JPH043177B2 - - Google Patents

Info

Publication number
JPH043177B2
JPH043177B2 JP62184180A JP18418087A JPH043177B2 JP H043177 B2 JPH043177 B2 JP H043177B2 JP 62184180 A JP62184180 A JP 62184180A JP 18418087 A JP18418087 A JP 18418087A JP H043177 B2 JPH043177 B2 JP H043177B2
Authority
JP
Japan
Prior art keywords
algae
culture tank
pellets
rotifers
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62184180A
Other languages
Japanese (ja)
Other versions
JPS6427423A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62184180A priority Critical patent/JPS6427423A/en
Publication of JPS6427423A publication Critical patent/JPS6427423A/en
Publication of JPH043177B2 publication Critical patent/JPH043177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はワムシ、ミジンコ、アルテミア等の動
物プランクトンの培養方法に関する。 〔従来の技術〕 動物プランクトンは魚類の餌として重要であ
り、特に魚類の養殖用として大量の動物プランク
トンを能率よく培養することが要望されている。
従来この種動物プランクトンの培養は、まず、藻
類を培養し、この藻類を餌として動物プランクト
ンを培養する。例えば、シオミズツボワムシ(以
下、単にワムシという。)の生産は回分培養で行
ない植え継ぎ法、間引き法等で培養していた。 培養に必要な滞留日数は藻類の培養に7日間、
この藻類を餌とするワムシの培養に3日間、合せ
て10日間を必要とする。藻類としてはナノクロロ
プシス(以下、海産クロレラという。)が一般に
用いられている。生産される海産クロレラの濃度
は107cells/ml程度であり、ワムシの濃度は50〜
200匹/mlであつた。以上のように、従来法では、
培養日数が合計10日間と長く、このため、培養の
ための所要敷地面積が膨大となる。また、培養日
数が長いことに関連して、ワムシに細菌等が奇生
し易く、健全なワムシの生産がそこなわれること
が多かつた。この問題点を解決する手段として、
海産クロレラとワムシとを同一槽内で混合培養す
ることが考えられるが、実用性がない。すなわ
ち、ワムシが海産クロレラを完全に食べ尽してし
まい、その後は海産クロレラの種がなく増殖しな
いので、最終的にはワムシは餌がなくなり死滅
し、安定した培養は不可能となる。 以上の問題点は海産クロレラを餌とするワムシ
の培養に限らず、藻類を餌として動物プランクト
ンを培養する場合に、共通する問題点であつた。 〔発明が解決しようとする問題点〕 本発明の目的は、上記従来技術の問題点を改善
し、培養日数を短縮することによつて、所要敷地
面積が少なく、かつ、健全な動物プランクトンを
生産することができる動物プランクトンの培養方
法を提供することにある。 〔問題点を解決するための手段〕 本発明の方法は、藻類を固定化材料で包括固定
したペレツトを培養槽に投入し、この培養槽内の
ペレツトから遊離増殖した藻類を餌として動物プ
ランクトンを培養することを特徴とする。 動物プランクトンを培養するための槽は上記ペ
レツトを投入した培養槽とは別置の槽で行つても
よく、または、ペレツトを投入した培養槽と、同
一の槽で行うようにしてもよい。 上記において、藻類とは、珪藻類を含む概念で
あり、例えば、海産クロレラ、セネデスムス、テ
トラセルミス、キートセロス等を含む。また、固
定化材料としてはアルギン酸ナトリウム、カラギ
ーナン、アクリルアミド、ポリエチレングリコー
ルジアクリート、ウレタン、エポキシ等の従来か
ら周知な材料を使用できる。ペレツトの大きさは
1〜10mmで、真比重は0.9〜1.2がよい。形状は球
状又か同等の大きさの円柱状、立方体状その他凸
凹を有す複雑な形状のものとする。培養槽へのペ
レツトの投入量は通常槽容量の3〜50%とする。 〔作 用〕 ペレツト内部で増殖した藻類がペレツト外部に
漏れ出る。漏れた藻類がさらに増殖する。これら
のペレツト外部に漏れ、または増殖した藻類を動
物プランクトンに食べさせて、動物プランクトン
を培養する。ペレツト内部で高濃度の藻類を保持
できるので、高濃度に培養でき、ペレツト外部に
高濃度の藻類を供給できる。また、ペレツトと動
物プランクトンとを同一槽内で培養すると、ペレ
ツトから漏れた藻類が直接に動物プランクトンに
供給されるので、コンタミが少なく、健全な動物
プランクトンを培養することができる。 〔実施例〕 第1図〜第3図に本発明を実施するための装置
構成をそれぞれ示す。第1図は藻類培養槽1とワ
ムシ培養槽2を別置した場合であり、藻類培養槽
1には藻類を包括固定したペレツト6を投入する
とともに、培養液3を連続的に供給する。各培養
槽には炭酸ガス又は酸素の供給源として空気5を
供給する。この空気は槽内液およびペレツトの撹
拌、流動にも寄与する。藻類培養槽1ではペレツ
ト6の内部で増殖した藻類がペレツト6の外部に
漏れ出るとともに、漏れた藻類が同槽内でさらに
増殖する。これらのペレツト6の外部に増殖した
藻類をオーバーフロー8と同拌して、次段のワム
シ培養槽2へ供給する。なお、藻類培養槽1内の
ペレツトは流出防止網7に遮ぎられてワムシ培養
槽2へは移行しない。ワムシ培養槽2では前記藻
類培養槽1から供給された藻類を餌としてワムシ
が培養され高濃度に増殖する。この増殖したワム
シはオーバーフロー4と同伴して、槽外に排出さ
れ養魚場における養殖用の餌として供せられる。 第2図はペレツトを投入しない藻類培養槽11
にペレツト6を投入したワムシ培養槽12を組み
合せた例である。培養液3の供給、空気5の供
給、オーバーフロー8、オーバーフロー4、流出
防止網7の機能は第1図で説明したと同様であ
る。本実施例では、ワムシ培養槽12にペレツト
6を投入したので、この槽内においても藻類の培
養、増殖が行われる。このため、ペレツトを投入
してない藻類培養槽11から供給される藻類と合
算して、ワムシに高濃度の藻類を供給でき、ワム
シを能率よく培養できる。 第3図は藻類の培養とワムシの培養とを共通の
培養槽10で行なう例である。本実施例によれば
ペレツト6から漏れた藻類が直接にワムシに供給
されるので、コンタミが少なく、健全なワムシを
培養できる。 本実施例での炭素の流れを第4図に示す。 曝気によつて供給した空気5中の炭酸ガスは藻
類細胞となり、その藻類を食べてワムシが生育す
る。このとき、藻類重量のの例えば1/10がワム
シの個体重量となり、9/10は炭酸ガス又は微量
の有機物になる。ワムシからはき出された炭酸ガ
スは、再び藻類の増殖に利用される。以上のこと
から、本実施例での藻類の培養に必要な炭酸ガス
の通気量は、理論上、第1図で説明した別置式の
ものに比べて、1/10で済むと考えられる。 また、本実施例での酸素の流れを第5図に示
す。藻類がはき出す酸素はワムシが利用するの
で、ワムシの培養に必要な酸素の供給はその分少
くて済む。また、ワムシが排泄する有機物は炭酸
ガスと同じく藻類の増殖の基質として利用でき
る。このことは培養液3の供給量を節減できるこ
とを意味する。このように、本実施例の藻類を固
定化したペレツトとワムシの混合培養による一槽
式のものは、炭酸ガス、酸素、基質がリサイクル
するので通気量、培養液供給量が少くて済む。ま
た、藻類の増殖がペレツトの内部でも行われてお
り、ペレツト内部の藻類は、ワムシから保護され
ているので藻類が食べ尽されることはなく、安定
した二種混合培養が可能である。 実験例 1 第1図に示した装置を第1表に示す仕様で運転
した。
[Industrial Application Field] The present invention relates to a method for culturing zooplankton such as rotifers, daphnia, and Artemia. [Prior Art] Zooplankton is important as food for fish, and there is a demand for efficient cultivation of large amounts of zooplankton, especially for fish cultivation.
