JPH04318438A - Lens-meter - Google Patents

Lens-meter

Info

Publication number
JPH04318438A
JPH04318438A JP11093191A JP11093191A JPH04318438A JP H04318438 A JPH04318438 A JP H04318438A JP 11093191 A JP11093191 A JP 11093191A JP 11093191 A JP11093191 A JP 11093191A JP H04318438 A JPH04318438 A JP H04318438A
Authority
JP
Japan
Prior art keywords
lens
mirror
luminous flux
light source
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11093191A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11093191A priority Critical patent/JPH04318438A/en
Publication of JPH04318438A publication Critical patent/JPH04318438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the refracting power of a lens to be inspected even when the lens has a very powerful prism. CONSTITUTION:When a lens G to be inspected is brought into contact with a contact member 3 and a light source is turned on after fixing a variable-angle mirror 5 so that the optical path 01 of the luminous flux made incident to the mirror 5 and the optical path 02 of the reflected luminous flux from the mirror 5 can intersect at right angles at the time of measuring the refracting power of the lens G to be inspected, the luminous flux from a light source 1 is made incident to the lens G after the luminous flux is transformed to a parallel flux by means of a lens 2. The luminous flux passed through the lens G is reflected by the mirror 5 and forms four transmitted luminous flux images on the image pickup element 7 of a TV camera and the refracting power is calculated from the positional relation among the images. When the lens G is the powerful prism and the transmitted luminous flux images are formed on the outside of the element 7, the mirror 5 is tilted and the refracting power is found by taking the titled angle of the mirror 5 into account.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば眼科医院、眼鏡
店等で使用されるレンズメータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens meter used, for example, in ophthalmology clinics, optician shops, and the like.

【0002】0002

【従来の技術】従来の一般的なレンズメータでは、被検
レンズに光束を入射して屈折させ、その透過光束を光電
センサ上に受光し、受光位置のずれから被検レンズの屈
折力を測定している。
[Prior Art] In conventional general lens meters, a light beam is incident on a lens to be tested, is refracted, and the transmitted light beam is received on a photoelectric sensor, and the refractive power of the lens to be tested is measured from the shift in the light receiving position. are doing.

【0003】0003

【発明が解決しようとする課題】しかしながら上述の従
来例において、被検レンズのプリズム度が大き過ぎると
、透過光束が光電センサから外れて受光できずに測定不
能になるという欠点を有する。
However, the above-mentioned conventional example has the disadvantage that if the prism degree of the lens to be tested is too large, the transmitted light beam will deviate from the photoelectric sensor and cannot be received, making measurement impossible.

【0004】本発明の目的は、プリズム度が大きな被検
レンズでも屈折力測定が可能なレンズメータを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lens meter that can measure the refractive power even of a lens to be tested with a large degree of prism.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの本発明光源から投影光束を被検レンズに投影し、そ
の透過光束を光電センサ上に受光して前記被検レンズの
屈折力測定を行うレンズメータにおいて、前記被検レン
ズ測定光束を角度可変反射部材を介して前記光電センサ
上に投影する受光光学系と、前記角度可変反射部材の傾
斜角と前記光電センサ上の透過光束の位置から前記被検
レンズの屈折度を求める演算手段とを有することを特徴
とするものである。
[Means for Solving the Problems] The present invention for achieving the above object projects a projected light beam from a light source onto a test lens, receives the transmitted light flux on a photoelectric sensor, and measures the refractive power of the test lens. In a lens meter that performs and calculation means for determining the refractive power of the lens to be tested from.

