JP2020020461A - Eddy current damper - Google Patents

Eddy current damper Download PDF

Info

Publication number
JP2020020461A
JP2020020461A JP2018146999A JP2018146999A JP2020020461A JP 2020020461 A JP2020020461 A JP 2020020461A JP 2018146999 A JP2018146999 A JP 2018146999A JP 2018146999 A JP2018146999 A JP 2018146999A JP 2020020461 A JP2020020461 A JP 2020020461A
Authority
JP
Japan
Prior art keywords
conductive member
eddy current
current damper
permanent magnets
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018146999A
Other languages
Japanese (ja)
Other versions
JP7040350B2 (en
Inventor
薫平 佐野
Kumpei Sano
薫平 佐野
裕 野上
Yutaka Nogami
裕 野上
今西 憲治
Kenji Imanishi
憲治 今西
野口 泰隆
Yasutaka Noguchi
泰隆 野口
亮介 増井
Ryosuke Masui
亮介 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018146999A priority Critical patent/JP7040350B2/en
Publication of JP2020020461A publication Critical patent/JP2020020461A/en
Application granted granted Critical
Publication of JP7040350B2 publication Critical patent/JP7040350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide an eddy current damper in which local temperature rise of a conductive member can be suppressed.SOLUTION: An eddy current damper 1 is provided in which damping force is obtained by relatively rotating permanent magnets 6 and a conductive member 4 by using a screw shaft 2 and a ball nut 3. The eddy current damper 1 includes a cylindrical magnet holding member 5, the plurality of permanent magnets 6, and the cylindrical conductive member 4. The plurality of permanent magnets 6 are fixed to the magnet holding member 5, and magnetic poles of the permanent magnets 6 are arranged in an alternately inverted manner in a circumferential direction of the magnet holding member 5. The conductive member 4 is opposed to the plurality of permanent magnets 6 at an interval, and relatively rotatable with respect to the plurality of permanent magnets 6. Axial displacement of the screw shaft 2 relatively moves the plurality of permanent magnets 6 and the conductive member 4 in an axial direction of the screw shaft 2.SELECTED DRAWING: Figure 2

Description

本発明は、渦電流式ダンパに関する。   The present invention relates to an eddy current damper.

地震等による振動から建築物を保護するために、建築物には制振装置が取り付けられる。制振装置は建築物に与えられた運動エネルギを熱エネルギ等の他のエネルギに変換することにより、振動を減衰させる。このような制振装置としてオイル式ダンパが知られている。オイル式ダンパは、シリンダ内に充填された粘性流体の抵抗を利用して振動を減衰させる。   2. Description of the Related Art In order to protect a building from vibrations caused by an earthquake or the like, a vibration damping device is attached to the building. The vibration damping device attenuates vibration by converting kinetic energy given to the building into other energy such as heat energy. An oil damper is known as such a vibration damping device. The oil damper attenuates vibration by using the resistance of a viscous fluid filled in a cylinder.

しかしながら、粘性流体の粘度は粘性流体の温度に依存するため、オイル式ダンパの減衰力は粘性流体の温度に依存する。したがって、オイル式ダンパを建築物に使用する際には、使用環境を考慮して適切な粘性流体を選択する必要がある。減衰力が温度に依存しないダンパとして、渦電流式ダンパがある。   However, since the viscosity of the viscous fluid depends on the temperature of the viscous fluid, the damping force of the oil damper depends on the temperature of the viscous fluid. Therefore, when using an oil damper for a building, it is necessary to select an appropriate viscous fluid in consideration of the use environment. An eddy current damper is known as a damper whose damping force does not depend on temperature.

渦電流式ダンパはたとえば、特公平5−86496号公報(特許文献1)に開示されている。   An eddy current damper is disclosed, for example, in Japanese Patent Publication No. 5-86496 (Patent Document 1).

特許文献1の渦電流式ダンパは、主筒に取り付けられた複数の永久磁石と、ねじ軸に接続されたヒステリシス材と、ねじ軸と噛み合うボールナットと、ボールナットに接続された副筒と、を備える。複数の永久磁石は、磁極の配置が交互に異なる。ヒステリシス材は、複数の永久磁石と対向し、相対回転可能である。この渦電流式ダンパに運動エネルギが与えられると、副筒及びボールナットが軸方向に往復移動し、ボールねじの作用によってヒステリシス材が回転する。これにより、ヒステリシス損が生じ、運動エネルギが消費される。また、ヒステリシス材に渦電流が発生するため、渦電流損により運動エネルギが消費される(減衰力が得られる)、と特許文献1には記載されている。   The eddy current damper of Patent Document 1 includes a plurality of permanent magnets attached to a main cylinder, a hysteresis material connected to a screw shaft, a ball nut meshing with the screw shaft, and a sub-cylinder connected to the ball nut. Is provided. The plurality of permanent magnets differ in the arrangement of magnetic poles alternately. The hysteresis material faces the plurality of permanent magnets and is relatively rotatable. When kinetic energy is applied to the eddy current damper, the sub-cylinder and the ball nut reciprocate in the axial direction, and the hysteresis member rotates by the action of the ball screw. This causes a hysteresis loss and consumes kinetic energy. Patent Literature 1 discloses that eddy current is generated in the hysteresis material, and kinetic energy is consumed (damping force is obtained) due to eddy current loss.

特公平5−86496号公報Japanese Patent Publication No. 5-86496

しかしながら、特許文献1の渦電流式ダンパでは、ヒステリシス材(導電部材)の永久磁石と対向する側の表面近傍に渦電流が発生するため、この領域が集中的に加熱され、局所的に高温化する。導電部材の温度が局所的に高温化すれば、導電部材自体及びその周辺部品の強度等に悪影響を与える可能性がある。また、局所的に高温化した導電部材の熱が永久磁石に伝達されることで、永久磁石が減磁し、渦電流式ダンパの減衰力が低下する可能性がある。   However, in the eddy current damper of Patent Document 1, an eddy current is generated near the surface of the hysteresis material (conductive member) on the side facing the permanent magnet, so that this region is intensively heated and locally heated to a high temperature. I do. If the temperature of the conductive member is locally increased, the strength of the conductive member itself and its peripheral components may be adversely affected. In addition, when the heat of the locally heated conductive member is transmitted to the permanent magnet, the permanent magnet is demagnetized, and the damping force of the eddy current damper may be reduced.

本発明の目的は、導電部材の局所的な温度上昇を抑制できる渦電流式ダンパを提供することである。   An object of the present invention is to provide an eddy current damper capable of suppressing a local temperature rise of a conductive member.

