JPH0431692A - Bearing device for vacuum pump - Google Patents

Bearing device for vacuum pump

Info

Publication number
JPH0431692A
JPH0431692A JP13453490A JP13453490A JPH0431692A JP H0431692 A JPH0431692 A JP H0431692A JP 13453490 A JP13453490 A JP 13453490A JP 13453490 A JP13453490 A JP 13453490A JP H0431692 A JPH0431692 A JP H0431692A
Authority
JP
Japan
Prior art keywords
bearing
rotating shaft
dynamic pressure
pressure type
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13453490A
Other languages
Japanese (ja)
Inventor
Masashi Iguchi
昌司 井口
Ichiro Aoki
伊知郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP13453490A priority Critical patent/JPH0431692A/en
Publication of JPH0431692A publication Critical patent/JPH0431692A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To lengthen the life of each bearing by movably supporting load in the radial direction by herringbone dynamic pressure type pneumatic bearings, movably supporting load in the thrust direction by a spiral group dynamic pressure type pneumatic bearing, and thereby preventing gas from coming in the inside of a rotor by means of a screw groove seal. CONSTITUTION:A turbo molecular vacuum pump is equipped with a turbo molecular pump 2 composed of rotor blades 2a and of stator blades 2b, and with a screw groove pump 3 wherein a rotating body 4 composed of the rotor blades 2a and of the screw groove pump 3 is fixedly coupled in a rotating shaft 4a. In this case, herringbone dynamic pressure type pneumatic bearings 6 are to be coupled in the rotating shaft 4a, the bearing is formed with a plurality of grooves 6a... in 2 steps while being faced to the first rotor 5a projected to the inner circumference of a housing 1 with a micro gap (t) spaced. In addition, the rotating shaft is equipped with a spiral group dynamic pressure type pneumatic bearing 7 wherein discs are provided while being arranged up and down, in this case, the upper and lower surfaces of each disc is furnished with a plurality of spiral grooves 7a..., and the discs are fixedly coupled in the rotating shaft 4a while the right surfaces of the discs are faced to the first and the second stator 5a and 5b with a micro gap (t) spaced.

Description

【発明の詳細な説明】 (1)本発明は、ICや半導体等の製造に使用されるタ
ーボ分子真空ポンプその他の真空ポンプの軸受装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (1) The present invention relates to bearing devices for turbomolecular vacuum pumps and other vacuum pumps used in the manufacture of ICs, semiconductors, and the like.

(2)従来の技術 従来ターボ分子真空ポンプにおいて、高速回転する回転
体の回転軸を軸支するために磁気軸受(a)と他の方式
の軸受とを並設したものが知られており、例えば第10
図示のように下方にピボット式溝軸受(b)を設けたり
、第11図示の玉軸受(c)を設けたり、或いは第12
図示のようにスラスト面の片面にスラスト動圧型溝軸受
(d)をラジアル面にヘリングボーン気体軸受(e)を
並設したものがある。
(2) Prior Art Conventional turbo molecular vacuum pumps have been known in which magnetic bearings (a) and other types of bearings are arranged side by side to support the rotating shaft of a rotating body rotating at high speed. For example, the 10th
A pivot type groove bearing (b) is provided below as shown in the figure, a ball bearing (c) as shown in the 11th figure is provided, or a 12th
As shown in the figure, there is one in which a thrust dynamic pressure type groove bearing (d) is arranged on one side of the thrust surface and a herringbone gas bearing (e) is arranged on the radial surface.

(3)発明が解決しようとする問題点 しかし、上記のようにピボット式溝付き軸受(b)を併
設したものにおいては、ピボット式溝付き軸受の潤滑油
がターボ分子ポンプへの応用では必要となるため、横又
は倒立状態での使用ができなく、オイルフリーターボ分
子ポンプにはなり得ない、又玉軸受(C)を併設したも
のは該玉軸受(c)の機械的損耗により耐久性が劣ると
共にオイリングが必要となる。更にスラスト動圧型溝軸
受(d)とへリングボーン気体軸受(e)とを併設した
ものは軸受構造が複雑となると共に軸の傾きに対する剛
性が不足し、安定した高速回転を維持する事が困難であ
った。
(3) Problems to be Solved by the Invention However, in the case where the pivot type grooved bearing (b) is attached as described above, the lubricating oil of the pivot type grooved bearing is not necessary for application to a turbo molecular pump. Therefore, it cannot be used horizontally or upside down, and it cannot be used as an oil-free turbo molecular pump. Also, those equipped with a ball bearing (C) have poor durability due to mechanical wear and tear of the ball bearing (C). It is inferior and requires oiling. Furthermore, those that have a thrust hydrodynamic groove bearing (d) and a herringbone gas bearing (e) have a complex bearing structure and lack rigidity against shaft tilt, making it difficult to maintain stable high-speed rotation. Met.

