JPH04319598A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH04319598A
JPH04319598A JP3087987A JP8798791A JPH04319598A JP H04319598 A JPH04319598 A JP H04319598A JP 3087987 A JP3087987 A JP 3087987A JP 8798791 A JP8798791 A JP 8798791A JP H04319598 A JPH04319598 A JP H04319598A
Authority
JP
Japan
Prior art keywords
voltage
cell
vcct
temperature
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3087987A
Other languages
Japanese (ja)
Inventor
Koichi Odagiri
小田切 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3087987A priority Critical patent/JPH04319598A/en
Publication of JPH04319598A publication Critical patent/JPH04319598A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To remarkably reduce the current consumption of a stand-by state by deciding so that voltage pulled up by this resistor is lower than the source voltage of a peripheral circuit in a semiconductor memory with four transistors two resistors type SRAM cell. CONSTITUTION:As compared to a conventional four transistors two resistors type cell, this memory is provided with two diodes D1, D2 for preventing back flow so that no current flows backward when potential at A, B are higher than the voltage VCCT of the cell. further, instead of the level of the source voltage VCC of a conventional semiconductor, the memory is constituted so as to have the voltage level independent of the VCC as the voltage VCCT. Then, the memory is constituted so that since the voltage generator of the VCCT has a temperature detector, in the case of high temperature where leak current is increased and in the case of low temperature where the resistance of a high resistance poly-silicon film is high, the voltage is outputted respectively, in normal temperature, the voltage is suppressed to low. Thus, the current consumption of the stand-by state is drastically reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,半導体記憶装置,特に
,低消費電力化を可能とするSRAMに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and in particular to an SRAM that enables low power consumption.

【0002】近年,半導体記憶装置の大容量化は著しい
ものがあり,これに伴なって,低消費電力化が強く要求
されている。
In recent years, the capacity of semiconductor memory devices has increased significantly, and along with this, there is a strong demand for lower power consumption.

【0003】0003

【従来の技術】図3は従来のSRAMセルの回路構成図
である。図において,R3 ,R4 は高抵抗多結晶シ
リコン(ポリSi)膜よりなる抵抗である。
2. Description of the Related Art FIG. 3 is a circuit diagram of a conventional SRAM cell. In the figure, R3 and R4 are resistors made of high-resistance polycrystalline silicon (poly-Si) films.

【0004】従来,4トランジスタ2抵抗型のSRAM
の場合,セルの高抵抗ポリSi膜の抵抗R3 ,R4 
をプルアップする電圧は半導体装置の電源電圧(VCC
)のレベルとなっており, 消費電力を少なくするため
, 高抵抗ポリSi膜にかかる電圧を下げるためには,
VCCに連動して低くする必要があった。
Conventionally, a 4-transistor, 2-resistance type SRAM
In the case of , the resistances R3 and R4 of the high-resistance poly-Si film of the cell
The voltage that pulls up is the power supply voltage (VCC) of the semiconductor device.
), and in order to reduce power consumption and reduce the voltage applied to the high-resistance poly-Si film, the following steps are required:
It was necessary to lower it in conjunction with VCC.

【0005】しかし, 単純に, VCCを低く抑える
ことは,トランジスタの能力が不足して, L,Hのレ
ベル判定を行うセンスアンプが正しく動作しない等の弊
害がある。
[0005] However, simply keeping VCC low has disadvantages such as insufficient transistor capacity and sense amplifiers that determine L and H levels not operating correctly.

【0006】[0006]

【発明が解決しようとする課題】高抵抗ポリSi膜には
, 常にVCCが印加されており, スタンバイ時に流
れる電流はそのメモリ容量分の総和になる。
[Problem to be solved by the invention] VCC is always applied to the high-resistance poly-Si film, and the current flowing during standby is the sum of its memory capacity.

【0007】従って, 高抵抗ポリSi膜に印加する電
圧を下げることにより, スタンバイ時の低消費電力化
が可能となる。また, 低温では, 高抵抗ポリSi膜
の抵抗値が上がり, セルの電流自体は少なくなるが,
SRAMのセルの保持電流も比例して少なくなり,結晶
欠陥等のジャンクションリークにより,データリテンシ
ョン不良となる。
[0007] Therefore, by lowering the voltage applied to the high-resistance poly-Si film, it is possible to reduce power consumption during standby. Furthermore, at low temperatures, the resistance value of the high-resistance poly-Si film increases and the cell current itself decreases;
The holding current of the SRAM cell also decreases proportionally, resulting in poor data retention due to junction leakage due to crystal defects and the like.

