetic hysteresis loop works as the braking force of the rotor 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子計算機、精密機械装置等若しくは建物等に
加わる振動を緩和し、前記機器、建物等を地震その他の
外乱振動から保護する制振装置に関するものであり、特
にうず電流および磁気ヒステリシスにより制動力を利用
した回転型の制振装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a vibration damping method that alleviates vibrations applied to electronic computers, precision mechanical equipment, etc., or buildings, etc., and protects said equipment, buildings, etc. from earthquakes and other disturbance vibrations. The present invention relates to a vibration damping device, and particularly to a rotary vibration damping device that utilizes damping force through eddy current and magnetic hysteresis.

〔従来の技術〕[Conventional technology]

従来機械装置、建物等の制振装置としては、防振ばね若
しくは防振ゴム等を使用するものがありこれらの装置は
機械装置や建物の床等の可動側と。
Conventional vibration damping devices for machinery, buildings, etc. have used anti-vibration springs, anti-vibration rubber, etc., and these devices have been used on the movable side of mechanical devices, building floors, etc.

機械装置若しくは建物の基礎等の固定側との間に配設し
、交通振動、建設工事に起因する振動、地震、風震等の
外乱振動を周期の長い緩やかな動きに変換するものであ
る。
It is installed between mechanical equipment or a fixed side such as the foundation of a building, and converts disturbance vibrations such as traffic vibrations, vibrations caused by construction work, earthquakes, and wind quakes into long-cycle, gentle movements.

このような装置としては、構造物の底部に例えばボール
ベアリングやローラを組み込んだり、ゴムや空気ばね等
を使用するものがある。しかし前者においては摩擦係数
が大であるため、免震若しくは制振作用が必ずしも充分
でなく、一方後者においては重量と弾性係数によって一
定の固有振動を有するため、地震波と共振しないという
保証がない。
Such devices include those that incorporate, for example, ball bearings or rollers at the bottom of the structure, or use rubber or air springs. However, the former has a large friction coefficient, so the seismic isolation or damping effect is not necessarily sufficient, while the latter has a certain natural vibration due to its weight and elastic coefficient, so there is no guarantee that it will not resonate with seismic waves.

またオイルダンパや鉄板ダンパ等を使用する制振装置も
提案されているが、前者においては油洩れその他の不都
合発生を防止するための日常のメンテナンスが煩雑であ
ると共に、寒暖の温度差により、油の粘性が変化し、制
振作用が不安定になるという欠点がある。一方後者にお
いては、メンテナンスが容易であると共に、温度による
変化がないという利点はあるものの、往復のヒステリシ
スが存在し、リニアリティを欠如するという欠点がある
In addition, vibration damping devices that use oil dampers, iron plate dampers, etc. have been proposed, but the former requires complicated daily maintenance to prevent oil leaks and other inconveniences. The disadvantage is that the viscosity of the material changes, making the damping effect unstable. On the other hand, the latter has the advantage of easy maintenance and no change due to temperature, but has the disadvantage of having reciprocating hysteresis and lacking linearity.

上記のような欠点を解消するメカニカルな制振装置とし
て、磁気減衰器付ボールねし式防振器の提案がある(日
本機械学会論文集(Cm)51巻471号(昭6O−1
1)参照)。この装置はボールねじの先端に銅若しくは
アルミニウムのような導電材料からなる平板を設け、こ
の平板が磁界中において回転した場合に平板内に発生す
るうず電流による制動力を利用するものである。
A ball-type vibration isolator with a magnetic damper has been proposed as a mechanical vibration damping device that overcomes the above-mentioned drawbacks (Proceedings of the Japan Society of Mechanical Engineers (Cm), Vol. 51, No. 471 (Sho 6O-1).
1)). This device installs a flat plate made of a conductive material such as copper or aluminum at the tip of a ball screw, and utilizes the braking force due to the eddy current generated within the flat plate when the flat plate rotates in a magnetic field.