本発明は上記のような問題点を解消し回転動作中は軸受
部を上下方向及び円周方向に対し非接触としてオイリン
グを不必要とし、且つハウジング内部と軸受部とをシー
リングすることにより大気放出型としての使用を可能と
すると共に安定性、耐久性を向上し、メンテナンスフリ
ーにした真空ポンプの軸受装置を提供することを目的と
する。
The present invention solves the above-mentioned problems and eliminates the need for oiling by making the bearing part non-contact in the vertical and circumferential directions during rotational operation, and sealing the inside of the housing and the bearing part to reduce atmospheric emissions. The purpose of the present invention is to provide a bearing device for a vacuum pump that can be used as a mold, has improved stability and durability, and is maintenance-free.

(4)問題点を解決するための手段 上記の目的を達成するために、本発明はハウジング内で
回転体が高速で回転する真空ポンプにおいて、該ハウジ
ングの内周にステータを突設し、該ステータに対向して
前記回転体の回転軸にヘリングボーン動圧型気体軸受、
及び上下面にスパイラルグループを形成したスパイラル
グループ動圧型気体軸受とを形成して非接触型軸受を構
成すると共に、該軸受から前記ハウジング内への気体の
侵入を防止するねじ溝シールを前記回転軸に設けたこと
を特徴とする。
(4) Means for Solving the Problems In order to achieve the above object, the present invention provides a vacuum pump in which a rotating body rotates at high speed within a housing, in which a stator is provided protruding from the inner periphery of the housing. a herringbone hydrodynamic gas bearing on the rotating shaft of the rotating body facing the stator;
and a spiral group hydrodynamic gas bearing having spiral groups formed on the upper and lower surfaces to constitute a non-contact type bearing, and a thread groove seal for preventing gas from entering the housing from the bearing is attached to the rotating shaft. It is characterized by the fact that it is provided in

・(5)作 用 高速回転装置を始動させると、ヘリングボーン動圧型気
体軸受と上下面のスパイラルグループ動圧型気体軸受に
よりラジアル方向及びスラスト方向にそれぞれ動圧が発
生し、回転体は軸受面即ちハウジングの内周から突設し
たステータと非接触状態となると共に、ねじ溝シールに
より大気とハウジング内部とが遮断されて高速回転を行
う。
・(5) Operation When a high-speed rotating device is started, dynamic pressure is generated in the radial and thrust directions by the herringbone hydrodynamic gas bearing and the spiral group hydrodynamic gas bearing on the upper and lower surfaces, and the rotating body It is in a non-contact state with the stator protruding from the inner periphery of the housing, and the thread groove seal isolates the atmosphere from the inside of the housing, allowing it to rotate at high speed.

(6)実施例 以下、本発明をターボ分子真空ポンプに適用した第1実
施例を第1図乃至第3図により説明する。
(6) Example Hereinafter, a first example in which the present invention is applied to a turbo molecular vacuum pump will be described with reference to FIGS. 1 to 3.

(1)はハウジング、(2)は動ji!(2a)と静j
!!(2b)とからなるターボ分子ポンプ、(3)はね
じ溝ポンプ、(4)は該動翼(2a)及びねじ溝ポンプ
からなる回転体で回転軸(4a)に嵌入固定されている
。(5a)は前記ハウジング(1)の内周に突設した円
筒状の第1ステータ、(5b)は中央に透孔を有する円
板状の第2ステータ、(6)は前記回転軸(4a)に嵌
入固定されたヘリングボーン動圧型気体軸受を示し、該
ヘリングボーン動圧型気体軸受(6)は、例えば第2図
示の如く回転方向に対しハの字状に形成された多数の溝
(6a)・・・(6a)を有し、前記第1ステータ(5
a)と極小の間隙(1)を有して対向して2段に設けら
れている。
(1) is the housing, (2) is the movement! (2a) and Shizuka
! ! (2b) is a turbo-molecular pump, (3) is a thread groove pump, and (4) is a rotating body consisting of the rotor blade (2a) and the thread groove pump, and is fitted and fixed to the rotating shaft (4a). (5a) is a cylindrical first stator protruding from the inner periphery of the housing (1), (5b) is a disc-shaped second stator with a through hole in the center, and (6) is a rotary shaft (4a). ), the herringbone hydrodynamic gas bearing (6) is fitted with a large number of grooves (6a) formed in a V-shape with respect to the rotational direction, for example, as shown in the second figure. )...(6a), and the first stator (5
a) and are provided in two stages facing each other with an extremely small gap (1).