Conventionally, in culturing this type of zooplankton, algae are first cultured, and zooplankton are cultured using the algae as food. For example, the production of rotifers (hereinafter simply referred to as rotifers) has been carried out by batch culture, and cultured by a subculture method, a thinning method, etc. The residence time required for culturing is 7 days for culturing algae.
It takes 3 days to cultivate the rotifers that feed on this algae, for a total of 10 days. Nanochloropsis (hereinafter referred to as marine chlorella) is commonly used as algae. The concentration of marine chlorella produced is about 10 7 cells/ml, and the concentration of rotifers is about 50 ~
It was 200 animals/ml. As mentioned above, in the conventional method,
The number of cultivation days is long, 10 days in total, and therefore the area required for cultivation is enormous. In addition, due to the long culture period, rotifers are easily infected with bacteria and the production of healthy rotifers is often impaired. As a means of solving this problem,
It is conceivable to culture marine chlorella and rotifers together in the same tank, but this is not practical. In other words, the rotifers completely eat up the marine chlorella, and since there are no seeds of marine chlorella and it does not multiply, the rotifers eventually run out of food and die, making stable culture impossible. The above problems are not limited to culturing rotifers that feed on marine chlorella, but are common problems when cultivating zooplankton using algae as food. [Problems to be Solved by the Invention] The purpose of the present invention is to improve the above-mentioned problems of the prior art and shorten the number of days required for culturing, thereby reducing the required site area and producing healthy zooplankton. An object of the present invention is to provide a method for culturing zooplankton. [Means for Solving the Problems] The method of the present invention involves introducing pellets in which algae have been comprehensively immobilized with an immobilization material into a culture tank, and feeding zooplankton using the algae grown freely from the pellets in the culture tank. It is characterized by being cultured. The tank for culturing zooplankton may be a separate tank from the culture tank into which the above-mentioned pellets are introduced, or may be carried out in the same tank as the culture tank into which the pellets are introduced. In the above, algae is a concept that includes diatoms, and includes, for example, marine chlorella, cenedesmus, tetraselmis, chietoceros, and the like. Further, as the immobilization material, conventionally well-known materials such as sodium alginate, carrageenan, acrylamide, polyethylene glycol diacrylate, urethane, and epoxy can be used. The size of the pellets should be 1 to 10 mm, and the true specific gravity should be 0.9 to 1.2. The shape shall be spherical, cylindrical, cubic, or other complex shape with unevenness of the same size. The amount of pellets added to the culture tank is usually 3 to 50% of the tank capacity. [Function] Algae that has grown inside the pellet leak out to the outside of the pellet. The leaked algae will further grow. The algae that have leaked or grown outside of these pellets are fed to zooplankton, and the zooplankton are cultivated. Since a high concentration of algae can be held inside the pellet, it is possible to culture it at a high concentration and supply a high concentration of algae to the outside of the pellet. Furthermore, when pellets and zooplankton are cultured in the same tank, algae leaking from the pellets is directly supplied to the zooplankton, so there is less contamination and healthy zooplankton can be