また上記同様にうず電流を利用するものとして回転球体
と円錐または円弧状の凹面受は皿との組み合わせによる
防振、免震装置に、m性体とこの磁性体の磁力により制
動される導体板とからなるダンパを組み合わせたことを
要旨とする提案も開示されている(特開昭63−223
244号公報参照)。
Similarly to the above, as a device that utilizes eddy current, a rotating sphere and a concave receiver in the shape of a cone or an arc can be used in combination with a dish to create vibration isolation and seismic isolation devices, and a conductor plate that is damped by the magnetic force of the magnetic body. A proposal has also been disclosed in which a damper consisting of
(See Publication No. 244).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような導体板と磁性体との組み合わせになるダン
パを使用することにより、定期的な点検作業が不必要と
なり、性能の安定性が保証されるという利点がある。し
かしながら上記制振装置においては、磁界中を移動する
際に導体板に発生するうず電流のみによって制動力を得
る方式であるため1機械装置、建物等のような大重量の
可動体を制動するに足る制動力を得るためには、制振装
置全体が大型化せざるを得ないという問題点がある。ま
たうず電流を発生させるべき導体板が何れも平板状であ
るため1発生するうず電流の値を大にすることができず
、また漏洩磁束も大であり充分な制動力を効率よく得る
ことができないという問題点も併存する。
By using a damper that is a combination of a conductor plate and a magnetic material as described above, there is an advantage that periodic inspection work is unnecessary and stability of performance is guaranteed. However, in the above-mentioned vibration damping device, the braking force is obtained only by the eddy current generated in the conductive plate when moving in a magnetic field, so it is not suitable for braking large moving objects such as machinery, buildings, etc. In order to obtain sufficient braking force, there is a problem in that the entire vibration damping device must be increased in size. Furthermore, since the conductor plates that generate eddy current are all flat, it is not possible to increase the value of the generated eddy current, and the leakage magnetic flux is also large, making it difficult to efficiently obtain sufficient braking force. There is also the problem that it cannot be done.

本発明は上記従来技術に存在する問題点を解決し、小型
化が可能であると共に、優れた制振作用を有する回転型
制振装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems existing in the above-mentioned prior art and to provide a rotary vibration damping device that can be downsized and has an excellent damping effect.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、まず第1の発明においては
、中空円筒状に形成したハウジングの一方の端部内面に
1強磁性材料により中空円筒状に形成しかつ一方の端面
に開口するリング状の溝を設けてなるヨークを固着し、
前記溝の各円周面にアーク状若しくはリング状に形成し
た永久磁石を。
In order to achieve the above object, first of all, in the first invention, a ring-shaped housing is formed in a hollow cylindrical shape from a ferromagnetic material on the inner surface of one end of a housing formed in a hollow cylindrical shape, and has an opening on one end surface. A yoke with grooves is fixed,
A permanent magnet is formed in an arc shape or a ring shape on each circumferential surface of the groove.

空隙を介しかつ異極を対向させて固着し、前記ハウジン
グの他方の端部内面にボールナツトを非回転かつ軸方向
移動自在に嵌挿し、ボールナツトに螺合させたボールね
しの端部に半硬質磁性材料により中空円筒状に形成した
ロータを固着し、このロータを前記空隙内に回転自在に
配設する。という技術的手段を採用した。
A ball nut is fixed non-rotatably and movably in the axial direction on the inner surface of the other end of the housing, and a semi-rigid material is attached to the end of the ball screw screwed into the ball nut. A rotor formed in a hollow cylindrical shape is fixed using a magnetic material, and this rotor is rotatably disposed within the gap. A technical method was adopted.