本発明の渦電流式ダンパは、ねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る。渦電流式ダンパは、円筒形状の磁石保持部材と、複数の永久磁石と、円筒形状の導電部材と、を含む。複数の永久磁石は、磁石保持部材に固定され、磁石保持部材の周方向に磁極の配置を交互に反転して配列される。導電部材は、複数の永久磁石と隙間を空けて対向し、複数の永久磁石に対して相対的に回転可能である。ねじ軸は、軸方向に変位することで、複数の永久磁石と導電部材とをねじ軸の軸方向に相対的に移動させる。   The eddy current damper of the present invention obtains a damping force by relatively rotating the permanent magnet and the conductive member using the screw shaft and the ball nut. The eddy current damper includes a cylindrical magnet holding member, a plurality of permanent magnets, and a cylindrical conductive member. The plurality of permanent magnets are fixed to a magnet holding member, and are arranged by alternately reversing the arrangement of magnetic poles in a circumferential direction of the magnet holding member. The conductive member faces the plurality of permanent magnets with a gap therebetween, and is rotatable relative to the plurality of permanent magnets. The screw shaft is displaced in the axial direction to relatively move the plurality of permanent magnets and the conductive member in the axial direction of the screw shaft.

本発明の渦電流式ダンパによれば、導電部材の局所的な温度上昇を抑制できる。   According to the eddy current damper of the present invention, a local temperature rise of the conductive member can be suppressed.

図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 1 is a cross-sectional view of the eddy current damper of the first embodiment in a plane along the axial direction. 図2は、図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 図3は、図2中のIII−III線での断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 図4は、図3の一部拡大図である。FIG. 4 is a partially enlarged view of FIG. 図5は、第1実施形態の渦電流式ダンパにおいて、ねじ軸がストローク端位置にある場合の断面図である。FIG. 5 is a cross-sectional view of the eddy current damper of the first embodiment when the screw shaft is at a stroke end position. 図6は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 6 is a cross-sectional view of the eddy current damper of the second embodiment taken along a plane along the axial direction. 図7は、第2実施形態の渦電流式ダンパの導電部材の斜視図である。FIG. 7 is a perspective view of a conductive member of the eddy current damper of the second embodiment. 図8は、第2実施形態の渦電流式ダンパにおいて、ねじ軸がストローク端位置にある場合の断面図である。FIG. 8 is a cross-sectional view of the eddy current damper of the second embodiment when the screw shaft is at a stroke end position. 図9は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 9 is a cross-sectional view of the eddy current damper of the third embodiment in a plane along the axial direction. 図10は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 10 is a cross-sectional view of the eddy current damper of the fourth embodiment taken along a plane along the axial direction.

(1)本実施形態の渦電流式ダンパは、ねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る。渦電流式ダンパは、円筒形状の磁石保持部材と、複数の永久磁石と、円筒形状の導電部材と、を含む。複数の永久磁石は、磁石保持部材に固定され、磁石保持部材の周方向に磁極の配置を交互に反転して配列される。導電部材は、複数の永久磁石と隙間を空けて対向し、複数の永久磁石に対して相対的に回転可能である。ねじ軸は、軸方向に変位することで、複数の永久磁石と導電部材とをねじ軸の軸方向に相対的に移動させる。   (1) The eddy current damper of the present embodiment obtains a damping force by relatively rotating a permanent magnet and a conductive member using a screw shaft and a ball nut. The eddy current damper includes a cylindrical magnet holding member, a plurality of permanent magnets, and a cylindrical conductive member. The plurality of permanent magnets are fixed to a magnet holding member, and are arranged by alternately reversing the arrangement of magnetic poles in a circumferential direction of the magnet holding member. The conductive member faces the plurality of permanent magnets with a gap therebetween, and is rotatable relative to the plurality of permanent magnets. The screw shaft is displaced in the axial direction to relatively move the plurality of permanent magnets and the conductive member in the axial direction of the screw shaft.

このような(1)の渦電流式ダンパに振動が加われば、ねじ軸が軸方向に往復運動する。このねじ軸の往復運動を利用して永久磁石と、永久磁石に対向する導電部材とを軸方向に相対的に移動させると、導電部材の永久磁石と対向する領域も軸方向に移動する。これにより、導電部材の特定の場所に集中して渦電流が発生することがなく、導電部材が局所的に高温になることが抑制される。   When vibration is applied to the eddy current damper of (1), the screw shaft reciprocates in the axial direction. When the permanent magnet and the conductive member facing the permanent magnet are relatively moved in the axial direction using the reciprocating motion of the screw shaft, the region of the conductive member facing the permanent magnet also moves in the axial direction. This prevents eddy currents from being concentrated on a specific location of the conductive member and prevents the conductive member from being locally heated.

(2)上記(1)の渦電流式ダンパにおいて、磁石保持部材は、ねじ軸に固定され、導電部材は、ボールナットに固定され、導電部材の内周面が、複数の永久磁石と対向するのが好ましい。   (2) In the eddy current damper of (1), the magnet holding member is fixed to the screw shaft, the conductive member is fixed to the ball nut, and the inner peripheral surface of the conductive member faces a plurality of permanent magnets. Is preferred.

このような(2)の渦電流式ダンパでは、磁石保持部材がねじ軸とともに往復運動することで永久磁石と導電部材とが軸方向に相対的に移動する。また、永久磁石が導電部材の内部に設けられ、導電部材が回転することで永久磁石と導電部材とが相対的に回転する。発熱する導電部材が回転するため、導電部材が空冷され、導電部材の温度上昇がさらに抑制される。   In such an eddy current damper of (2), the permanent magnet and the conductive member relatively move in the axial direction as the magnet holding member reciprocates with the screw shaft. Further, the permanent magnet is provided inside the conductive member, and the rotation of the conductive member causes the permanent magnet and the conductive member to relatively rotate. Since the conductive member that generates heat rotates, the conductive member is air-cooled, and the temperature rise of the conductive member is further suppressed.

(3)上記(2)の渦電流式ダンパにおいて、導電部材は、複数の永久磁石と対向可能な領域以外の領域に複数の貫通孔を含むのが好ましい。   (3) In the eddy current damper of (2), the conductive member preferably includes a plurality of through holes in a region other than a region capable of facing the plurality of permanent magnets.

このような(3)の渦電流式ダンパでは、貫通孔は導電部材の永久磁石と対向する領域(渦電流が発生する領域)に設けられないため、渦電流式ダンパとしての減衰力は保たれる。一方、導電部材の永久磁石と対向しない領域に貫通孔が設けられるため、導電部材の内部と外部とを通気させることができる。導電部材の内部と外部とを通気させることで、導電部材の温度上昇がさらに抑制される。   In such an eddy current damper of (3), the through-hole is not provided in the region of the conductive member facing the permanent magnet (the region where the eddy current is generated), so that the damping force of the eddy current damper is maintained. It is. On the other hand, since the through hole is provided in a region of the conductive member that does not face the permanent magnet, the inside and outside of the conductive member can be ventilated. By ventilating the inside and outside of the conductive member, a rise in the temperature of the conductive member is further suppressed.

(4)上記(1)の渦電流式ダンパにおいて、磁石保持部材は、ボールナットに固定され、導電部材は、ねじ軸に固定され、導電部材の外周面が、複数の永久磁石と対向するのが好ましい。   (4) In the eddy current damper of (1), the magnet holding member is fixed to the ball nut, the conductive member is fixed to the screw shaft, and the outer peripheral surface of the conductive member faces a plurality of permanent magnets. Is preferred.