cultured. [Example] Figs. 1 to 3 show the configuration of an apparatus for carrying out the present invention. FIG. 1 shows a case where an algae culture tank 1 and a rotifer culture tank 2 are placed separately. Pellets 6 in which algae are comprehensively fixed are put into the algae culture tank 1, and a culture solution 3 is continuously supplied. Air 5 is supplied to each culture tank as a source of carbon dioxide or oxygen. This air also contributes to stirring and flowing the liquid and pellets in the tank. In the algae culture tank 1, the algae grown inside the pellets 6 leak out to the outside of the pellets 6, and the leaked algae further proliferate within the tank. The algae grown on the outside of these pellets 6 are mixed with the overflow 8 and supplied to the rotifer culture tank 2 in the next stage. Note that the pellets in the algae culture tank 1 are blocked by the outflow prevention net 7 and do not transfer to the rotifer culture tank 2. In the rotifer culture tank 2, rotifers are cultured using the algae supplied from the algae culture tank 1 as bait and multiply to a high concentration. The grown rotifers are discharged out of the tank together with the overflow 4 and are provided as feed for aquaculture at a fish farm. Figure 2 shows algae culture tank 11 without pellets.
This is an example in which a rotifer culture tank 12 into which pellets 6 are charged is combined. The functions of the supply of the culture solution 3, the supply of air 5, the overflow 8, the overflow 4, and the outflow prevention net 7 are the same as those described in FIG. 1. In this embodiment, since the pellets 6 are put into the rotifer culture tank 12, the algae are cultured and multiplied in this tank as well. Therefore, when combined with the algae supplied from the algae culture tank 11 to which no pellets have been input, a high concentration of algae can be supplied to the rotifers, and the rotifers can be efficiently cultured. FIG. 3 shows an example in which algae cultivation and rotifer cultivation are carried out in a common culture tank 10. According to this embodiment, since the algae leaking from the pellet 6 is directly supplied to the rotifers, there is less contamination and healthy rotifers can be cultured. FIG. 4 shows the flow of carbon in this example. Carbon dioxide gas in the air 5 supplied by aeration turns into algae cells, and rotifers grow by eating the algae. At this time, for example, 1/10 of the algae weight becomes the individual weight of rotifers, and 9/10 becomes carbon dioxide gas or trace amounts of organic matter. The carbon dioxide released by rotifers is used again to grow algae. From the above, it is thought that the amount of carbon dioxide gas required for culturing algae in this example is theoretically 1/10 that of the separately installed type described in FIG. Further, the flow of oxygen in this example is shown in FIG. Since the rotifers use the oxygen released by the algae, the amount of oxygen needed to grow the rotifers is reduced accordingly. In addition, the organic matter excreted by rotifers can be used as a substrate for algae growth, just like carbon dioxide gas. This means that the amount of culture solution 3 to be supplied can be reduced. In this way, the one-tank system of the present embodiment, which uses pellets with immobilized algae and mixed culture of rotifers, requires only a small amount of aeration and a small amount of culture solution to be supplied because carbon dioxide, oxygen, and substrate are recycled. In addition, algae growth occurs inside the pellets, and since the algae inside the pellets are protected from rotifers, the algae will not be eaten up, making stable two-species mixed culture possible. Experimental Example 1 The apparatus shown in FIG. 1 was operated according to the specifications shown in Table 1.