【0008】このモードの場合は,常温でも高抵抗ポリ
Si膜のプルアップ電圧を下げることにより,セルの保
持電流を少なくし,不良とすることができる。また,高
温の場合には,セルのリーク電流が多くなるため,低温
と同じように保持電流が少なくなる。
In this mode, by lowering the pull-up voltage of the high-resistance poly-Si film even at room temperature, the holding current of the cell can be reduced and the cell can be rendered defective. Furthermore, at high temperatures, cell leakage current increases, so the holding current decreases, just as at low temperatures.

【0009】この時,コンタクトの抵抗が大きい場合,
また,高抵抗ポリ膜の断線等により高温のデータリテン
ション不良となる。このモードの場合も,常温で高抵抗
ポリSi膜のプルアップ電圧を下げることにより,セル
の保持電流を少なくして不良とすることができる。
At this time, if the resistance of the contact is large,
Furthermore, high-temperature data retention may be impaired due to disconnection of the high-resistance poly film. In this mode as well, by lowering the pull-up voltage of the high-resistance poly-Si film at room temperature, the holding current of the cell can be reduced and the cell can be rendered defective.

【0010】本発明は,以上の点を鑑み, 半導体記憶
装置の電源電圧の構成に関し,スタンバイ時の低消費電
力化と,高温・低温不良を常温でリジェクトすることを
目的とする。
In view of the above points, it is an object of the present invention to reduce power consumption during standby and to reject high-temperature and low-temperature defects at room temperature regarding the configuration of the power supply voltage of a semiconductor memory device.

【0011】[0011]

【課題を解決するための手段】図1は本発明のSRAM
セルの回路構成図である。図において,R1 ,R2 
は高抵抗ポリSi膜の抵抗,D1 ,D2 は逆流防止
用のダイオードである。
[Means for Solving the Problem] FIG. 1 shows an SRAM of the present invention.
FIG. 3 is a circuit configuration diagram of a cell. In the figure, R1, R2
is the resistance of a high-resistance poly-Si film, and D1 and D2 are diodes for preventing backflow.

【0012】上記の問題点は,4トランジスタ2抵抗型
のSRAMセルの場合,セルの高抵抗ポリSi膜からな
る抵抗R1,R2に印加する電圧(VCCT)をVCC
レベルと切離し, 別個に独立してコントロールできる
ようにすれば良い。
The above problem is that in the case of a 4-transistor, 2-resistance type SRAM cell, the voltage (VCCT) applied to the resistors R1 and R2 made of a high-resistance poly-Si film of the cell is
It would be better if it could be separated from the level and controlled separately and independently.

【0013】4トランジスタ2抵抗型のSRAMの場合
,セルのポリSi膜の抵抗R1 ,R2 に掛かる電圧
VCCTは, 通常,VCCレベルとして, リード・
ライトを実施する。
In the case of a 4-transistor, 2-resistance type SRAM, the voltage VCCT applied to the resistances R1 and R2 of the poly-Si film of the cell is normally set to the VCC level at the lead voltage.
Execute the write.

【0014】これは, 従来のSRAM動作と同じであ
るが,バッテリーバックアップモードになった時に,V
CCTの電圧を下げてセル電流を少なくすることが出来
る。また, 試験を行う時には, 外部からVCCTを
印加できるようにして, 書込み時にVCCTの電圧を
自由に設定することが可能となる。
[0014] This is the same as the conventional SRAM operation, but when the battery backup mode is entered, the V
The cell current can be reduced by lowering the CCT voltage. Additionally, when testing, it is possible to apply VCCT from the outside, making it possible to freely set the VCCT voltage during writing.