(7)はスパイラルグループ動圧型気体軸受を示し、該
スパイラルグループ動圧型気体軸受(7)は、例えば第
3図示の如く上面にスパイラル状の多数の溝(7a)・
・・(7a)が形成された円板と下面に同様のスパイラ
ル状の多数の溝(7a)・・・(7a)が形成された円
板とが上下に並設され、上面は前記第1.ステータ(5
a)に、下面は第2ステータ(5b)に対し極小の間隙
(1)(1)を有して対向し前記回転軸(4a)に嵌入
固定されている。
(7) indicates a spiral group dynamic pressure type gas bearing, and the spiral group dynamic pressure type gas bearing (7) has, for example, a large number of spiral grooves (7a) on the upper surface as shown in the third figure.
...(7a) and a disk having a large number of similar spiral grooves (7a)...(7a) formed on the lower surface are arranged vertically in parallel, and the upper surface is formed with the first groove. .. Stator (5
In a), the lower surface faces the second stator (5b) with a very small gap (1) (1), and is fitted and fixed to the rotating shaft (4a).

(8)は前記回転軸(4a)に嵌入固定されたねじ溝シ
ール、(9)はモータ、(10)は固定用ナツト、(1
1)は吸入口、(12)は排出口、(13)は給気口を
示す。
(8) is a threaded seal fitted and fixed to the rotating shaft (4a), (9) is a motor, (10) is a fixing nut, (1
1) is an inlet, (12) is an outlet, and (13) is an air supply port.

次に、上記実施例の真空ポンプの動作を説明する。Next, the operation of the vacuum pump of the above embodiment will be explained.

モータ(9)に通電すると回転体(4)に回転力が生じ
回転を始める。この回転によりヘリングボーン動圧型気
体軸受(6)の溝(6a)・・・(6a)及びスパイラ
ルグループ動圧型気体軸受(7)の溝(7a)・・・(
7a)内に給気口(13)から大気が流入して動圧を発
生し、ラジアル方向及びスラスト方向の軸受性能を有し
回転する。このとき前記スパイラルグループ動圧型気体
軸受(7)は上下面にスパイラルグループ溝(7a)・
・・(7a)を有するので上下のスラスト力が平衡する
。かくて1回転体(4)は定常回転となる。そして動翼
(2a)と静j! (2b)及びねじ溝ポンプ(3)の
作用により吸入口(11)から排気体を吸入し、排出口
(12)から排出する。
When the motor (9) is energized, rotational force is generated in the rotating body (4) and it starts rotating. This rotation causes the grooves (6a)...(6a) of the herringbone hydrodynamic gas bearing (6) and the grooves (7a)...(6a) of the spiral group hydrodynamic gas bearing (7).
Atmospheric air flows into 7a) from the air supply port (13) to generate dynamic pressure, and it rotates with bearing performance in the radial and thrust directions. At this time, the spiral group hydrodynamic gas bearing (7) has spiral group grooves (7a) on the upper and lower surfaces.
...(7a), so the vertical thrust forces are balanced. In this way, the one-rotator (4) is in steady rotation. And moving blade (2a) and static j! (2b) and the thread groove pump (3), the exhaust body is sucked in through the suction port (11) and discharged through the discharge port (12).