【0006】前記特定発明に関連する本発明は、光源か
ら投影光束を被検レンズに投影し、その透過光束を光電
センサ上に受光して前記被検レンズの屈折力測定を行う
レンズメータにおいて、前記被検レンズに入射する前記
投影光束の入射角を切換える切換手段と、前記投影光束
の入射角と前記光電センサ上の透過光束の位置から前記
被検レンズの屈折度を求める演算手段とを有することを
特徴とするものである。
The present invention related to the above-mentioned specific invention provides a lens meter that projects a projected light flux from a light source onto a test lens, and measures the refractive power of the test lens by receiving the transmitted light flux on a photoelectric sensor. It has a switching means for switching the incident angle of the projection light beam incident on the test lens, and a calculation means for calculating the refractive degree of the test lens from the incident angle of the projection light flux and the position of the transmitted light flux on the photoelectric sensor. It is characterized by this.

【0007】[0007]

【作用】上述の構成を有するレンズメータは、被検レン
ズのプリズム度が大きい場合には、被検レンズを透過し
た透過光束を角度可変光学部材によって投影角を換えて
光電センサ上に投影して屈折力測定を行う。或いは、被
検レンズ測定に使用する投影光束の入射角を切換えて被
検レンズに光束を入射し、その透過光束を光電センサ上
に受光して屈折力測定を行う。
[Operation] When the lens to be tested has a large degree of prism, the lens meter having the above configuration changes the projection angle of the transmitted light beam that has passed through the lens to be tested and projects it onto the photoelectric sensor using a variable angle optical member. Perform refractive power measurement. Alternatively, the incident angle of the projection light beam used for measuring the lens to be tested is changed, the light beam is made incident on the lens to be tested, and the transmitted light beam is received on the photoelectric sensor to measure the refractive power.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例の構成図であり、光源1の光
路O1上には、レンズ2、被検レンズGを当接するため
の当接部材3、図2に示すように4個の開口4a〜4d
を有する4穴絞り4、図示しない駆動手段によって矢印
で示すように回動可能な角度可変ミラー5が設けられて
いる。この角度可変ミラー5の反射方向の光路O2上に
は、テレビカメラ6の撮像素子7が配置され、撮像素子
7の出力はテレビモニタ8に接続されている。なお、レ
ンズ2の焦点位置は光源1の位置と一致している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail based on the illustrated embodiments. FIG. 1 is a configuration diagram of the first embodiment. On the optical path O1 of the light source 1, there are a lens 2, a contact member 3 for contacting the test lens G, and four apertures as shown in FIG. 4a-4d
A four-hole diaphragm 4 having a diaphragm 4 and a variable angle mirror 5 that can be rotated as shown by an arrow by a driving means (not shown) are provided. An image sensor 7 of a television camera 6 is placed on the optical path O2 in the reflection direction of the variable angle mirror 5, and the output of the image sensor 7 is connected to a television monitor 8. Note that the focal position of the lens 2 coincides with the position of the light source 1.

【0009】屈折力測定時には、被検レンズGを当接部
材3に当接し、角度可変ミラー5への入射光束の光路O
1と反射光束の光路O2とが直交するように、角度可変
ミラー5を固定して光源1を点灯する。光源1からの光
束は光路O1上を進み、レンズ2によって平行光束とさ
れた後に被検レンズGに入射する。そして、その透過光
束は角度可変ミラー5で反射され、図3に示すように4
個の透過光束像Ma〜Mdがテレビカメラ6の撮像素子
7上に結像され、テレビモニタ8にその位置が映出され
る。被検レンズGがプリズム度を持たない場合には、こ
れらの透過光束像Ma〜Mdは光軸に関して対称になっ
ており、透過光束像Ma、Mc間の距離、Md、Mb間
の距離から演算手段によって各径線方向の屈折力が算出
される。
When measuring refractive power, the lens G to be tested is brought into contact with the contact member 3, and the optical path O of the light beam incident on the variable angle mirror 5 is adjusted.
The variable angle mirror 5 is fixed and the light source 1 is turned on so that the optical path O2 of the reflected light beam is orthogonal to the optical path O2 of the reflected light beam. The light beam from the light source 1 travels on the optical path O1, is made into a parallel light beam by the lens 2, and then enters the lens G to be tested. Then, the transmitted light beam is reflected by the variable angle mirror 5, and as shown in FIG.
The transmitted light flux images Ma to Md are formed on the image sensor 7 of the television camera 6, and their positions are displayed on the television monitor 8. When the test lens G does not have prism power, these transmitted light flux images Ma to Md are symmetrical with respect to the optical axis, and the distance between the transmitted light flux images Ma and Mc and the distance between Md and Mb can be calculated from the distance between the transmitted light flux images Ma and Mc, and the distance between Md and Mb. The refractive power in each radial direction is calculated by the means.