このような(4)の渦電流式ダンパでは、導電部材がねじ軸とともに往復運動することで永久磁石と導電部材とが軸方向に相対的に移動する。また、導電部材が磁石保持部材の内部に設けられ、磁石保持部材(永久磁石)が回転することで永久磁石と導電部材とが相対的に回転する。   In such an eddy current damper of (4), the permanent magnet and the conductive member relatively move in the axial direction as the conductive member reciprocates with the screw shaft. In addition, the conductive member is provided inside the magnet holding member, and the permanent magnet and the conductive member rotate relatively as the magnet holding member (permanent magnet) rotates.

(5)上記(4)の渦電流式ダンパにおいて、磁石保持部材は、複数の永久磁石が固定される領域以外の領域に複数の貫通孔を含むのが好ましい。   (5) In the eddy current damper of (4), it is preferable that the magnet holding member includes a plurality of through holes in a region other than a region where the plurality of permanent magnets are fixed.

このような(5)の渦電流式ダンパでは、磁石保持部材に貫通孔が設けられるため、磁石保持部材の内部と外部とを通気させることができる。磁石保持部材の内部と外部とを通気させることで、磁石保持部材の内部に設けられた導電部材の温度上昇がさらに抑制される。   In the eddy current damper of (5), the through hole is provided in the magnet holding member, so that the inside and the outside of the magnet holding member can be ventilated. By ventilating the inside and outside of the magnet holding member, the temperature rise of the conductive member provided inside the magnet holding member is further suppressed.

以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts have the same reference characters allotted, and description thereof will not be repeated.

[第1実施形態]
図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。渦電流式ダンパ1は、磁石保持部材5と、複数の永久磁石6と、導電部材4と、を含む。渦電流式ダンパ1は、ねじ軸2及びボールナット3を用いて永久磁石6と導電部材4とを相対的に回転させることで減衰力を得る。なお、本明細書において「軸方向」とはねじ軸2の軸方向を意味する。
[First Embodiment]
FIG. 1 is a cross-sectional view of the eddy current damper of the first embodiment in a plane along the axial direction. The eddy current damper 1 includes a magnet holding member 5, a plurality of permanent magnets 6, and a conductive member 4. The eddy current damper 1 obtains a damping force by relatively rotating the permanent magnet 6 and the conductive member 4 using the screw shaft 2 and the ball nut 3. In this specification, “axial direction” means the axial direction of the screw shaft 2.

[ねじ軸]
ねじ軸2は、直線状に延びる部材であり、建物に取り付けられた取付具21に固定される。建物が揺れるとその振動は、取付具21を介してねじ軸2に伝達され、ねじ軸2が軸方向に変位し、振動に同期して往復運動(ストローク)する。図1では、ねじ軸2がストローク中央位置にある状態を示す。ストローク中央位置とは、ねじ軸2の軸方向に沿った往復移動範囲の中央を意味する。渦電流式ダンパ1は、ねじ軸2をストローク中央位置にして、建物に取り付けられる。ねじ軸2の外周面にはねじ部が形成されている。
[Screw shaft]
The screw shaft 2 is a member extending linearly, and is fixed to a fixture 21 attached to a building. When the building shakes, the vibration is transmitted to the screw shaft 2 via the fixture 21, the screw shaft 2 is displaced in the axial direction, and reciprocates (stroke) in synchronization with the vibration. FIG. 1 shows a state where the screw shaft 2 is located at the center of the stroke. The stroke center position means the center of the reciprocating movement range along the axial direction of the screw shaft 2. The eddy current damper 1 is attached to a building with the screw shaft 2 at the center of the stroke. A screw portion is formed on the outer peripheral surface of the screw shaft 2.

[ボールナット]
ボールナット3は、ねじ軸2とボールねじを構成する。ボールナット3は、貫通孔と、フランジ部とを含む。貫通孔にはねじ軸2が通され、貫通孔の内周面には、ねじ軸2のねじ部と噛み合うねじ部が形成されている。そのため、ねじ軸2が軸方向に変位するとボールナット3は回転する。すなわち、ボールナット3はねじ軸2の並進運動を回転運動に変換する。フランジ部は、軸方向から見て、中空の円板形状である。
[Ball nut]
The ball nut 3 forms the screw shaft 2 and a ball screw. The ball nut 3 includes a through hole and a flange. The screw shaft 2 is passed through the through hole, and a screw portion that meshes with the screw portion of the screw shaft 2 is formed on the inner peripheral surface of the through hole. Therefore, when the screw shaft 2 is displaced in the axial direction, the ball nut 3 rotates. That is, the ball nut 3 converts the translational movement of the screw shaft 2 into a rotational movement. The flange portion has a hollow disk shape when viewed from the axial direction.

[磁石保持部材]
図2は、図1の一部拡大図である。磁石保持部材5は、内周面及び外周面を含む円筒形状である。磁石保持部材5の内周面は、ねじ軸2に固定される。したがって、ねじ軸2が軸方向にストロークすると、磁石保持部材5もストロークする。磁石保持部材5のねじ軸2への固定方法は、溶接でもよいし、取付部材を介して取り付けてもよく、特に限定されない。
[Magnet holding member]
FIG. 2 is a partially enlarged view of FIG. The magnet holding member 5 has a cylindrical shape including an inner peripheral surface and an outer peripheral surface. The inner peripheral surface of the magnet holding member 5 is fixed to the screw shaft 2. Therefore, when the screw shaft 2 strokes in the axial direction, the magnet holding member 5 also strokes. The method for fixing the magnet holding member 5 to the screw shaft 2 may be welding or mounting via a mounting member, and is not particularly limited.

磁石保持部材5は、複数の永久磁石6を保持する。磁石保持部材5の材質は炭素鋼、鋳鉄等の磁性体であるのが好ましい。この場合、磁石保持部材5はヨークとしての役割を果たし、永久磁石6からの磁束が外部に漏れることを抑制する。   The magnet holding member 5 holds a plurality of permanent magnets 6. The material of the magnet holding member 5 is preferably a magnetic material such as carbon steel or cast iron. In this case, the magnet holding member 5 functions as a yoke, and suppresses the leakage of the magnetic flux from the permanent magnet 6 to the outside.

[永久磁石]
図3は、図2中のIII−III線での断面図である。複数の永久磁石6は、磁石保持部材5の外周面に固定される。複数の永久磁石6は、磁石保持部材5の円周方向に配列され、隣接する2つの永久磁石6の間には隙間が設けられる。
[permanent magnet]
FIG. 3 is a sectional view taken along line III-III in FIG. The plurality of permanent magnets 6 are fixed to the outer peripheral surface of the magnet holding member 5. The plurality of permanent magnets 6 are arranged in the circumferential direction of the magnet holding member 5, and a gap is provided between two adjacent permanent magnets 6.