第4図は第2実施例を示し、該第2実施例においては前
記第1実施例のポンプの2段のへリングポーン動圧型気
体軸受(6)を1段に形成した場合であり、又第5図は
第3実施例を示し、該第3実施例においては、前記第2
実施例のポンプの上方の1段のへリングポーン動圧型気
体軸受(6)と下方のスパイラルグループ動圧型気体軸
受(7)の配置を逆にした場合であり、第6図は第4実
施例を示し、該第4実施例においては、上方のスパイラ
ルグループ動圧型気体軸受(7)と下方のへリングポー
ン動圧型気体軸受(6)との間にモータ(9)を介在さ
せて設けた場合であり、第7図は第5実施例を示し、該
第5実施例においては上下のへリングポーン動圧型気体
軸受(6)(6)の間にスパイラルグループ動圧型気体
軸受(7)を介在させて設けた場合であり、第8図は第
6実施例を示し、該第6実施例においては上下のへリン
グポーン動圧型気体軸受(6)(6)の間に上方のスパ
イラルグループ動圧型気体軸受(7)と下方のモータ(
9)を介在させて設けた場合であり、第9図は第7実施
例を示し、該第7実施例においては、前記第6実施例の
ポンプの上方のスパイラルグループ動圧型気体軸受(7
)と下方のモータ(9)を逆に配置した場合であり、こ
れら第2乃至第7実施例のいずれの場合の作用は前記第
1実施例の場合と同様である。
FIG. 4 shows a second embodiment, in which the two-stage Hering-Pone hydrodynamic gas bearing (6) of the pump of the first embodiment is formed into one stage, and FIG. 5 shows a third embodiment, in which the second
This is a case where the arrangement of the upper Hering Pone hydrodynamic gas bearing (6) and the lower spiral group hydrodynamic gas bearing (7) of the pump of the embodiment are reversed, and FIG. 6 shows the fourth embodiment. In the fourth embodiment, the motor (9) is interposed between the upper spiral group hydrodynamic gas bearing (7) and the lower Hering Pone hydrodynamic gas bearing (6). FIG. 7 shows a fifth embodiment, in which a spiral group hydrodynamic gas bearing (7) is interposed between the upper and lower Hering-Pone hydrodynamic gas bearings (6) (6). FIG. 8 shows a sixth embodiment, in which an upper spiral group dynamic pressure type gas bearing is installed between the upper and lower Hering-Pone hydrodynamic type gas bearings (6) (6). Gas bearing (7) and lower motor (
FIG. 9 shows a seventh embodiment, in which a spiral group hydrodynamic gas bearing (7) is provided above the pump of the sixth embodiment.
) and the lower motor (9) are arranged oppositely, and the operation in any of these second to seventh embodiments is the same as in the first embodiment.

(7)発明の効果 上記のように2本発明によればヘリングボーン動圧型気
体軸受によりラジアル方向に荷重を支承すると共に上下
面にスパイラルグループを形成したスパイラルグループ
動圧型気体軸受によりスラスト方向の荷重を平衡して支
承するようにし、ねじ溝シールにより回転体内部への気
体の侵入を阻止するようにしたので、回転体が安定して
高速回転し、回転中は排気体が大気と遮断され、バック
ポンプ不要の完全オイルフリー状態になると共に軸受面
が非接触となり、軸受部の発熱を抑え軸受の長寿命化が
図れ、且つメンテナンスフリーとなる等の効果を有する
(7) Effects of the Invention As described above, according to the present invention, the load is supported in the radial direction by a herringbone hydrodynamic gas bearing, and the load in the thrust direction is supported by the spiral group hydrodynamic gas bearing with spiral groups formed on the upper and lower surfaces. The rotor is supported in a balanced manner, and the thread groove seal prevents gas from entering the rotating body, allowing the rotating body to rotate stably and at high speed, and while rotating, the exhaust gas is isolated from the atmosphere. A completely oil-free state with no need for a back pump is achieved, and the bearing surfaces are not in contact with each other, suppressing heat generation in the bearing portion, extending the life of the bearing, and being maintenance-free.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の縦断面図、第2図はへリ
ングポーン動圧型気体軸受の要部の形状説明図、第3図
はスパイラルグループ動圧型気体軸受の要部の形状説明
図、第4図は第2実施例の要部の説明図、第5図は第3
実施例の要部の説明図、第6図は第4実施例の要部の説
明図、第7図は第5実施例の要部の説明図、第8図は第
6実施例の要部の説明図、第9図は第7実施例の要部の
説明図、第1θ図乃至第12図は従来の各側の縦断面図
である。 (6)・・・ヘリングボーン動圧型気体軸受(7)・・
・スパイラルグループ動圧型気体軸受(8)・・・ねじ
溝シール
Fig. 1 is a longitudinal cross-sectional view of the first embodiment of the present invention, Fig. 2 is an explanatory diagram of the shape of the main part of a Herringpohn hydrodynamic gas bearing, and Fig. 3 is a shape of the main part of a spiral group hydrodynamic gas bearing. An explanatory diagram, FIG. 4 is an explanatory diagram of the main part of the second embodiment, and FIG. 5 is an explanatory diagram of the main part of the second embodiment.
FIG. 6 is an explanatory diagram of the essential parts of the fourth embodiment, FIG. 7 is an explanatory diagram of the essential parts of the fifth embodiment, and FIG. 8 is an explanatory diagram of the essential parts of the sixth embodiment. FIG. 9 is an explanatory diagram of the main part of the seventh embodiment, and FIGS. 1θ to 12 are longitudinal sectional views of each side of the conventional device. (6)... Herringbone hydrodynamic gas bearing (7)...
・Spiral group dynamic pressure type gas bearing (8)...Thread groove seal

Claims (1)