【表】 藻類培養槽に投入したペレツトの作製法は、海
産クロレラ培養液を遠心濃縮し、3.4%NaClで2
回洗浄した後、アルギン酸ナトリウム溶液に入れ
た。この時の海産クロレラの濃度は1×
108cells/ml、アルギン酸ナトリウムの濃度は1.5
%であつた。この懸濁液を海水中に滴下して2〜
3mmφの球状ペレツトを作製した。 また、藻類培養槽に供給する培養液としては
NaNO3150mg/、NaHPO415mg/、Fe−
EDTA10mg/、MnCl20.003mg/を添加した
海水を用い、供給量は1.4mg/分とし昼夜連続で
供給した。この供給量は、藻類培養槽での滞留日
数が本発明法では2日、従来法では3日に相当す
る。同量のオーバーフローがワムシ培養槽に供
給、排出され、この量はワムシ培養槽での滞留日
数が3日に相当する。 従来法では藻類培養槽にペレツトを投入せず、
海産クロレラを直接投入して行つた。なお、ワム
シ培養槽にはワムシを投入した。連続運転で定常
状態になつたときの結果を第2表に示す。
[Table] The method for making pellets that are put into the algae culture tank is to centrifugally concentrate the marine chlorella culture solution and dilute it with 3.4% NaCl.
After washing twice, it was placed in a sodium alginate solution. The concentration of marine chlorella at this time is 1x
10 8 cells/ml, concentration of sodium alginate is 1.5
It was %. Drop this suspension into seawater and
Spherical pellets with a diameter of 3 mm were prepared. In addition, as a culture solution to be supplied to an algae culture tank,
NaNO 3 150mg/, NaHPO 4 15mg/, Fe−
Seawater to which 10 mg of EDTA and 0.003 mg of MnCl 2 were added was used, and the supply rate was 1.4 mg/min and was continuously supplied day and night. This amount of supply corresponds to the residence time in the algae culture tank for 2 days in the method of the present invention and 3 days in the conventional method. The same amount of overflow is fed into and discharged from the rotifer culture tank, and this amount corresponds to a residence time in the rotifer culture tank of 3 days. In the conventional method, pellets are not put into the algae culture tank;
Marine chlorella was directly added. Incidentally, rotifers were introduced into the rotifer culture tank. Table 2 shows the results when a steady state was reached during continuous operation.