図4は、図3の一部拡大図である。複数の永久磁石6は、磁石保持部材5の円周方向に磁極の配置を交互に反転して配列される。別の言葉で言えば、磁石保持部材5の円周方向において隣接する永久磁石6同士は互いに磁極の配置が反転する。なお、図4では、永久磁石6の磁極の配置が磁石保持部材5の径方向である場合を示すが、磁極の配置はこれに限られず、磁石保持部材5の軸方向(すなわちねじ軸の軸方向)であってもよい。   FIG. 4 is a partially enlarged view of FIG. The plurality of permanent magnets 6 are arranged by alternately reversing the arrangement of magnetic poles in the circumferential direction of the magnet holding member 5. In other words, the permanent magnets 6 adjacent to each other in the circumferential direction of the magnet holding member 5 have their magnetic poles reversed from each other. Although FIG. 4 shows a case where the magnetic poles of the permanent magnet 6 are arranged in the radial direction of the magnet holding member 5, the arrangement of the magnetic poles is not limited to this, and the axial direction of the magnet holding member 5 (that is, the axis of the screw shaft). Direction).

[導電部材]
図2を参照して、導電部材4は、内周面及び外周面を含み、軸方向に延びる円筒形状である。導電部材4の軸方向の長さは、永久磁石6の軸方向への往復移動距離よりも長い。導電部材4の内部(円筒の内部空間)にはボールナット3の一部、ねじ軸2の一部、磁石保持部材5及び永久磁石6が収容される。導電部材4の内部にボールナット3等を収容することで渦電流式ダンパ1を小型にすることができる。
[Conductive member]
Referring to FIG. 2, conductive member 4 has a cylindrical shape including an inner peripheral surface and an outer peripheral surface and extending in the axial direction. The axial length of the conductive member 4 is longer than the reciprocating distance of the permanent magnet 6 in the axial direction. A part of the ball nut 3, a part of the screw shaft 2, the magnet holding member 5, and the permanent magnet 6 are accommodated inside the conductive member 4 (inside space of the cylinder). By housing the ball nut 3 and the like inside the conductive member 4, the eddy current damper 1 can be reduced in size.

導電部材4の一方の端部は、ボールナット3のフランジ部に固定される。したがって、ボールナット3が回転すると、それに伴って導電部材4も回転する。導電部材4の他方の端部は、スラスト軸受11を介して建物に取り付けられた取付具22に固定される。したがって、導電部材4が回転しても取付具22は回転しない。なお、導電部材4の他方の端部は、ラジアル軸受14を介して支持部材13に支持されている。   One end of the conductive member 4 is fixed to a flange of the ball nut 3. Therefore, when the ball nut 3 rotates, the conductive member 4 also rotates accordingly. The other end of the conductive member 4 is fixed to a fixture 22 attached to a building via the thrust bearing 11. Therefore, even if the conductive member 4 rotates, the fixture 22 does not rotate. The other end of the conductive member 4 is supported by a support member 13 via a radial bearing 14.

導電部材4の内周面は、複数の永久磁石6と隙間を空けて対向する。「対向する」とは、対象とする部材のみを磁石保持部材5の径方向に投影したときに両者が重複することを意味する。隙間の大きさは、永久磁石6からの磁束を導電部材4に効率的に到達させるため、可能な限り小さいほうが好ましい。また、各永久磁石6と導電部材4の内周面との距離は一定であるのが好ましい。   The inner peripheral surface of the conductive member 4 faces the plurality of permanent magnets 6 with a gap. “Opposing” means that when only the target member is projected in the radial direction of the magnet holding member 5, both overlap. The size of the gap is preferably as small as possible so that the magnetic flux from the permanent magnet 6 can efficiently reach the conductive member 4. Further, the distance between each permanent magnet 6 and the inner peripheral surface of the conductive member 4 is preferably constant.

導電部材4の材質は、永久磁石6が形成する磁場によって渦電流を発生させるため、鋼等の導電性を有する材料である。   The material of the conductive member 4 is a material having conductivity, such as steel, for generating an eddy current by a magnetic field formed by the permanent magnet 6.

この他にも、渦電流式ダンパ1は、導電部材4等を保護するカバー12を含んでもよい。カバー12は、円筒形状であり、導電部材4、ボールナット3及びねじ軸2の一部を内部に収容する。カバー12の一方の端は、スラスト軸受11及びラジアル軸受14を介してボールナット3に固定される。また、カバー12の他方の端は、建物に固定された取付具22に固定される。   In addition, the eddy current damper 1 may include a cover 12 for protecting the conductive member 4 and the like. The cover 12 has a cylindrical shape and accommodates a part of the conductive member 4, the ball nut 3 and the screw shaft 2 therein. One end of the cover 12 is fixed to the ball nut 3 via the thrust bearing 11 and the radial bearing 14. Further, the other end of the cover 12 is fixed to a fixture 22 fixed to the building.

このような構成の第1実施形態の渦電流式ダンパ1に振動が加えられ、導電部材4が回転すると、導電部材4の内周面を通過する磁束が変化し、これにより導電部材4に渦電流が発生する。渦電流が発生すると、新たな磁束(反磁界)が生じる。この反磁界は、導電部材4の回転を妨げる(すなわちボールナット3の回転を妨げる)。ボールナット3の回転が妨げられると、ねじ軸2の軸方向への運動も妨げられ、振動が減衰する。これが渦電流による減衰力となる。   When vibration is applied to the eddy current damper 1 of the first embodiment having the above-described configuration and the conductive member 4 rotates, the magnetic flux passing through the inner peripheral surface of the conductive member 4 changes. An electric current is generated. When an eddy current is generated, a new magnetic flux (a demagnetizing field) is generated. This demagnetizing field hinders the rotation of the conductive member 4 (that is, hinders the rotation of the ball nut 3). When the rotation of the ball nut 3 is hindered, the axial movement of the screw shaft 2 is also hindered, and the vibration is attenuated. This becomes the damping force due to the eddy current.

一方で、導電部材4に渦電流が発生すると、ジュール熱により導電部材4の温度が上昇する。仮に、永久磁石6の軸方向の位置が導電部材4に対して相対的に移動しなければ、渦電流は導電部材4の永久磁石6と対向する特定の領域に集中的に発生するため、この領域が局所的に高温になりやすい。導電部材4が局所的に高温になれば、導電部材4自体及びその周辺部品の強度等に悪影響を与える可能性がある。また、局所的に高温化した導電部材4の熱が永久磁石6に伝達されることで、永久磁石6が減磁し、渦電流式ダンパの減衰力が低下する可能性がある。   On the other hand, when an eddy current is generated in the conductive member 4, the temperature of the conductive member 4 increases due to Joule heat. If the position of the permanent magnet 6 in the axial direction does not move relative to the conductive member 4, the eddy current is intensively generated in a specific region of the conductive member 4 facing the permanent magnet 6. The region is likely to be locally hot. If the temperature of the conductive member 4 becomes locally high, there is a possibility that the strength and the like of the conductive member 4 itself and its peripheral components are adversely affected. In addition, since the heat of the conductive member 4 that has been locally heated is transmitted to the permanent magnet 6, the permanent magnet 6 may be demagnetized, and the damping force of the eddy current damper may be reduced.

しかしながら、第1実施形態の渦電流式ダンパ1によれば、永久磁石6の軸方向の位置が導電部材4に対して相対的に移動するため、導電部材4の局所的な温度上昇を抑制できる。以下、この点について詳述する。   However, according to the eddy current damper 1 of the first embodiment, since the position of the permanent magnet 6 in the axial direction moves relatively to the conductive member 4, a local temperature rise of the conductive member 4 can be suppressed. . Hereinafter, this point will be described in detail.