【特許請求の範囲】[Claims] ハウジング内で回転体が高速で回転する真空ポンプにお
いて、該ハウジングの内周にステータを突設し、該ステ
ータに対向して前記回転体の回転軸にヘリングボーン動
圧型気体軸受、及び上下面にスパイラルグループを形成
したスパイラルグループ動圧型気体軸受とを形成して非
接触型軸受を構成すると共に、該軸受から前記ハウジン
グ内への気体の侵入を防止するねじ溝シールを前記回転
軸に設けたことを特徴とする真空ポンプの軸受装置。
In a vacuum pump in which a rotary body rotates at high speed within a housing, a stator is provided protruding from the inner periphery of the housing, a herringbone hydrodynamic gas bearing is mounted on the rotating shaft of the rotary body facing the stator, and a herringbone hydrodynamic gas bearing is mounted on the upper and lower surfaces of the rotor. A spiral group hydrodynamic gas bearing is formed to form a spiral group to constitute a non-contact type bearing, and a thread groove seal is provided on the rotating shaft to prevent gas from entering from the bearing into the housing. A vacuum pump bearing device featuring:
JP13453490A 1990-05-24 1990-05-24 Bearing device for vacuum pump Pending JPH0431692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13453490A JPH0431692A (en) 1990-05-24 1990-05-24 Bearing device for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13453490A JPH0431692A (en) 1990-05-24 1990-05-24 Bearing device for vacuum pump

Publications (1)

Publication Number Publication Date
JPH0431692A true JPH0431692A (en) 1992-02-03

Family

ID=15130568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13453490A Pending JPH0431692A (en) 1990-05-24 1990-05-24 Bearing device for vacuum pump

Country Status (1)

Country Link
JP (1) JPH0431692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020433A1 (en) * 1997-10-21 1999-04-29 Multilevel Metals, Inc. Gas bearing turbo pump and gas bearing feedthrough
JP2003501587A (en) * 1999-06-08 2003-01-14 プジョー・シトロエン・オトモビル・ソシエテ・アノニム High pressure pump with improved hub
US6815855B2 (en) * 1999-01-29 2004-11-09 Ibiden Co., Ltd. Motor and turbo-molecular pump
EP2108844A3 (en) * 2008-03-26 2013-09-18 Ebara Corporation Turbo vacuum pump
EP2105615A3 (en) * 2008-03-26 2013-09-25 Ebara Corporation Turbo vacuum pump
JP2014231835A (en) * 2013-05-29 2014-12-11 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020433A1 (en) * 1997-10-21 1999-04-29 Multilevel Metals, Inc. Gas bearing turbo pump and gas bearing feedthrough
US6815855B2 (en) * 1999-01-29 2004-11-09 Ibiden Co., Ltd. Motor and turbo-molecular pump
JP2003501587A (en) * 1999-06-08 2003-01-14 プジョー・シトロエン・オトモビル・ソシエテ・アノニム High pressure pump with improved hub
EP2108844A3 (en) * 2008-03-26 2013-09-18 Ebara Corporation Turbo vacuum pump
EP2105615A3 (en) * 2008-03-26 2013-09-25 Ebara Corporation Turbo vacuum pump
JP2014231835A (en) * 2013-05-29 2014-12-11 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump

Similar Documents

Publication Publication Date Title
US3811741A (en) Bearing
US4787829A (en) Turbomolecular pump
KR20000062974A (en) Turbo-molecular pump
JPH0211918A (en) Dynamic pressure type air bearing
JP2003515038A (en) High speed turbo pump
KR970070572A (en) 2 stage centrifugal compressor
JPH0431692A (en) Bearing device for vacuum pump
US5451147A (en) Turbo vacuum pump
TWM592467U (en) Turbo molecular pump and its dust-proof rotor element
JP4576746B2 (en) Turbo rotating equipment
JPS60204997A (en) Composite vacuum pump
JP3095338B2 (en) Turbo molecular pump
JPH0216389A (en) Turbo molecular drag pump
JPH0278793A (en) Multistage volute type vacuum pump
CN112814927B (en) Turbomolecular pump and dustproof rotor element thereof
JPH11117935A (en) Bearing device
JPH01247821A (en) Bearing device for high-speed rotary device
JPH0237197A (en) Compound molecular pump
JPH0670440B2 (en) Turbo molecular pump
JPH07217586A (en) Turbo vacuum pump
JPH0536093U (en) Vacuum pump
JPS61185696A (en) Molecular pump
KR100273374B1 (en) Thrust bearing structure for turbo compressor
JPH03258998A (en) Turbo molecular pump
JP2001221187A (en) Turbo dry pump