【0015】即ち,本発明の目的は,メモリセルの電源
電圧が,周辺回路の電源電圧より低くなるように構成さ
れてなることにより,また,4トランジスタ2抵抗型S
RAMセルを有する半導体記憶装置において,該抵抗の
プルアップしている電圧が,周辺回路の電源電圧より低
く定められていることにより,さらに,チップ温度を検
出する温度検出回路と,検出した温度にもとずきセルの
電圧レベル(VCCT)を決定する電源出力回路とを有
することにより達成される。
That is, an object of the present invention is to provide a 4-transistor, 2-resistance type S
In a semiconductor memory device having a RAM cell, the voltage pulled up by the resistor is set to be lower than the power supply voltage of the peripheral circuit. This is achieved by having a power supply output circuit that determines the voltage level (VCCT) of the original cell.

【0016】[0016]

【作用】本発明を利用したSRAMセルにおいて,スタ
ンバイ時の時にくVCCTの電圧を 2.5Vにすると
, 従来の5V単一電源の場合と比較すると,単純にス
タンバイ電流は半分になる。
[Operation] In the SRAM cell using the present invention, when the voltage of VCCT is set to 2.5V during standby, the standby current is simply halved compared to the case of a conventional 5V single power supply.

【0017】また, 書き込む時の電圧を低くしておく
ことにより, 低温・高温でなければ不良とならないよ
うな微小リークモードを常温で不良とする事ができるよ
うになる。
Furthermore, by keeping the voltage at the time of writing low, it becomes possible to make the minute leak mode, which would not be considered defective unless the temperature is low or high, become defective at room temperature.

【0018】[0018]

【実施例】図1は本発明のSRAMセルの回路構成図,
 図2は本発明のVCCT発生回路ブロック図である。
[Example] Figure 1 is a circuit diagram of an SRAM cell according to the present invention.
FIG. 2 is a block diagram of the VCCT generation circuit of the present invention.

【0019】図1,図2により,本発明の実施例につい
て説明する。図3に示した従来型の4トランジスタ2抵
抗型のセルと比べて,本発明では,図2に示すように,
A,Bでの電位がVCCTより高くなって,電流が逆流
しないように,2個の電流逆流防止用のダイオードD1
 ,D2 を追加している。
An embodiment of the present invention will be explained with reference to FIGS. 1 and 2. Compared to the conventional 4-transistor 2-resistance cell shown in FIG.
Two diodes D1 for current backflow prevention are installed to prevent the current from flowing backwards due to the potential at A and B becoming higher than VCCT.
, D2 are added.

【0020】また,従来のVCCのレベルの代わりに,
VCCTというVCCとは独立した電圧レベルを有した
構成の回路となっている。VCCTの電圧発生回路は図
3のブロック図に示すように,温度検出回路を有してお
り,リーク電流が大きくなる高温の場合と,高抵抗ポリ
Si膜の抵抗が高くなる低温の場合には,それぞれ高い
電圧を出力し,常温では低い電圧に抑えるようになって
いる。
[0020] Also, instead of the conventional VCC level,
The circuit has a voltage level called VCCT that is independent of VCC. As shown in the block diagram of Figure 3, the voltage generation circuit of the VCCT has a temperature detection circuit, which detects temperature at high temperatures where the leakage current increases and at low temperatures where the resistance of the high-resistance poly-Si film increases. , each outputs a high voltage, and is designed to keep the voltage low at room temperature.

【0021】ここでスタンバイ電流(ISB)の軽減に
ついて述べる。従来のSRAMセルの場合は,図3に示
したように,高抵抗ポリSi膜R3,R4 のプルアッ
プ電圧はVCCと同一である。
[0021] Reduction of standby current (ISB) will now be described. In the case of a conventional SRAM cell, as shown in FIG. 3, the pull-up voltage of the high resistance poly-Si films R3 and R4 is the same as VCC.

【0022】従って,VCCの電圧によりスタンバイ時
の消費電流が決定する。現在,スタンバイ電流の軽減方
法として,オートパワーダウンという方式が採用されて
いる。
Therefore, the current consumption during standby is determined by the voltage of VCC. Currently, a method called auto power down is used to reduce standby current.