[導電部材の局所的な温度上昇の抑制]
図2を参照して、ねじ軸2がストローク中央位置にある状態で、渦電流式ダンパ1に振動が加えられると、ねじ軸2がストローク中央位置からストローク端位置に向かって移動する。ストローク端位置とは、ねじ軸2の軸方向の往復移動範囲の端を意味する。
[Suppression of local temperature rise of conductive member]
Referring to FIG. 2, when vibration is applied to eddy current damper 1 in a state where screw shaft 2 is at the stroke center position, screw shaft 2 moves from the stroke center position to the stroke end position. The stroke end position means an end of a reciprocating movement range of the screw shaft 2 in the axial direction.

図5は、第1実施形態の渦電流式ダンパにおいて、ねじ軸がストローク端位置にある場合の断面図である。ねじ軸2(すなわち永久磁石6)が軸方向に移動すれば、導電部材4は軸方向に移動しないため、導電部材4の永久磁石6と対向する領域も移動する。つまり、第1実施形態の渦電流式ダンパ1では、渦電流は導電部材4のある特定の領域だけで発生し続けるわけではなく、ねじ軸2のストロークに伴って渦電流の発生領域が軸方向に移動する。そのため、渦電流の発生領域が軸方向に移動しない渦電流式ダンパに比べて、渦電流による発熱量を導電部材4の広範囲に分散させることができ、導電部材4が局所的に温度上昇することが抑制される。   FIG. 5 is a cross-sectional view of the eddy current damper of the first embodiment when the screw shaft is at a stroke end position. If the screw shaft 2 (that is, the permanent magnet 6) moves in the axial direction, the conductive member 4 does not move in the axial direction, so that the region of the conductive member 4 facing the permanent magnet 6 also moves. That is, in the eddy current damper 1 according to the first embodiment, the eddy current does not always continue to be generated only in a specific region of the conductive member 4, but the eddy current generation region changes in the axial direction with the stroke of the screw shaft 2. Go to Therefore, compared to an eddy current damper in which the eddy current generation region does not move in the axial direction, the amount of heat generated by the eddy current can be dispersed over a wide range of the conductive member 4, and the temperature of the conductive member 4 locally increases. Is suppressed.

導電部材4の局所的な温度上昇が抑制されることは、導電部材4の最高温度が低くなることを意味する。導電部材4の最高温度が低くなれば、導電部材4からの輻射熱の影響が弱くなるため、輻射熱による永久磁石6の温度上昇も抑制される。   Suppressing the local temperature rise of the conductive member 4 means that the maximum temperature of the conductive member 4 decreases. If the maximum temperature of the conductive member 4 is low, the influence of the radiant heat from the conductive member 4 is weakened, so that the temperature rise of the permanent magnet 6 due to the radiant heat is also suppressed.

また、第1実施形態の渦電流式ダンパ1では、発熱する導電部材4自身が回転するため、導電部材4を直接空冷することができる。これにより、導電部材4の温度上昇をさらに抑制することができる。   Moreover, in the eddy current damper 1 of the first embodiment, the conductive member 4 itself that generates heat rotates, so that the conductive member 4 can be directly air-cooled. Thereby, the temperature rise of the conductive member 4 can be further suppressed.

以上、第1実施形態の渦電流式ダンパについて説明した。しかしながら、本発明の渦電流式ダンパはこれに限定されず、以下のような実施形態とすることもできる。   The eddy current damper of the first embodiment has been described above. However, the eddy current damper of the present invention is not limited to this, and the following embodiments can be adopted.

[第2実施形態]
図6は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。第2実施形態の渦電流式ダンパ1は、導電部材4に貫通孔7が設けられる点で第1実施形態と相違する。以下の説明では、第1実施形態と異なる点についてのみ説明し、第1実施形態と同じ構成については説明を省略する。
[Second embodiment]
FIG. 6 is a cross-sectional view of the eddy current damper of the second embodiment taken along a plane along the axial direction. The eddy current damper 1 of the second embodiment differs from the first embodiment in that a through hole 7 is provided in the conductive member 4. In the following description, only differences from the first embodiment will be described, and description of the same configuration as the first embodiment will be omitted.

[貫通孔]
図7は、第2実施形態の渦電流式ダンパの導電部材の斜視図である。導電部材4は、第1貫通孔列15と、第2貫通孔列16とを含む。
[Through hole]
FIG. 7 is a perspective view of a conductive member of the eddy current damper of the second embodiment. The conductive member 4 includes a first row of through holes 15 and a second row of through holes 16.

第1貫通孔列15は、導電部材4の周方向に配列された複数の貫通孔7から構成される。貫通孔7は、導電部材4の径方向に沿って導電部材4を貫通する。   The first through-hole row 15 includes a plurality of through-holes 7 arranged in the circumferential direction of the conductive member 4. The through hole 7 penetrates the conductive member 4 along the radial direction of the conductive member 4.

図6を参照して、貫通孔7は、導電部材4内部と導電部材4外部とを通気させる。そのため、ねじ軸2がストロークすることにより、導電部材4内部の空気を撹拌することができ、導電部材4の温度上昇を抑制することができる。   Referring to FIG. 6, through hole 7 allows ventilation between the inside of conductive member 4 and the outside of conductive member 4. Therefore, by the stroke of the screw shaft 2, the air inside the conductive member 4 can be agitated, and the temperature rise of the conductive member 4 can be suppressed.

また、第2実施形態の渦電流式ダンパでも、第1実施形態と同様に、発熱する導電部材4自身が回転するため、導電部材4を直接空冷することができる。これにより、導電部材4の温度上昇をさらに抑制することができる。   Also, in the eddy current damper of the second embodiment, similarly to the first embodiment, the conductive member 4 that generates heat itself rotates, so that the conductive member 4 can be directly air-cooled. Thereby, the temperature rise of the conductive member 4 can be further suppressed.

図7を参照して、貫通孔7の形状は、多角形、円形、楕円形等であり、その形状は特に限定されない。   Referring to FIG. 7, the shape of through-hole 7 is a polygon, a circle, an ellipse, or the like, and the shape is not particularly limited.

貫通孔7は、導電部材4の周方向に沿って等間隔に配置されるのが好ましい。貫通孔7が等間隔に配置されれば、導電部材4内部の空気が均一に撹拌されやすい。したがって、周方向に均一に導電部材4の温度上昇を抑制することができる。   It is preferable that the through holes 7 are arranged at regular intervals along the circumferential direction of the conductive member 4. If the through holes 7 are arranged at equal intervals, the air inside the conductive member 4 is easily stirred uniformly. Therefore, the temperature rise of the conductive member 4 can be suppressed uniformly in the circumferential direction.

なお、図7では、第1貫通孔列15の貫通孔7と第2貫通孔列16の貫通孔7とが導電部材4の周方向において同位相に設けられる場合を示すが、第1貫通孔列15の貫通孔7と第2貫通孔列16の貫通孔7とは同位相でなくてもよい。   FIG. 7 shows a case where the through holes 7 of the first through hole row 15 and the through holes 7 of the second through hole row 16 are provided in the same phase in the circumferential direction of the conductive member 4. The through-holes 7 in the row 15 and the through-holes 7 in the second through-hole row 16 do not have to be in phase.