【0010】被検レンズGがプリズム度を含む場合には
、これらの透過光束像Ma〜Mdの重心位置が測定光軸
からずれるから、この重心位置のずれからプリズム度を
算出することができる。しかし、プリズム度が大き過ぎ
ると、例えば図4に示すように撮像素子7上に透過光束
像Ma〜Mdの全てを受光することが不可能となる。こ
の場合には、検者がテレビモニタ8を観察しながら、或
いは自動的に光束像Ma〜Mdが画角内のどの位置に残
っているかを判断して、どの方向に角度可変ミラー5を
傾ければよいかを判断して、全透過光束像Ma〜Mdを
受光可能なように角度可変ミラー5の傾き角度を変化し
、その際の角度可変ミラー5の傾き方向及び角度変化量
、透過光束像Ma〜Mdの重心位置から、被検レンズG
のプリズム度を算出する。なお、角度可変ミラー5の角
度変化前に受光された透過光束像の特定は、透過光束像
Ma〜Mdの位置関係から容易に行うことができる。ま
た、撮像素子7の代りに一次元CCDを直交配置して、
透過光束像の位置の表示パターンをテレビモニタ8に映
出してもよい。なお、角度可変ミラー5の傾動開始前と
終了後の透過光束像Ma〜Mdの位置を記憶するために
、角度可変ミラー5の動きを検出するためのスイッチを
設けることが好ましい。
When the lens G to be tested has a degree of prism, the positions of the centers of gravity of these transmitted light flux images Ma to Md are shifted from the measurement optical axis, so that the degree of prism can be calculated from the shift of the center of gravity. However, if the degree of prism is too large, it becomes impossible to receive all of the transmitted light flux images Ma to Md on the image sensor 7, as shown in FIG. 4, for example. In this case, the examiner may tilt the variable angle mirror 5 in which direction while observing the television monitor 8 or automatically determining where the beam images Ma to Md remain within the angle of view. The inclination angle of the variable angle mirror 5 is changed so that the total transmitted light flux images Ma to Md can be received. From the center of gravity of images Ma to Md, test lens G
Calculate the prism degree of. Note that the transmitted light flux image received before the angle of the variable angle mirror 5 is changed can be easily identified from the positional relationship of the transmitted light flux images Ma to Md. In addition, a one-dimensional CCD is orthogonally arranged in place of the image sensor 7,
A display pattern of the position of the transmitted light flux image may be displayed on the television monitor 8. It is preferable to provide a switch for detecting the movement of the variable angle mirror 5 in order to store the positions of the transmitted light flux images Ma to Md before and after the tilting of the variable angle mirror 5 starts and ends.