【0023】これは,一定時間RAM動作を実施しない
場合に,自動的にVCCの電圧を下げてしまうという機
能である。本発明では,VCC全体を下げてしまうと周
辺回路が動作しなくなるという欠点を補うために,周辺
回路とメモリセルに独立して電圧を印加することにより
,セル部分がより小さい電圧で保持できる事を利用した
ものである。
This is a function that automatically lowers the voltage of VCC when no RAM operation is performed for a certain period of time. In the present invention, in order to compensate for the drawback that the peripheral circuits stop operating if the entire VCC is lowered, by applying voltages to the peripheral circuits and memory cells independently, the cell part can be held at a smaller voltage. This is what was used.

【0024】また,より効率的な電圧レベルを設定する
ために,温度のファクターを利用して周囲温度に対応し
た電圧レベルが発生できるようになっている。SRAM
のスタンバイ電流は,高温になると,フィールドトラン
ジスタの閾値の低下等により横方向のリークが大きくな
り,電流値が増大する。
Furthermore, in order to set a more efficient voltage level, a temperature factor can be used to generate a voltage level corresponding to the ambient temperature. SRAM
As the temperature increases, lateral leakage increases due to a decrease in the threshold value of the field transistor, etc., and the current value of the standby current increases.

【0025】また,スタンバイ電流は,低温の場合,高
抵抗ポリSi膜の抵抗が増大するために,結晶欠陥モー
ドのような小リークでもデータが反転することがある。 本発明は,これらの問題を解決するために,試験工程に
おいて,温度特性よりそのデバイス毎に適切な電圧を決
定して温度検出回路内のROMにそのデーターを書き込
むことが可能となっている。
Furthermore, when the standby current is at a low temperature, the resistance of the high-resistance poly-Si film increases, so even a small leak such as a crystal defect mode may cause data to be inverted. In order to solve these problems, the present invention makes it possible to determine an appropriate voltage for each device based on temperature characteristics during the test process, and to write the data into the ROM in the temperature detection circuit.

【0026】これにより,各デバイス毎に最適な電圧条
件を決定することが可能となる。次に,低温・高温不良
の常温試験でのリジェクト方法について述べる。今まで
の説明でも述べてきたが,高温試験でのリーク電流の増
大,低温試験でのリーク電流の増大という特性不良は,
試験項目の中で,データリテンション不良として発生す
る。
[0026] This makes it possible to determine optimal voltage conditions for each device. Next, we will discuss how to reject low-temperature and high-temperature defects in room-temperature tests. As mentioned in the previous explanations, characteristic defects such as an increase in leakage current in high-temperature tests and an increase in leakage current in low-temperature tests are caused by
This occurs as a data retention defect among test items.

【0027】図3に示すように,リーク電流の増大によ
り,CとDの電圧レベルが低下して,最終的にはデータ
ーが反転してしまうという不良である。図3のブロック
図に示す用に,VCCTの外部印加回路が用意されてい
るが,これは,VCCTの電圧をテスターから直接に印
加できるようにしたものである。
As shown in FIG. 3, this is a defect in which the voltage levels of C and D decrease due to the increase in leakage current, and the data is eventually inverted. As shown in the block diagram of FIG. 3, an external application circuit for VCCT is provided, which allows the voltage of VCCT to be applied directly from the tester.

【0028】元々,電圧レベルが低下して不良となるモ
ードであるため,書込みの電圧を始めから小さくするこ
とにより,より速く不良を再現する事が可能となる。こ
のようにして,書き込む時に,VCCTを最小限の電圧
に設定することにより,従来,低温・高温で不良となっ
ているようなモードを,常温で不良と判定する事ができ
るようになる。
Since this is originally a mode in which a defect occurs when the voltage level decreases, by reducing the write voltage from the beginning, it becomes possible to reproduce the defect more quickly. In this way, by setting VCCT to the minimum voltage when writing, it becomes possible to determine that a mode that would conventionally be considered defective at low or high temperatures is defective at room temperature.

【0029】[0029]

【発明の効果】以上説明したように, 本発明によれば
, スタンバイ状態の消費電流を大幅に低下することが
できる。
[Effects of the Invention] As explained above, according to the present invention, the current consumption in the standby state can be significantly reduced.