続いて、第1貫通孔列15及び第2貫通孔列16の配置について説明する。   Subsequently, the arrangement of the first through-hole row 15 and the second through-hole row 16 will be described.

図8は、第2実施形態の渦電流式ダンパにおいて、ねじ軸がストローク端位置にある場合の断面図である。導電部材4の永久磁石6と対向可能な領域Aは、渦電流が生じる領域であるので、軸方向及び導電部材の周方向全域において導電部材4が存在していることが望ましい。そのため、第2実施形態の渦電流式ダンパ1では、貫通孔7は導電部材の永久磁石と対向可能な領域Aには設けられない。   FIG. 8 is a cross-sectional view of the eddy current damper of the second embodiment when the screw shaft is at a stroke end position. Since the region A of the conductive member 4 which can face the permanent magnet 6 is a region where an eddy current is generated, the conductive member 4 is desirably present in the entire axial direction and the circumferential direction of the conductive member. Therefore, in the eddy current damper 1 of the second embodiment, the through hole 7 is not provided in the region A where the conductive member can face the permanent magnet.

一方、導電部材の永久磁石と対向可能な領域Aの軸方向の両側の領域は、永久磁石6の往復移動範囲外であるため、永久磁石6と対向不可能である。そのため、この領域では渦電流は発生しないか、又は発生しても弱い渦電流であり、渦電流式ダンパの減衰力に大きく影響しない。そこで、第2実施形態の渦電流式ダンパでは、導電部材の永久磁石と対向可能な領域A以外の領域に第1貫通孔列15及び第2貫通孔列16を設ける。   On the other hand, the regions on both sides in the axial direction of the region A of the conductive member that can face the permanent magnet are outside the reciprocating range of the permanent magnet 6 and therefore cannot face the permanent magnet 6. Therefore, in this region, no eddy current is generated, or even if it is generated, the eddy current is weak and does not significantly affect the damping force of the eddy current damper. Therefore, in the eddy current damper of the second embodiment, the first through-hole row 15 and the second through-hole row 16 are provided in a region other than the region A of the conductive member that can face the permanent magnet.

より具体的には、導電部材の永久磁石と対向可能な領域A以外の領域は、導電部材の永久磁石と対向可能な領域Aの軸方向の両側に設けられる。そのうちの一方に第1貫通孔列15が設けられ、他方に第2貫通孔列16が設けられる。   More specifically, regions other than the region A of the conductive member that can face the permanent magnet are provided on both axial sides of the region A of the conductive member that can face the permanent magnet. The first through-hole row 15 is provided on one of them, and the second through-hole row 16 is provided on the other.

[磁石保持部材]
円筒形状の磁石保持部材5は、2つの端面23を含むのが好ましい。2つの端面23は、軸方向からみて中空の平坦な円板形状であり、軸方向に垂直な断面で見て磁石保持部材5の径方向に沿っている。
[Magnet holding member]
The cylindrical magnet holding member 5 preferably includes two end faces 23. The two end surfaces 23 have a hollow flat disk shape when viewed from the axial direction, and extend along the radial direction of the magnet holding member 5 when viewed in a cross section perpendicular to the axial direction.

このような構成によれば、磁石保持部材5が変位すると、導電部材4内部の空気が磁石保持部材5の端面23によって圧縮され、貫通孔7から放出されやすい。たとえば、図6を参照して、磁石保持部材5が図6中の左側に変位したとする。すると、磁石保持部材5の進行方向にある導電部材4内部の空気が圧縮され、第1貫通孔列15の貫通孔7から流出する。その一方で、磁石保持部材5の進行方向逆側(右側)にある導電部材4内部には第2貫通孔列16の貫通孔7を通して導電部材4外部から空気が流入する。   According to such a configuration, when the magnet holding member 5 is displaced, the air inside the conductive member 4 is compressed by the end surface 23 of the magnet holding member 5 and is easily released from the through hole 7. For example, suppose that magnet holding member 5 is displaced to the left in FIG. 6 with reference to FIG. Then, the air inside the conductive member 4 in the traveling direction of the magnet holding member 5 is compressed and flows out from the through holes 7 of the first through hole row 15. On the other hand, air flows from the outside of the conductive member 4 to the inside of the conductive member 4 on the opposite side (right side) of the magnet holding member 5 through the through holes 7 of the second through hole row 16.

これにより、軸方向の両側で導電部材4の内部と外部とが通気することができ、導電部材4の軸方向の一方の端部だけでなく他方の端部の温度上昇も抑制される。なお、磁石保持部材5が図6中の右側に変位する場合は、上述の説明の逆となる。   Thereby, the inside and the outside of the conductive member 4 can be ventilated on both sides in the axial direction, and the temperature rise of not only one end of the conductive member 4 but also the other end in the axial direction can be suppressed. When the magnet holding member 5 is displaced to the right in FIG. 6, the above description is reversed.

続いて、第3実施形態の渦電流式ダンパについて説明する。   Next, an eddy current damper according to a third embodiment will be described.

[第3実施形態]
図9は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。第3実施形態の渦電流式ダンパ1は、磁石保持部材5が導電部材4の外側に配置され、回転する点で第1実施形態と相違する。以下の説明では、第1実施形態と異なる点についてのみ説明し、第1実施形態と同じ構成については説明を省略する。
[Third embodiment]
FIG. 9 is a cross-sectional view of the eddy current damper of the third embodiment in a plane along the axial direction. The eddy current damper 1 of the third embodiment differs from the first embodiment in that the magnet holding member 5 is arranged outside the conductive member 4 and rotates. In the following description, only differences from the first embodiment will be described, and description of the same configuration as the first embodiment will be omitted.

[磁石保持部材]
磁石保持部材5は、内周面及び外周面を含み、軸方向に延びる円筒形状である。磁石保持部材5の内部(円筒の内部空間)にはボールナット3の一部、ねじ軸2の一部、導電部材4及び永久磁石6が収容される。磁石保持部材5の内部にボールナット3等を収容することで渦電流式ダンパを小型にすることができる。
[Magnet holding member]
The magnet holding member 5 has a cylindrical shape including an inner peripheral surface and an outer peripheral surface and extending in the axial direction. A part of the ball nut 3, a part of the screw shaft 2, the conductive member 4, and the permanent magnet 6 are accommodated inside the magnet holding member 5 (inside space of the cylinder). By accommodating the ball nut 3 and the like inside the magnet holding member 5, the eddy current damper can be reduced in size.

磁石保持部材5の一方の端部は、ボールナット3のフランジ部に固定される。したがって、ボールナット3が回転すると、それに伴って磁石保持部材5も回転する。磁石保持部材5の他方の端部は、スラスト軸受11を介して建物に取り付けられた取付具22に固定される。したがって、磁石保持部材5が回転しても取付具22は回転しない。   One end of the magnet holding member 5 is fixed to the flange of the ball nut 3. Therefore, when the ball nut 3 rotates, the magnet holding member 5 also rotates accordingly. The other end of the magnet holding member 5 is fixed to a fixture 22 attached to the building via the thrust bearing 11. Therefore, even if the magnet holding member 5 rotates, the fixture 22 does not rotate.