次に第2の発明においては、中空円筒状に形成したハウ
ジングの中間部内面に1強磁性材料により中空円筒状に
形成しかつ両端面に開口するリング状の溝を設けてなる
ヨークを固着し、前記溝の夫々の円周面にアーク状若し
くはリング状に形成した永久磁石を、空隙を介しかつ異
極を対向させて固着し、前記ハウジングの両端部内面に
各々ボールナツトを非回転かつ軸方向移動自在に嵌挿し
Next, in the second invention, a yoke formed of a ferromagnetic material in a hollow cylindrical shape and provided with ring-shaped grooves opening on both end surfaces is fixed to the inner surface of the middle part of the housing formed in the hollow cylindrical shape. , a permanent magnet formed in an arc shape or a ring shape is fixed to the circumferential surface of each of the grooves with different poles facing each other through a gap, and a ball nut is attached to the inner surface of both ends of the housing in a non-rotating and axial direction. Insert and move freely.

ボールナットに螺合させたボールねじの端部に半硬質磁
性材料により中空円筒状に形成したロータを固着し、こ
れらのロータを前記空隙内に回転自在に配設する。とい
う技術的手段を採用した。
A hollow cylindrical rotor made of a semi-hard magnetic material is fixed to the end of a ball screw screwed into a ball nut, and these rotors are rotatably disposed within the gap. A technical method was adopted.

本発明において使用し得る半硬質磁性材料としては、焼
入鋼(′M1石鋼より稍低目のC量を有する炭素鋼、C
r鋼、Co@を400〜500°Cで焼戻し)、a/r
変態型合金(Fe−Cr−V (Cr)系合金、Fe−
Mn系合金(Co + N i+ T i+ Crを添
加したものを含む)、Fe−Ni系合金)、アルニコ系
合金(Fe−Ni−AffiあるいはFe−Co−N1
−A l系合金のうち高い保磁力を有する組成を外れた
もの)、析出型合金(高Co−Fe系合金、  Fe−
Cu系合金、Fe−Mo−Co系合金)等を使用するこ
とができる。上記半硬質磁性材料のうち、  Fe−C
rCo系合金(例えば特公昭53−35536号、同5
530052号公報参照)が好ましい。
Semi-hard magnetic materials that can be used in the present invention include hardened steel ('carbon steel with a slightly lower C content than M1 stone steel, C
r steel, Co@ tempered at 400-500°C), a/r
Transformation alloy (Fe-Cr-V (Cr) alloy, Fe-
Mn-based alloys (including those with added Co+Ni+Ti+Cr), Fe-Ni-based alloys), alnico-based alloys (Fe-Ni-Affi or Fe-Co-N1)
-Al alloys with compositions that do not have high coercive force), precipitation type alloys (high Co-Fe alloys, Fe-
Cu-based alloys, Fe-Mo-Co-based alloys), etc. can be used. Among the above semi-hard magnetic materials, Fe-C
rCo-based alloys (e.g. Japanese Patent Publication No. 53-35536, No. 5
530052) is preferred.

また永久磁石としては、うず電流によるm磁界に対抗す
るため、保磁力の大なるものが望ましく。
Further, as a permanent magnet, it is desirable to have a large coercive force in order to counter the m magnetic field caused by eddy current.

例えば希土類永久磁石を使用することが好ましい。For example, it is preferable to use rare earth permanent magnets.

〔作 用〕[For production]

上記の構成により、ロータ内に発生するうず電流による
制動力を得ることができ、制振作用を発揮できるのみな
らず、ロータには半硬質磁性材料に固有の磁気ヒステリ
シスのために、永久磁石による磁化よりも遅れて進む磁
束を生じ、この遅れによってロータに制動トルクを発生
する。この制動トルクは半硬質磁性材料に固有の磁気ヒ
ステリシスループの面積に略比例する。
With the above configuration, it is possible to obtain the braking force from the eddy current generated in the rotor, and not only can it exhibit a vibration damping effect, but also the rotor is equipped with permanent magnets due to the magnetic hysteresis inherent in semi-hard magnetic materials. This produces a magnetic flux that lags behind the magnetization, and this lag generates braking torque on the rotor. This braking torque is approximately proportional to the area of the magnetic hysteresis loop inherent in semi-hard magnetic materials.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す縦断面図、第2図および
第3図は各々第1図におけるA−A線断面図およびB−
B線断面拡大図である。これらの図において、1はハウ
ジングであり1例えば軟鋼により中空円筒状に形成する
。2はヨークであり。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIGS. 2 and 3 are sectional views taken along line A-A and B--
It is an enlarged cross-sectional view taken along the line B. In these figures, reference numeral 1 denotes a housing, which is made of, for example, mild steel and has a hollow cylindrical shape. 2 is the yoke.