【0030】また,従来,低温試験・高温試験でのみ不
良となるようなモードを常温で試験する事が可能となり
,試験時間の削減,試験工程の削除等の大幅なコストダ
ウンが期待できる。
[0030] Furthermore, it is now possible to test at room temperature a mode that conventionally failed only in low-temperature tests and high-temperature tests, and significant cost reductions such as reduction in test time and elimination of testing steps can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のSRAMセルの回路構成図[Figure 1] Circuit configuration diagram of the SRAM cell of the present invention

【図2
】  本発明のVCCT発生回路ブロック図
[Figure 2
] VCCT generation circuit block diagram of the present invention

【図3】 
 従来のSRAMセルの回路構成図
[Figure 3]
Circuit diagram of conventional SRAM cell

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  メモリセルの電源電圧が,周辺回路の
電源電圧より低くなるように構成されてなることを特徴
とする半導体記憶装置。
1. A semiconductor memory device characterized in that the power supply voltage of a memory cell is configured to be lower than the power supply voltage of a peripheral circuit.
【請求項2】  4トランジスタ2抵抗型SRAMセル
を有する半導体記憶装置において,該抵抗のプルアップ
している電圧が,周辺回路の電源電圧より低く定められ
ていることを特徴とする半導体記憶装置。
2. A semiconductor memory device having a four-transistor, two-resistance type SRAM cell, wherein a voltage pulled up by the resistor is set lower than a power supply voltage of a peripheral circuit.
【請求項3】  チップ温度を検出する温度検出回路と
,検出した温度にもとずきセルの電圧レベル(VCCT
)を決定する電源出力回路とを有することを特徴とする
請求項1或いは2記載の半導体記憶装置。
[Claim 3] A temperature detection circuit that detects the chip temperature, and a cell voltage level (VCCT) based on the detected temperature.
3. The semiconductor memory device according to claim 1, further comprising a power supply output circuit that determines the output voltage.
JP3087987A 1991-04-19 1991-04-19 Semiconductor memory Withdrawn JPH04319598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087987A JPH04319598A (en) 1991-04-19 1991-04-19 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087987A JPH04319598A (en) 1991-04-19 1991-04-19 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH04319598A true JPH04319598A (en) 1992-11-10

Family

ID=13930168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087987A Withdrawn JPH04319598A (en) 1991-04-19 1991-04-19 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH04319598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298293A (en) * 1995-04-27 1996-11-12 Nec Ic Microcomput Syst Ltd Static ram cell
US8111575B2 (en) 2007-07-12 2012-02-07 Fujitsu Semiconductor Limited Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298293A (en) * 1995-04-27 1996-11-12 Nec Ic Microcomput Syst Ltd Static ram cell
US8111575B2 (en) 2007-07-12 2012-02-07 Fujitsu Semiconductor Limited Semiconductor device

Similar Documents

Publication Publication Date Title
US7049797B2 (en) Semiconductor integrated circuit device
US4683382A (en) Power-saving voltage supply
JP4820571B2 (en) Semiconductor device
US6434078B1 (en) Semiconductor device allowing external setting of internal power supply voltage generated by a voltage down converter at the time of testing
JP5539241B2 (en) Semiconductor integrated circuit device
EP0461788A2 (en) Semiconductor integrated circuit device
US6765404B2 (en) On-chip substrate regulator test mode
JPH01166399A (en) Static type random access memory
JPH07141041A (en) Trimming method and circuit therefor
JP4105833B2 (en) Semiconductor integrated circuit device
US6628162B2 (en) Semiconductor integrated circuit
JPH10144096A (en) Static semiconductor memory and its test method
US7289380B2 (en) Semiconductor memory devices incorporating voltage level shifters for controlling a VPP voltage level independently and methods of operating the same
US5379260A (en) Memory cell having a super supply voltage
JPH04319598A (en) Semiconductor memory
US7697356B2 (en) Method of testing semiconductor apparatus
JP3734726B2 (en) Read-only memory
JPH0529999B2 (en)
JPH05250899A (en) Semiconductor memory
JPS62289994A (en) Semiconductor memory device
TW200300260A (en) Low power SRAM redundant recovery architecture
JP2008226384A (en) Semiconductor memory device and its testing method
JPS60143498A (en) Semiconductor input circuit
JPH02235300A (en) Method for testing semiconductor storage device
JPH0676593A (en) Semiconductor memory

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711