[永久磁石]
複数の永久磁石6は、磁石保持部材5の内周面に固定される。
[permanent magnet]
The plurality of permanent magnets 6 are fixed to the inner peripheral surface of the magnet holding member 5.

[導電部材]
導電部材4は、内周面及び外周面を含む円筒形状である。導電部材4の内周面は、ねじ軸2に固定される。したがって、ねじ軸2が軸方向にストロークすると、導電部材4もストロークする。導電部材4の外周面は、複数の永久磁石6と隙間を空けて対向する。
[Conductive member]
The conductive member 4 has a cylindrical shape including an inner peripheral surface and an outer peripheral surface. The inner peripheral surface of the conductive member 4 is fixed to the screw shaft 2. Therefore, when the screw shaft 2 strokes in the axial direction, the conductive member 4 also strokes. The outer peripheral surface of the conductive member 4 faces the plurality of permanent magnets 6 with a gap.

このような構成の第3実施形態の渦電流式ダンパに振動が加われば、導電部材4が軸方向にストロークする。すなわち、導電部材4と永久磁石6とが軸方向に相対的に移動する。したがって、第1実施形態と同様に、渦電流による発熱量を導電部材4の広範囲に分散させることができ、導電部材4が局所的に温度上昇することが抑制される。   When vibration is applied to the eddy current damper of the third embodiment having such a configuration, the conductive member 4 strokes in the axial direction. That is, the conductive member 4 and the permanent magnet 6 move relatively in the axial direction. Therefore, similarly to the first embodiment, the amount of heat generated by the eddy current can be dispersed over a wide range of the conductive member 4, and the temperature of the conductive member 4 is locally prevented from rising.

[第4実施形態]
図10は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。第4実施形態の渦電流式ダンパ1は、磁石保持部材5に貫通孔7が設けられる点で第3実施形態と相違する。以下の説明では、第3実施形態と異なる点についてのみ説明し、第3実施形態と同じ構成については説明を省略する。
[Fourth embodiment]
FIG. 10 is a cross-sectional view of the eddy current damper of the fourth embodiment taken along a plane along the axial direction. The eddy current damper 1 of the fourth embodiment differs from the third embodiment in that a through hole 7 is provided in the magnet holding member 5. In the following description, only differences from the third embodiment will be described, and description of the same configuration as the third embodiment will be omitted.

第4実施形態の渦電流式ダンパでは、導電部材4に貫通孔7が設けられる第2実施形態の渦電流式ダンパの導電部材4と磁石保持部材5とが入れ替わった構成となっている。したがって、以下に第4実施形態の渦電流式ダンパの磁石保持部材について説明するが、その形状は図7に示す第2実施形態の渦電流式ダンパの導電部材と同様である。   The eddy current damper of the fourth embodiment has a configuration in which the conductive member 4 and the magnet holding member 5 of the eddy current damper of the second embodiment in which the through-hole 7 is provided in the conductive member 4 are interchanged. Therefore, the magnet holding member of the eddy current damper of the fourth embodiment will be described below, but the shape is the same as the conductive member of the eddy current damper of the second embodiment shown in FIG.

[磁石保持部材]
図10を参照して、磁石保持部材5は、第1貫通孔列15と、第2貫通孔列16とを含む。
[Magnet holding member]
Referring to FIG. 10, magnet holding member 5 includes a first row of through holes 15 and a second row of through holes 16.

貫通孔7は、磁石保持部材5の径方向に沿って磁石保持部材5を貫通する。貫通孔7は、磁石保持部材5内部と磁石保持部材5外部とを通気させる。そのため、ねじ軸2がストロークすることにより、磁石保持部材5内部の空気を撹拌することができ、導電部材4の温度上昇を抑制することができる。   The through hole 7 penetrates the magnet holding member 5 along the radial direction of the magnet holding member 5. The through hole 7 allows the inside of the magnet holding member 5 and the outside of the magnet holding member 5 to ventilate. Therefore, by the stroke of the screw shaft 2, the air inside the magnet holding member 5 can be agitated, and the temperature rise of the conductive member 4 can be suppressed.

第4実施形態の渦電流式ダンパでは、貫通孔7は磁石保持部材の永久磁石が設けられる領域Bには設けられない。第1貫通孔列15及び第2貫通孔列16は、磁石保持部材の永久磁石が設けられる領域以外の領域に設けられる。   In the eddy current damper of the fourth embodiment, the through hole 7 is not provided in the area B of the magnet holding member where the permanent magnet is provided. The first through-hole row 15 and the second through-hole row 16 are provided in an area other than the area where the permanent magnet of the magnet holding member is provided.

より具体的には、磁石保持部材の永久磁石が設けられる領域B以外の領域は、磁石保持部材の永久磁石が設けられる領域Bの軸方向の両側に設けられる。そのうちの一方に第1貫通孔列15が設けられ、他方に第2貫通孔列16が設けられる。   More specifically, areas other than the area B where the permanent magnet of the magnet holding member is provided are provided on both sides in the axial direction of the area B where the permanent magnet of the magnet holding member is provided. The first through-hole row 15 is provided on one of them, and the second through-hole row 16 is provided on the other.

これにより、軸方向の両側で磁石保持部材5の内部と外部とが通気することができ、導電部材4の軸方向の一方の端部だけでなく他方の端部も温度上昇が抑制される。   Thereby, the inside and the outside of the magnet holding member 5 can be ventilated on both sides in the axial direction, and the temperature rise is suppressed not only at one end of the conductive member 4 but also at the other end in the axial direction.

以上、本実施形態の渦電流式ダンパについて説明した。その他、本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることは言うまでもない。   The eddy current damper of the present embodiment has been described above. In addition, it is needless to say that the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.

本発明の渦電流式ダンパは、建造物の制振装置及び免震装置に有用である。   INDUSTRIAL APPLICABILITY The eddy current damper of the present invention is useful for a vibration damping device and a seismic isolation device for a building.