軟鋼等の強磁性材料により中空円筒状に形成し。It is formed into a hollow cylindrical shape from a ferromagnetic material such as mild steel.

かつ左方の端面に開口するリング状の溝3を設け。In addition, a ring-shaped groove 3 that opens on the left end surface is provided.

前記ハウジング1の右端部内面に固着する。次に4は永
久磁石であり9例えばNd−Fe−B系磁石(日立金属
製H3−27CV)によりアーク状に形成し、空隙5を
介しかつ異極を対向させて、エポキシ系接着剤を介して
前記溝3の内外周面に固着する。なお永久磁石4は例え
ば8対を円周方向等間隔に配設し、かつ隣接する極性が
相互に異なる磁極が表面に現れるように配設する。6は
ステーパイプであり1例えば軟鋼により中空円筒状に形
成し、ハウジング1の左端面に同軸的に固着する。次に
7はアーム、8はシャフト、9は回り止め、10はボー
ルナットであり、夫々同軸的に組み合わせ、滑り軸受1
1およびスラスト軸受12を介して前記ハウジング1お
よびステーバイブロ内に同軸的に挿入する。すなわちア
ーム7、回り止め9およびボールナンド10は一体に固
着すると共に、シャフト8の中間部から左端に亘ってボ
ールねじ8aを刻設し、このボールねじ8aとボールナ
ット10とを螺合させる。従ってボールナット10は非
回転状態でステーバイブロ内を軸方向移動可能であり、
ボールナット10の軸方向移動により、シャフト8が回
転するように形成されている。次に13は保持部材であ
り、外周を円筒面に形成してシャフト8の右端に固着し
、この保持部材13の外周に中空円筒状に形成したロー
タ14を固着する。なおロータ14は例えば重量比でC
r 17〜45%、003〜35%、Si、Ti。
It is fixed to the inner surface of the right end of the housing 1. Next, reference numeral 4 denotes a permanent magnet, which is formed in an arc shape using, for example, a Nd-Fe-B magnet (H3-27CV manufactured by Hitachi Metals), with different poles facing each other with a gap 5 in between, and then bonded with an epoxy adhesive. and is fixed to the inner and outer circumferential surfaces of the groove 3. For example, eight pairs of permanent magnets 4 are arranged at equal intervals in the circumferential direction, and arranged so that adjacent magnetic poles having different polarities appear on the surface. A stay pipe 6 is made of, for example, mild steel and has a hollow cylindrical shape, and is fixed coaxially to the left end surface of the housing 1. Next, 7 is an arm, 8 is a shaft, 9 is a rotation stopper, and 10 is a ball nut, which are assembled together coaxially, and a sliding bearing 1
1 and thrust bearing 12 into the housing 1 and the stay blower coaxially. That is, the arm 7, the detent 9, and the ball nut 10 are fixed together, and a ball screw 8a is cut from the middle portion of the shaft 8 to the left end, and the ball screw 8a and the ball nut 10 are screwed together. Therefore, the ball nut 10 is movable in the axial direction within the stay vibro in a non-rotating state,
The shaft 8 is configured to rotate as the ball nut 10 moves in the axial direction. Next, a holding member 13 has a cylindrical outer periphery and is fixed to the right end of the shaft 8, and a rotor 14 formed in a hollow cylindrical shape is fixed to the outer periphery of the holding member 13. Note that the rotor 14 has a weight ratio of C, for example.
r 17-45%, 003-35%, Si, Ti.