【表】【table】

【表】 第2表から明らかなように、本発明法では藻類
培養槽での滞留日数が従来法に比べて短いにもか
かわらず、海産クロレラの濃度を高く維持でき、
ワムシを高密度に培養できた。 実験例 2 テトラセルミス培養液を遠心濃縮し、アクリル
アミド水溶液に入れた。この時の濃度はテトラセ
ルミスの濃度が4×106cells/ml、アクリルアミ
ドモノマの濃度が15%であつた。この懸濁液にβ
ジメチルアミノプロピオニトリルを0.5%、
K2S2O8を0.25%となるように添加し重合成形し
て、2〜3mmφの球状ペレツトを作製した。この
ペレツトを実験例1と同一の実験装置の藻類培養
槽に400ml投入し、ワムシ培養槽にはワムシを投
入した。比較のための従来法では藻類培養槽にペ
レツトを入れず、テトラセルミスを直接に投入し
た。 上記以外の実験条件、例えば装置構造、培養液
の性状、供給量はすべて実験例1と同一の条件で
行つた。連続運転で定常状態になつたときの結果
を第3表に示す。
[Table] As is clear from Table 2, the method of the present invention can maintain a high concentration of marine chlorella even though the retention period in the algae culture tank is shorter than that of the conventional method.
We were able to culture rotifers at high density. Experimental Example 2 The Tetraselmis culture solution was centrifugally concentrated and placed in an acrylamide aqueous solution. At this time, the concentration of tetracelmis was 4×10 6 cells/ml, and the concentration of acrylamide monomer was 15%. β to this suspension
0.5% dimethylaminopropionitrile,
K 2 S 2 O 8 was added to give a concentration of 0.25% and polymerization was carried out to produce spherical pellets with a diameter of 2 to 3 mm. 400 ml of this pellet was put into an algae culture tank of the same experimental apparatus as in Experimental Example 1, and rotifers were put into the rotifer culture tank. In the conventional method for comparison, tetracelmis was directly added to the algae culture tank without pellets. The experimental conditions other than those mentioned above, such as the structure of the apparatus, the properties of the culture solution, and the amount supplied, were all the same as in Experimental Example 1. Table 3 shows the results when a steady state was reached during continuous operation.

【表】 本実験においても、本発明法では藻類培養槽で
の滞留日数が従来法に比べて短かいにもかかわら
ずテトラセルミスの濃度を高く維持でき、ワムシ
を高密度に培養できた。 実験例 3 第2図に示した装置を第4表に示す仕様で運転
した。
[Table] In this experiment, the method of the present invention was able to maintain a high concentration of tetraselmis and culture rotifers at a high density even though the residence time in the algae culture tank was shorter than that of the conventional method. Experimental Example 3 The apparatus shown in FIG. 2 was operated according to the specifications shown in Table 4.

【表】 ワムシ培養槽に投入したペレツトの作製法はテ
トラセルミス培養液を遠心濃縮し、カラギーナン
水溶液に懸濁した。この時のテトラセルミスの濃
度は2×106cells/ml、カラギ−ナンの濃度は1
%であつた。この懸濁液を海水中に滴下し、2〜
3mmφの球状ペレツトを作製した。 藻類培養槽に供給する培養液としては、実験例
1と同様のものを用い、同一の量供給した。した
がつて、本実験例における滞留日数は本発明法、
従来法とも、藻類培養槽で2日、ワムシ培養槽で
2.7日となる。藻類培養槽にはテトラセルミスを
直接に投入し、従来法ではワムシ培養槽にはペレ
ツト及び藻類は一切投入しなかつた。 連続運転で定常状態となつたときの結果を第5
表に示す。
[Table] To prepare the pellets that were introduced into the rotifer culture tank, the Tetraselmis culture solution was concentrated by centrifugation, and then suspended in an aqueous carrageenan solution. At this time, the concentration of tetracelmis was 2×10 6 cells/ml, and the concentration of carrageenan was 1.
It was %. Drop this suspension into seawater and
Spherical pellets with a diameter of 3 mm were prepared. The same culture solution as in Experimental Example 1 was used as the culture solution supplied to the algae culture tank, and the same amount was supplied. Therefore, the retention days in this experimental example are based on the method of the present invention,
With the conventional method, 2 days in an algae culture tank and 2 days in a rotifer culture tank.
It will be 2.7 days. Tetraselmis was directly added to the algae culture tank, and in the conventional method, no pellets or algae were added to the rotifer culture tank. The fifth result is the result when the steady state is reached in continuous operation.
Shown in the table.