1:渦電流式ダンパ
2:ねじ軸
3:ボールナット
4:導電部材
5:磁石保持部材
6:永久磁石
7:貫通孔
11:スラスト軸受
12:カバー
13:支持部材
14:ラジアル軸受
15:第1貫通孔列
16:第2貫通孔列
21:取付具
22:取付具
23:磁石保持部材の端面
A:導電部材の永久磁石と対向する領域
B:磁石保持部材の永久磁石が設けられる領域

1: eddy current damper 2: screw shaft 3: ball nut 4: conductive member 5: magnet holding member 6: permanent magnet 7: through hole 11: thrust bearing 12: cover 13: support member 14: radial bearing 15: first Through-hole row 16: Second through-hole row 21: Fixture 22: Fixture 23: End face of magnet holding member A: Area opposed to permanent magnet of conductive member B: Area where permanent magnet of magnet holding member is provided

Claims (5)

ねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る渦電流式ダンパであって、
円筒形状の磁石保持部材と、
前記磁石保持部材に固定され、前記磁石保持部材の周方向に磁極の配置を交互に反転して配列された複数の永久磁石と、
前記複数の永久磁石と隙間を空けて対向し、前記複数の永久磁石に対して相対的に回転可能な円筒形状の導電部材と、を備え、
前記ねじ軸は、軸方向に変位することで、前記複数の永久磁石と前記導電部材とを前記ねじ軸の軸方向に相対的に移動させる、渦電流式ダンパ。
An eddy current damper that obtains a damping force by relatively rotating a permanent magnet and a conductive member using a screw shaft and a ball nut,
A cylindrical magnet holding member,
A plurality of permanent magnets fixed to the magnet holding member and arranged by alternately reversing the arrangement of magnetic poles in the circumferential direction of the magnet holding member,
A cylindrical conductive member that is opposed to the plurality of permanent magnets with a gap therebetween and is rotatable relative to the plurality of permanent magnets,
An eddy current damper, wherein the screw shaft is displaced in the axial direction to relatively move the plurality of permanent magnets and the conductive member in the axial direction of the screw shaft.
請求項1に記載の渦電流式ダンパであって、
前記磁石保持部材は、前記ねじ軸に固定され、
前記導電部材は、前記ボールナットに固定され、
前記導電部材の内周面が、前記複数の永久磁石と対向する、渦電流式ダンパ。
The eddy current damper according to claim 1,
The magnet holding member is fixed to the screw shaft,
The conductive member is fixed to the ball nut,
An eddy current damper, wherein an inner peripheral surface of the conductive member faces the plurality of permanent magnets.
請求項2に記載の渦電流式ダンパであって、
前記導電部材は、前記複数の永久磁石と対向可能な領域以外の領域に複数の貫通孔を含む、渦電流式ダンパ。
The eddy current damper according to claim 2,
The eddy current damper, wherein the conductive member includes a plurality of through holes in a region other than a region capable of facing the plurality of permanent magnets.
請求項1に記載の渦電流式ダンパであって、
前記磁石保持部材は、前記ボールナットに固定され、
前記導電部材は、前記ねじ軸に固定され、
前記導電部材の外周面が、前記複数の永久磁石と対向する、渦電流式ダンパ。
The eddy current damper according to claim 1,
The magnet holding member is fixed to the ball nut,
The conductive member is fixed to the screw shaft,
An eddy current damper, wherein an outer peripheral surface of the conductive member faces the plurality of permanent magnets.
請求項4に記載の渦電流式ダンパであって、
前記磁石保持部材は、前記複数の永久磁石が固定される領域以外の領域に複数の貫通孔を含む、渦電流式ダンパ。
The eddy current damper according to claim 4, wherein
The eddy current damper, wherein the magnet holding member includes a plurality of through holes in a region other than a region where the plurality of permanent magnets are fixed.
JP2018146999A 2018-08-03 2018-08-03 Eddy current damper Active JP7040350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146999A JP7040350B2 (en) 2018-08-03 2018-08-03 Eddy current damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146999A JP7040350B2 (en) 2018-08-03 2018-08-03 Eddy current damper

Publications (2)

Publication Number Publication Date
JP2020020461A true JP2020020461A (en) 2020-02-06
JP7040350B2 JP7040350B2 (en) 2022-03-23

Family

ID=69588298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146999A Active JP7040350B2 (en) 2018-08-03 2018-08-03 Eddy current damper

Country Status (1)

Country Link
JP (1) JP7040350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309218A (en) * 2021-06-04 2021-08-27 陕西超艺实业有限公司 Steel construction vestibule between concrete building

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624937A (en) * 1985-06-28 1987-01-10 Sanwa Tekki Corp Buffering method employing hysteresis and damper
JPH0431A (en) * 1990-04-13 1992-01-06 Hitachi Metals Ltd Rotary damping device
JPH04359665A (en) * 1991-06-06 1992-12-11 Sumitomo Metal Ind Ltd Eddy current type reduction gear
US5392881A (en) * 1993-10-06 1995-02-28 The United States Of America As Represented By The Secretary Of The Navy Device for dampening vibratory motion
JP2000320607A (en) * 1999-05-14 2000-11-24 Kumagai Gumi Co Ltd Eddy current type damper
JP2005256889A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Electromagnetic shock absorber
JP2010281407A (en) * 2009-06-05 2010-12-16 Shimizu Corp Damping mechanism and installation method therefor
CN103821861A (en) * 2014-03-21 2014-05-28 湖南大学 Axial eddy current damper based on spiral transmission method
JP2017511867A (en) * 2014-09-15 2017-04-27 政清 陳 Outer cup rotating axial eddy current damper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624937A (en) * 1985-06-28 1987-01-10 Sanwa Tekki Corp Buffering method employing hysteresis and damper
JPH0431A (en) * 1990-04-13 1992-01-06 Hitachi Metals Ltd Rotary damping device
JPH04359665A (en) * 1991-06-06 1992-12-11 Sumitomo Metal Ind Ltd Eddy current type reduction gear
US5392881A (en) * 1993-10-06 1995-02-28 The United States Of America As Represented By The Secretary Of The Navy Device for dampening vibratory motion
JP2000320607A (en) * 1999-05-14 2000-11-24 Kumagai Gumi Co Ltd Eddy current type damper
JP2005256889A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Electromagnetic shock absorber
JP2010281407A (en) * 2009-06-05 2010-12-16 Shimizu Corp Damping mechanism and installation method therefor
CN103821861A (en) * 2014-03-21 2014-05-28 湖南大学 Axial eddy current damper based on spiral transmission method
JP2017511867A (en) * 2014-09-15 2017-04-27 政清 陳 Outer cup rotating axial eddy current damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309218A (en) * 2021-06-04 2021-08-27 陕西超艺实业有限公司 Steel construction vestibule between concrete building
CN113309218B (en) * 2021-06-04 2023-12-08 陕西超艺实业有限公司 Steel construction vestibule between concrete building

Also Published As

Publication number Publication date
JP7040350B2 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP6905594B2 (en) Eddy current damper
JP6863465B2 (en) Eddy current damper
JP6926996B2 (en) Eddy current damper
JP7040350B2 (en) Eddy current damper
JP7050619B2 (en) Eddy current damper
WO2020116344A1 (en) Eddy-current type damper
JP7185393B2 (en) Eddy current damper
JP7040357B2 (en) Eddy current damper
JP6947224B2 (en) Eddy current damper
JP7135725B2 (en) Eddy current damper
JP7101556B2 (en) Eddy current damper
JP6897525B2 (en) Eddy current damper
JP2019078331A (en) Eddy current-type damper
JP6897523B2 (en) Eddy current damper
JP3186600U (en) Magnetic levitation fan
KR20230145605A (en) Eddy current damper
WO2019039000A1 (en) Motor case and motor
JP2019213281A (en) Rotor of rotary electric machine and rotary electric machine
JP2007146916A (en) Vibration control structure of flywheel
JP2015056936A (en) Rotary electric machine, and cooling method of rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R151 Written notification of patent or utility model registration

Ref document number: 7040350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151