Aj2.Nb 、Moを5%以下、残部FeからなるF
e−Cr−Co系合金によって形成し、前記永久磁石4
,4間に形成される空隙5内において回転可能なように
形成する。15は金具であり、各々アーム7およびヨー
ク2とピン16を介して回転自在に接続する。
Aj2. F consisting of Nb, Mo at 5% or less, and the balance Fe
The permanent magnet 4 is made of an e-Cr-Co alloy.
, 4 so as to be rotatable within the gap 5 formed between them. Reference numeral 15 denotes metal fittings, which are rotatably connected to the arm 7 and yoke 2 via pins 16, respectively.

上記構成により、1対の金具15.15を各々可動側お
よび固定側の構成部材に接続し、第1図においてアーム
7とステーバイブロとの間に左右方向の振動若しくは相
対移動を付与すると、ボールナンド10とボールねし8
aとの螺合により、シナツト8が回転する。従ってシャ
フト8に固着した保持部材13も回転し、ロータ14は
永久磁石4.4間に形成された空隙5内において回転す
る。
With the above configuration, when the pair of metal fittings 15, 15 are connected to the movable side and fixed side components, and vibration or relative movement in the left and right direction is applied between the arm 7 and the stay vibrator in FIG. Nando 10 and Ball Neshi 8
The thread 8 rotates due to the screw engagement with a. Therefore, the holding member 13 fixed to the shaft 8 also rotates, and the rotor 14 rotates in the air gap 5 formed between the permanent magnets 4.4.

ロータ14を形成するFe−Cr−Co系合金は導電性
材料であるため、上記回転によりロータ14内にはうず
電流が発生する。そしてこのうず電流によって誘起され
る磁界は、前記永久磁石4による磁界と逆方向に作用す
るから、ロータ14に制動作用が発生する。一方上記ロ
ータ14の回転により9円周方向においてN、S交番磁
界が印加されるから、ロータ14には磁気ヒステリシス
が生じ磁気ヒステリシスループの面積に相当するヒステ
リシス損がロータ14の制動力として作用する。
Since the Fe-Cr-Co alloy forming the rotor 14 is a conductive material, eddy currents are generated within the rotor 14 due to the above rotation. Since the magnetic field induced by this eddy current acts in the opposite direction to the magnetic field generated by the permanent magnet 4, a braking action is generated on the rotor 14. On the other hand, since an N, S alternating magnetic field is applied in the circumferential direction due to the rotation of the rotor 14, magnetic hysteresis occurs in the rotor 14, and a hysteresis loss corresponding to the area of the magnetic hysteresis loop acts as a braking force on the rotor 14. .

すなわちアーム7の水平方向の移動をうず電流積に加え
てヒステリシス損を重畳させて制動することができ、ダ
ンパとして機能させ得るのである。
That is, the horizontal movement of the arm 7 can be damped by adding hysteresis loss to the eddy current product, and can function as a damper.

第4図は本発明の他の実施例におけるハウジングを示す
要部縦断面図であり、同一部分は前記第1図および第3
図と同一の参照符号で示す。第4図において、ヨーク2
は中空円筒状に形成すると共に9両端面に開口する溝3
を設け、ハウジング1の中間部に固着する。なお溝3内
には前記実施例におけると同様に永久磁石4を固着する
。そして上記永久磁石4によって形成される空隙5内に
は前記実施例と同一構成のロータを初めとする構成部材
を左右1対配設する。
FIG. 4 is a longitudinal cross-sectional view of a main part showing a housing in another embodiment of the present invention, and the same parts are shown in FIGS. 1 and 3 above.
Indicated by the same reference numerals as in the figure. In Figure 4, yoke 2
is formed into a hollow cylindrical shape and has a groove 3 opened at both end faces.
is provided and fixed to the middle part of the housing 1. Note that a permanent magnet 4 is fixed in the groove 3 in the same manner as in the previous embodiment. In the air gap 5 formed by the permanent magnets 4, a pair of left and right structural members including a rotor having the same structure as in the embodiment described above are disposed.