【0011】図5は第2の実施例の構成図を示し、図1
と同一の符号は同一の部材を示している。この実施例で
は、光源1、レンズ2の代りに、光路O1の周囲に配置
したまま移動可能な光源1’、レンズ2’が設けられて
おり、先の第1の実施例の角度可変ミラー5は省略され
ている。被検レンズGのプリズム度が大きい場合には、
光源1’、レンズ2’自体を移動して点線で示す光軸O
1’上に配置すれば、全透過光束像Ma〜Mdを撮像素
子7上に受光することが可能になるので、角度可変ミラ
ー5と同様の効果が得られ、光源1’の位置つまり被検
レンズGへの投影光束の入射角と撮像素子7上の透過光
束像Ma〜Mdの位置から屈折度を求めることができる
FIG. 5 shows a configuration diagram of the second embodiment, and FIG.
The same reference numerals indicate the same members. In this embodiment, instead of the light source 1 and the lens 2, a light source 1' and a lens 2' that can be moved while being arranged around the optical path O1 are provided, and the variable angle mirror 5 of the first embodiment is provided. is omitted. If the prismatic degree of the test lens G is large,
By moving the light source 1' and lens 2' themselves, the optical axis O is shown by the dotted line.
If placed above the light source 1', it becomes possible to receive the totally transmitted light beam images Ma to Md on the image sensor 7, so that the same effect as the variable angle mirror 5 can be obtained, and the position of the light source 1', that is, the subject The degree of refraction can be determined from the angle of incidence of the projected light flux onto the lens G and the positions of the transmitted light flux images Ma to Md on the image sensor 7.

【0012】図6は第3の実施例の構成図を示し、光路
O1の周囲に移動可能な光源1’の代りに、図7に示す
ように光路O1上とその周囲に90°の角度を保って対
称な位置に、例えば5個の光源9a〜9eが配置されて
いる。
FIG. 6 shows a configuration diagram of a third embodiment, in which instead of the light source 1' movable around the optical path O1, a 90° angle is placed on and around the optical path O1 as shown in FIG. For example, five light sources 9a to 9e are arranged at symmetrical positions.

【0013】被検レンズGのプリズム度が小さい場合に
は、中心の光源9aからの光束通過位置は図8(a) 
に示すようになって、撮像素子7上には図9(a) に
示すように4個の透過光束像Ma〜Mdが受光されるの
で屈折力測定が可能となる。プリズム度が大き過ぎると
、光源9aからの光束通過位置は例えば図8(b) に
示すようになるので、撮像素子7上の透過光束像は図9
(b) に示すようになって測定不可能となる。この場
合には、光源9aを消灯して光源9dを点灯すると、そ
の光束通過位置は図8(c) に示すようになるから、
図9(c) に示すように撮像素子7上で全透過光束像
Ma〜Mdが受光できるので、光源9dの位置と透過光
束像Ma〜Mdの位置から測定が可能となる。
When the prism degree of the lens G to be tested is small, the light flux passing position from the central light source 9a is as shown in FIG. 8(a).
As shown in FIG. 9(a), four transmitted light beam images Ma to Md are received on the image sensor 7 as shown in FIG. 9(a), making it possible to measure refractive power. If the prism degree is too large, the light flux passing position from the light source 9a will be as shown in FIG. 8(b), so the transmitted light flux image on the image sensor 7 will be as shown in FIG.
As shown in (b), measurement becomes impossible. In this case, when the light source 9a is turned off and the light source 9d is turned on, the light flux passing position becomes as shown in FIG. 8(c).
As shown in FIG. 9(c), since the total transmitted light flux images Ma to Md can be received on the image sensor 7, measurement can be performed from the position of the light source 9d and the position of the transmitted light flux images Ma to Md.

【0014】図10は第4の実施例の構成図を示し、光
源1の光路O1上には、図11に示すように5個の開口
部10a〜10eを有する液晶絞り10、レンズ2、当
接部材3、レンズ11、図12に示すように4個のフォ
トセンサ12a〜12dから構成される撮像素子12が
順次に配置されていて、レンズ2、レンズ11によって
光源1と撮像素子12とが略共役とされている。
FIG. 10 shows a configuration diagram of the fourth embodiment. On the optical path O1 of the light source 1, as shown in FIG. An image sensor 12 consisting of a contact member 3, a lens 11, and four photosensors 12a to 12d as shown in FIG. It is considered to be approximately conjugate.