【表】 本実験では藻類培養槽での滞留日数が短いた
め、前記実験例2の従来法に比べても、藻類培養
槽でのテトラセルミス濃度が著しく低下してい
る。このため、ワムシ培養槽でのワムシ濃度も従
来法では、特に低下している。一方、本発明法に
よれば、藻類培養槽から流入するオーバーフロー
中のテトラセルミスの濃度が低いにもかかわら
ず、ワムシ培養槽でのワムシ濃度を比較的高密度
に維持できた。 実験例 4 第3図に示した装置を第6表に示す仕様で運転
した。
[Table] In this experiment, since the residence time in the algae culture tank was short, the concentration of tetracelmis in the algae culture tank was significantly lower than in the conventional method of Experimental Example 2. For this reason, the rotifer concentration in the rotifer culture tank is also particularly low in the conventional method. On the other hand, according to the method of the present invention, the rotifer concentration in the rotifer culture tank could be maintained at a relatively high density even though the concentration of tetracelmis in the overflow flowing from the algae culture tank was low. Experimental Example 4 The apparatus shown in FIG. 3 was operated according to the specifications shown in Table 6.

【表】 本発明法において培養槽に投入したペレツト
は、実験例1で用いたものと同様の海産クロレラ
をアルギン酸ナトリウムで固定化したもの(以
下、Aペレツトという。)、及び実験例3で用いた
ものと同様のテトラセルミスをカラギーナンで固
定化したもの(以下、Bペレツトという。)であ
る。培養液は前記各実験例と同様のものを用い、
培養槽にワムシを投入し、滞留日数2.7日で連続
培養した。なお、従来法においてはペレツトを投
入せず、海産クロレラを初期濃度が2×
107cells/mlとなるように直接に投入した。連続
運転で定常状態になつたときの結果を第7表に示
す。
[Table] The pellets added to the culture tank in the method of the present invention were the same marine chlorella used in Experimental Example 1 immobilized with sodium alginate (hereinafter referred to as A pellets), and the pellets used in Experimental Example 3. This pellet is made by immobilizing Tetraselmis with carrageenan (hereinafter referred to as B pellet). The culture solution used was the same as in each of the above experimental examples,
Rotifers were placed in a culture tank and cultured continuously for 2.7 days. In addition, in the conventional method, pellets are not input, and marine chlorella is used at an initial concentration of 2×.
The cells were directly injected at a concentration of 10 7 cells/ml. Table 7 shows the results when a steady state was reached during continuous operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、動物プランクトンを短い培養
日数で能率よく培養できる。このため、生産した
動物プランクトンは細菌等が奇生する機会も少な
く、健全である。また、培養のための所要敷地面
積も少なくて済む。
According to the present invention, zooplankton can be efficiently cultured in a short culture period. For this reason, the zooplankton produced is healthy, with little chance for bacteria to grow. In addition, the area required for culturing is also small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本発明の方法を実施
するための装置系統図、第4図は第3図に示した
一槽式の場合の炭素の流れをモデル化した説明
図、第5図は同じく酸素の流れをモデル化した説
明図である。 1…藻類培養槽、2…ワムシ培養槽、3…培養
液、4…オーバーフロー(ワムシ)、5…空気、
6…ペレツト、7…流出防止網、8…オーバーフ
ロー(藻類)。
Figures 1 to 3 are system diagrams of equipment for implementing the method of the present invention, Figure 4 is an explanatory diagram modeling the flow of carbon in the case of the one-tank type shown in Figure 3, and Figure 5 The figure is also an explanatory diagram modeling the flow of oxygen. 1... Algae culture tank, 2... Rotifer culture tank, 3... Culture solution, 4... Overflow (rotifer), 5... Air,
6...Pellet, 7...Outflow prevention net, 8...Overflow (algae).