上記構成により前記実施例と同様な制動作用を期待でき
るが2本実施例におけるようにロータを初めとする可動
部材を左右1対設けることにより可動部材と静止部材と
の相対速度を2とすることができ、より大荷重を印加で
き、および/または装置全体を小型化することが可能で
ある。
With the above configuration, it is possible to expect the same braking effect as in the previous embodiment, but by providing a pair of left and right movable members including rotors as in this embodiment, the relative speed between the movable member and the stationary member can be set to 2. It is possible to apply a larger load, and/or to downsize the entire device.

本実施例においては、永久磁石を円周方向に8対設けた
例を示したが、制動トルクその他を勘案して任意の設置
個数を選定できる。また永久磁石の形状はアーク状のみ
ならず、リング状とすることもできる。
Although this embodiment shows an example in which eight pairs of permanent magnets are provided in the circumferential direction, any number of permanent magnets can be selected in consideration of braking torque and other factors. Further, the shape of the permanent magnet is not limited to an arc shape, but can also be a ring shape.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
従来のうず電流による制動力に加えて。
Since the present invention has the structure and operation as described above,
In addition to the conventional eddy current braking force.

磁気ヒステリシスによる制動力を重畳させることができ
、装置全体を小型化することができると共に優れた制動
機能若しくは制振機能を発揮させ得るという効果がある
The braking force due to magnetic hysteresis can be superimposed, the entire device can be downsized, and an excellent braking function or vibration damping function can be exhibited.

不  1  図Figure 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す縦断面図、第2図および
第3図は各々第1図におけるA−A線断面図およびB−
B線断面拡大図、第4図は本発明の他の実施例における
ハウジングを示す要部縦断面図である。 1:ハウジング、2:ヨーク、4:永久磁石。 8a:ボールねし、10:ボールナット14:ロータ。 第 3 m
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIGS. 2 and 3 are sectional views taken along line A-A and B--
FIG. 4 is an enlarged cross-sectional view taken along the line B and is a vertical cross-sectional view of a main part showing a housing in another embodiment of the present invention. 1: Housing, 2: Yoke, 4: Permanent magnet. 8a: Ball nut, 10: Ball nut 14: Rotor. 3rd m

Claims (2)

【特許請求の範囲】[Claims] (1)中空円筒状に形成したハウジングの一方の端部内
面に、強磁性材料により中空円筒状に形成しかつ一方の
端面に開口するリング状の溝を設けてなるヨークを固着
し、前記溝の各円周面にアーク状若しくはリング状に形
成した永久磁石を、空隙を介しかつ異極を対向させて固
着し、前記ハウジングの他方の端部内面にボールナット
を非回転かつ軸方向移動自在に嵌挿し、ボールナットに
螺合させたボールねじの端部に半硬質磁性材料により中
空円筒状に形成したロータを固着し、このロータを前記
空隙内に回転自在に配設したことを特徴とする回転型制
振装置。
(1) A yoke formed of a ferromagnetic material in a hollow cylindrical shape and provided with a ring-shaped groove opening at one end surface is fixed to the inner surface of one end of the housing formed in a hollow cylindrical shape, and the A permanent magnet formed in an arc shape or a ring shape is fixed to each circumferential surface of the housing with different poles facing each other through a gap, and a ball nut is fixed to the inner surface of the other end of the housing so as to be non-rotatable and movable in the axial direction. A rotor formed in a hollow cylindrical shape made of a semi-hard magnetic material is fixed to the end of a ball screw that is inserted into the ball screw and screwed into the ball nut, and the rotor is rotatably disposed within the gap. A rotary vibration damping device.
(2)中空円筒状に形成したハウジングの中間部内面に
、強磁性材料により中空円筒状に形成しかつ両端面に開
口するリング状の溝を設けてなるヨークを固着し、前記
溝の夫々の円周面にアーク状若しくはリング状に形成し
た永久磁石を、空隙を介しかつ異極を対向させて固着し
、前記ハウジングの両端部内面に各々ボールナットを非
回転かつ軸方向移動自在に嵌挿し、ボールナットに螺合
させたボールねじの端部に半硬質磁性材料により中空円
筒状に形成したロータを固着し、これらのロータを前記
空隙内に回転自在に配設したことを特徴とする回転型制
振装置。
(2) A yoke made of a ferromagnetic material and having ring-shaped grooves that are open on both end faces is fixed to the inner surface of the middle part of the housing that is formed in a hollow cylindrical shape, and each of the grooves is Permanent magnets formed in an arc shape or a ring shape on the circumferential surface are fixed with different poles facing each other through a gap, and ball nuts are inserted into the inner surfaces of both ends of the housing so as to be non-rotatable and movable in the axial direction. , a rotor formed in a hollow cylindrical shape made of a semi-hard magnetic material is fixed to the end of a ball screw screwed into a ball nut, and these rotors are rotatably arranged in the gap. Mold vibration damping device.
JP9899590A 1990-04-13 1990-04-13 Rotary damping device Pending JPH0431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9899590A JPH0431A (en) 1990-04-13 1990-04-13 Rotary damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9899590A JPH0431A (en) 1990-04-13 1990-04-13 Rotary damping device