【0015】被検レンズGが無く、液晶絞り10の中心
開口10aを開けた場合には、光源1の光束像Pは撮像
素子12の中心に図13(a) に示すように合焦する
。被検レンズGがプリズム度を含まない場合には、その
光束像の大きさから屈折率を算出する。被検レンズGが
プリズム度を含む場合には、光束像P’は例えば図13
(b) の点線位置にずれるので、フォトセンサ12a
〜12dの受光量比からプリズム度を算出する。また、
プリズム度が大きく、例えば図13(c) に示すよう
に光束像Pが撮像素子12から外れる場合には、液晶絞
り10の開口10aから他の開口10b〜10eの何れ
かに変えれば、第3の実施例において別の光源を点灯し
た場合と同様の効果が得られる。なお、測定限界は点線
で示す光束像P”の位置である。
When there is no test lens G and the center aperture 10a of the liquid crystal diaphragm 10 is opened, the luminous flux image P of the light source 1 is focused at the center of the image sensor 12 as shown in FIG. 13(a). If the lens G to be tested does not have prismatic power, the refractive index is calculated from the size of the beam image. When the lens G to be tested includes a prism degree, the light flux image P' is, for example, as shown in FIG.
(b) Since it shifts to the dotted line position, the photosensor 12a
The prism degree is calculated from the received light amount ratio of ~12d. Also,
If the degree of prism is large and the luminous flux image P deviates from the image sensor 12 as shown in FIG. In this embodiment, the same effect as when another light source is turned on can be obtained. Note that the measurement limit is the position of the luminous flux image P'' shown by the dotted line.

【0016】[0016]

【発明の効果】以上説明したように本発明に係るレンズ
メータは、被検レンズのプリズム度が過度に大きい場合
には、透過光束を角度可変反射部材で光電センサ上への
投影角を変化させ、或いは被検レンズへの投影光束の入
射角を変えて光電センサ上に導光して屈折力測定を行う
ので、プリズム度の大きい被検レンズの屈折力測定が可
能となる。
[Effects of the Invention] As explained above, the lens meter according to the present invention changes the projection angle of the transmitted light beam onto the photoelectric sensor using the angle-variable reflecting member when the prism degree of the lens to be tested is excessively large. Alternatively, since the incident angle of the projected light beam on the test lens is changed and the light is guided onto the photoelectric sensor to measure the refractive power, it is possible to measure the refractive power of the test lens with a large degree of prism.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】4穴絞りの正面図である。FIG. 2 is a front view of a four-hole diaphragm.

【図3】撮像素子上の透過光束像位置の説明図である。FIG. 3 is an explanatory diagram of the position of a transmitted light beam image on an image sensor.

【図4】プリズム度が大きい場合の撮像素子上の透過光
束像位置の説明図である。
FIG. 4 is an explanatory diagram of the position of a transmitted light beam image on an image sensor when the degree of prism is large.

【図5】第2の実施例の構成図である。FIG. 5 is a configuration diagram of a second embodiment.

【図6】第3の実施例の構成図である。FIG. 6 is a configuration diagram of a third embodiment.

【図7】光源の配置位置の説明図である。FIG. 7 is an explanatory diagram of the arrangement positions of light sources.

【図8】光源の光束通過位置の説明図である。FIG. 8 is an explanatory diagram of the light flux passing position of the light source.

【図9】撮像素子上の透過光束像位置の説明図である。FIG. 9 is an explanatory diagram of the position of a transmitted light beam image on an image sensor.

【図10】第4の実施例の構成図である。FIG. 10 is a configuration diagram of a fourth embodiment.

【図11】液晶絞りの正面図である。FIG. 11 is a front view of a liquid crystal aperture.

【図12】撮像素子の正面図である。FIG. 12 is a front view of the image sensor.

【図13】撮像素子上の透過光束像位置の説明図である
FIG. 13 is an explanatory diagram of the position of a transmitted light beam image on an image sensor.