Claims (1)

【特許請求の範囲】[Claims] 1 藻類を固定化材料で包括固定したペレツトを
培養槽に投入し、この培養槽内のペレツトから遊
離増殖した藻類を餌として、前記ペレツトを投入
した培養槽とは別置の、または同一の培養槽内
で、動物プランクトンを培養することを特徴とす
る動物プランクトンの培養方法。
1. Pellet containing algae comprehensively immobilized with immobilization material is placed in a culture tank, and algae grown freely from the pellets in this culture tank are used as food to cultivate the pellet separately from or in the same culture tank as the one in which the pellet was placed. A method for cultivating zooplankton, which comprises culturing zooplankton in a tank.
JP62184180A 1987-07-23 1987-07-23 Culture of zooplankton Granted JPS6427423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62184180A JPS6427423A (en) 1987-07-23 1987-07-23 Culture of zooplankton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62184180A JPS6427423A (en) 1987-07-23 1987-07-23 Culture of zooplankton

Publications (2)

Publication Number Publication Date
JPS6427423A JPS6427423A (en) 1989-01-30
JPH043177B2 true JPH043177B2 (en) 1992-01-22

Family

ID=16148762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62184180A Granted JPS6427423A (en) 1987-07-23 1987-07-23 Culture of zooplankton

Country Status (1)

Country Link
JP (1) JPS6427423A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007888A1 (en) * 2005-07-14 2007-01-18 Nippon Sheet Glass Company, Limited Method of detoxifying toxic compound
KR100903691B1 (en) * 2008-09-12 2009-06-18 한국농어촌공사 Cultivation apparatus of living organism to cause retide and its predator
CN101724546A (en) * 2009-10-29 2010-06-09 复旦大学 Alga and zooplankton linkage culturing device
CN102273431B (en) * 2011-06-01 2013-03-20 深圳大学 Method for co-culturing freshwater rotifers and chlorella vulgaris
CN102422828B (en) * 2011-08-22 2013-10-02 中国科学院南海海洋研究所 Sorting device for zooplankton living body samples
CN111233158A (en) * 2020-02-27 2020-06-05 中海生态环境科技有限公司 Algae and insect removing cultivation optimization method and cultivation optimization device thereof

Also Published As

Publication number Publication date
JPS6427423A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
Naumann et al. Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor
CN101653106A (en) Closed circulating rotifer continuous culturing system
CN106085997A (en) A kind of immobilized algal-bacteria ball and its preparation method and application
CN201393474Y (en) Parent circulating water cultivation device of blue crab
US20190364856A1 (en) Aquaculture system and producing method for aquatic organisms
Holy et al. The effect of catfish and chicken cultivation waste to Daphnia sp. culture
CN104521726B (en) Grading breeding device for breeding through biogas slurry and breeding method of grading breeding device
JPH043177B2 (en)
Jiang et al. Culture of benthic diatom Nitzschia sp. with macroalgae carriers and its application as feed of juveniles Stichopus japonicus
Gaudin et al. Microalgal cell immobilization for the long-term storage of the marine diatom Haslea ostrearia
CN104521727B (en) Breeding device for breeding through biogas slurry and breeding method of breeding device
CN106745821A (en) Sea-farming special microorganism water purification agent and preparation method thereof and application method
CN104176826B (en) A kind of dual anti-water activating solution High-efficient fermentation method of aquaculture
CN206620708U (en) A kind of intelligent aquatic products nutriment bucket
CN113678940A (en) Formula and using scheme of insect bait for ecological aquaculture
CN219719465U (en) Biological floc breeding device
CN105645572A (en) Low-cost method for treating ammonia nitrogen and nitrites in pond culture water body
CN111018127A (en) Method for treating aquaculture wastewater by algae
JP2000270712A (en) Method and device for culturing fishes and shellfishes
CN104521728B (en) Method for breeding through biogas slurry
CN108936091A (en) A kind of Biological fish manure for aquaculture and preparation method thereof
Diana et al. Bioflok Technology In Local Shrimp Cultivation Systems In Efforts To Improve The Economy And As An Education Village In Pante Ceureeumen District, West Aceh
Fui et al. Comparison of Nannochloropsis oculata Productions Cultivated in Two Different Systems: Outdoor Red Tilapia (Oreochromis sp.) Culture Tank and Indoor Pure Culture.
CN103141441B (en) Method for cultivating rotifers by using dried yeast and Antarctic krill meal
CN212464557U (en) Hatching device for SPF (specific pathogen free) larvae of macrobrachium rosenbergii