Publications (1)

Publication Number Publication Date
JPH0431A true JPH0431A (en) 1992-01-06

Family

ID=14234562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9899590A Pending JPH0431A (en) 1990-04-13 1990-04-13 Rotary damping device

Country Status (1)

Country Link
JP (1) JPH0431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724534B1 (en) * 2015-11-27 2017-04-07 인천대학교 산학협력단 Energy dissipation elastomer-friction damper
JP2019100364A (en) * 2017-11-28 2019-06-24 日本製鉄株式会社 Eddy current damper
JP2020020461A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Eddy current damper
CN111305631A (en) * 2020-02-14 2020-06-19 同济大学 Three-dimensional vibration isolation device combining inertial container and rubber support

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724534B1 (en) * 2015-11-27 2017-04-07 인천대학교 산학협력단 Energy dissipation elastomer-friction damper
JP2019100364A (en) * 2017-11-28 2019-06-24 日本製鉄株式会社 Eddy current damper
JP2020020461A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Eddy current damper
CN111305631A (en) * 2020-02-14 2020-06-19 同济大学 Three-dimensional vibration isolation device combining inertial container and rubber support
CN111305631B (en) * 2020-02-14 2021-11-16 同济大学 Three-dimensional vibration isolation device combining inertial container and rubber support

Similar Documents

Publication Publication Date Title
JP3475949B2 (en) Linear oscillator
US2243555A (en) Magnet gearing
US2704231A (en) Magnetic bearings
US4856631A (en) Permanent magnet coupling torque limiter
JPH05505883A (en) Magnetic position and velocity sensor with Hall element
JP2006222131A (en) Permanent magnet body
JP2018523127A (en) Statically balanced mechanism using a Halbach cylinder
JP3470689B2 (en) Linear actuator
CN111335497B (en) Electromagnetic multistage adjustable inertia capacitance variable damping device
Yonnet A new type of permanent magnet coupling
WO2019044722A1 (en) Eddy current damper
KR20130081219A (en) Device for damping of pendular movements and method of using same
JPS624937A (en) Buffering method employing hysteresis and damper
JPH0431A (en) Rotary damping device
CN109235686B (en) Rotary magnetic negative stiffness vibration damper
JPS63225721A (en) Magnetic bearing
CN109027124B (en) Torsion quasi-zero stiffness vibration isolator with adjustable negative stiffness and control method
CN219794271U (en) Inertial-capacitance combined type eddy current frequency modulation mass damper
JP2019173933A (en) Mass damper
CN108166641A (en) A kind of current vortex three-dimensional vibration absorber
WO2020116344A1 (en) Eddy-current type damper
JP2957014B2 (en) Rotary vibration damper
JP2001329508A (en) Mechanism for taking measure to sag change for diagonal cable damping device
JP2633068B2 (en) Damping device
Charpentier et al. Study of ironless permanent magnet devices being both a coupling and an axial bearing for naval propulsion