【符号の説明】[Explanation of symbols]

1、1’  光源 3  当接部材 4  4穴絞り 5  角度可変ミラー 6  テレビカメラ 7、12  撮像素子 8  テレビモニタ 10  液晶絞り 1, 1' light source 3 Contact member 4 4-hole aperture 5 Angle variable mirror 6 TV camera 7, 12 Imaging device 8 TV monitor 10 Liquid crystal aperture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光源から投影光束を被検レンズに投影
し、その透過光束を光電センサ上に受光して前記被検レ
ンズの屈折力測定を行うレンズメータにおいて、前記被
検レンズ測定光束を角度可変反射部材を介して前記光電
センサ上に投影する受光光学系と、前記角度可変反射部
材の傾斜角と前記光電センサ上の透過光束の位置から前
記被検レンズの屈折度を求める演算手段とを有すること
を特徴とするレンズメータ。
1. A lens meter that measures the refractive power of the test lens by projecting a projected light flux from a light source onto a test lens and receiving the transmitted light flux on a photoelectric sensor, wherein the test lens measurement light flux is adjusted to an angle. a light-receiving optical system that projects onto the photoelectric sensor via a variable reflection member; and a calculation means for determining the refractive power of the test lens from the inclination angle of the angle-variable reflection member and the position of the transmitted light beam on the photoelectric sensor. A lens meter comprising:
【請求項2】  光源から投影光束を被検レンズに投影
し、その透過光束を光電センサ上に受光して前記被検レ
ンズの屈折力測定を行うレンズメータにおいて、前記被
検レンズに入射する前記投影光束の入射角を切換える切
換手段と、前記投影光束の入射角と前記光電センサ上の
透過光束の位置から前記被検レンズの屈折度を求める演
算手段とを有することを特徴とするレンズメータ。
2. A lens meter that measures the refractive power of the test lens by projecting a projected light flux from a light source onto the test lens and receiving the transmitted light flux on a photoelectric sensor, in which the refractive power of the test lens is measured. A lens meter comprising: a switching means for switching the incident angle of the projection light beam; and a calculation means for determining the refractive power of the test lens from the incidence angle of the projection light beam and the position of the transmitted light beam on the photoelectric sensor.
JP11093191A 1991-04-16 1991-04-16 Lens-meter Pending JPH04318438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11093191A JPH04318438A (en) 1991-04-16 1991-04-16 Lens-meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11093191A JPH04318438A (en) 1991-04-16 1991-04-16 Lens-meter

Publications (1)

Publication Number Publication Date
JPH04318438A true JPH04318438A (en) 1992-11-10

Family

ID=14548235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093191A Pending JPH04318438A (en) 1991-04-16 1991-04-16 Lens-meter

Country Status (1)

Country Link
JP (1) JPH04318438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189386A (en) * 2005-01-07 2006-07-20 Nidek Co Ltd Lens meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189386A (en) * 2005-01-07 2006-07-20 Nidek Co Ltd Lens meter

Similar Documents

Publication Publication Date Title
KR100487755B1 (en) Method for measuring refractive power and apparatus therefor
JP3647991B2 (en) Lens meter
JP2632436B2 (en) Auto lens meter
JPS63212318A (en) Eye measuring apparatus
EP0229662B1 (en) Surgical microscope system
US5432596A (en) Lens measurement apparatus providing measurements of multiple lens characteristics
JPH06343608A (en) Cornea shape measuring device
JPH0618363A (en) Lens meter
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPH04318438A (en) Lens-meter
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JP4442843B2 (en) Refractive index measuring device for test lens
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
JPH04269640A (en) Automatic lens meter
JPH08206082A (en) Fundus camera
JPH04343036A (en) Device for measuring optical system refraction
JP2000009586A (en) Lens measuring equipment
JP2004340735A (en) Wavefront aberration measuring apparatus
JPH049135A (en) Eye refraction meter
JPH08159920A (en) Lens meter
JPS5843410A (en) Detector for focusing
JPH095211A (en) Refracting power measuring apparatus
JP2001324315A (en) Measuring instrument
JPS59214730A (en) Lens-decentering measuring device
JPH05245106A (en) Eye detecting device