JPH0431690B2 - - Google Patents

Info

Publication number
JPH0431690B2
JPH0431690B2 JP2105936A JP10593690A JPH0431690B2 JP H0431690 B2 JPH0431690 B2 JP H0431690B2 JP 2105936 A JP2105936 A JP 2105936A JP 10593690 A JP10593690 A JP 10593690A JP H0431690 B2 JPH0431690 B2 JP H0431690B2
Authority
JP
Japan
Prior art keywords
eye
refractive power
fixation target
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2105936A
Other languages
Japanese (ja)
Other versions
JPH02289227A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2105936A priority Critical patent/JPH02289227A/en
Publication of JPH02289227A publication Critical patent/JPH02289227A/en
Publication of JPH0431690B2 publication Critical patent/JPH0431690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各測定に適するように制御可能な固
視手段を有する眼屈折力・角膜形状測定用の眼科
用測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ophthalmological measuring device for measuring eye refractive power and corneal shape, which has a fixation means that can be controlled to suit each measurement.

[従来の技術] 一般に眼屈折力検査を行う場合には、屈折力の
測定の他に乱視の有無の検査や、乱視軸・乱視度
の検査のために角膜形状の測定も併せて行われて
いる。従来では、このような検査を行う場合に、
角膜形状の測定と屈折力の測定とをそれぞれ別々
に異種の器械で行つていたが、測定に要する時間
と手数が検者及び被検者の双方にとつて相当の負
担になるため、近年では同一の器械で両測定が可
能な装置が造られている。
[Prior Art] Generally, when performing an eye refractive power test, in addition to measuring the refractive power, the corneal shape is also measured in order to test for the presence of astigmatism and to test the astigmatism axis and degree of astigmatism. There is. Conventionally, when conducting such inspections,
Measurement of corneal shape and refractive power were previously carried out separately using different instruments, but in recent years this method has become less effective as the time and effort required for measurement is a considerable burden on both the examiner and the patient. Now, a device has been built that can perform both measurements using the same instrument.

ところで、一般に眼屈折力や角膜形状を測定す
る際には、その装置内部に設けた固視標を被検眼
に注視させ被検眼を固定してから、被検眼の眼底
や角膜に所定の視標を投影してその反射像を検出
器で受光し、それらを解析することによつて測定
値を得ている。
By the way, generally when measuring eye refractive power or corneal shape, the subject's eye is fixed on a fixation target provided inside the device, and then a predetermined target is placed on the fundus or cornea of the subject's eye. The measured values are obtained by projecting the reflected light onto a detector, receiving the reflected images, and analyzing them.

[発明が解決しようとする課題] 眼屈折力測定用固視標には風景等のスライド写
真と放射状パターンの2種類があり、後者の放射
状パターンはその中心を注視させるようになつて
いる。眼屈折力と角膜形状とを同一器械で測定す
る装置においては、これらの固視標の何れかが設
置されているが、角膜形状を測定する場合には、
眼屈折力測定の場合よりも被検者の動きによつて
測定結果が大きく影響されるため、より一層被検
眼に視標を注視させ被検眼を確実に固定させる必
要がある。従つて、角膜形状測定時に眼屈折力測
定用固視標をそのまま用いると、精密な測定の障
害となる場合がある。
[Problems to be Solved by the Invention] There are two types of fixation targets for measuring eye refractive power: a slide photograph of a landscape, etc., and a radial pattern, and the latter radial pattern is designed to direct gaze at its center. In devices that measure eye refractive power and corneal shape using the same instrument, one of these fixation targets is installed, but when measuring corneal shape,
Since the measurement result is affected more by the movement of the subject than in the case of eye refractive power measurement, it is necessary to make the subject's eye gaze at the optotype more firmly and to fix the subject's eye more reliably. Therefore, if the fixation target for eye refractive power measurement is used as it is when measuring the corneal shape, accurate measurement may be hindered.

共通の固視標として中心固視が困難な一般の風
景等のスライドを使用した場合には、被検者はス
ライドの何処を見てよいか迷うために被検眼が固
定され難く、角膜形状測定用固視標としては不向
きである。また、放射状パターンを共通の固視標
として使用した場合には、パターン中心が正視の
位置に固定されているために、この固視標を備え
た固視手段を何ら変化させないと、中度或いは強
度の近視・遠視眼の被検者の場合にはパターンが
ぼやけてしまい注視できないため被検眼が固定さ
れ難く、これも角膜形状測定用固視標としては不
十分である。このように、従来例は十分に満足の
いくものではないため、測定の精度を低下させる
原因ともなつている。
When using a slide of a general scene where central fixation is difficult as a common fixation target, the subject gets confused as to where to look on the slide, making it difficult to fixate the subject's eye, making it difficult to measure corneal topography. It is not suitable as a fixation target. Furthermore, when a radial pattern is used as a common fixation target, the center of the pattern is fixed at the position of emmetropia. In the case of subjects with severely myopic or hyperopic eyes, the pattern becomes blurred and cannot be gazed at, making it difficult to fix the subject's eye, and this is also insufficient as a fixation target for corneal shape measurement. As described above, the conventional example is not fully satisfactory, and is also a cause of deterioration of measurement accuracy.

本発明の目的は、眼屈折力及び角膜形状の両側
定に適するように制御可能な固視標を設けること
により、測定時間と手数とを大幅に軽減させ、被
検眼を十分に固定して高精度の測定を可能にした
眼科用測定装置を提供することにある。
The purpose of the present invention is to significantly reduce measurement time and labor by providing a fixation target that can be controlled to suit the bilateral determination of eye refractive power and corneal shape, and to sufficiently fix the eye to be examined. An object of the present invention is to provide an ophthalmological measuring device that enables accurate measurement.

[発明を解決するための手段] 上述の目的を達成するための本発明の要旨は、
被検者の眼屈折力測定光学系と、該眼屈折力測定
光学系と部分的にえ光学系を共有する角膜形状測
定光学系と、二次元固視標を備え該二次元固視標
を被検眼に提示し雲霧を行う眼屈折力測定用の第
1の固視手段と、視野の略中心を固視させる中心
固視標を備え該中心固視標を被検眼に提示する角
膜形状測定用の第2の固視手段と、前記眼屈折力
測定光学系により得られた被検眼の眼屈折力に適
応する位置に前記第2の固視手段を調整する手段
と、被検眼の前眼部を観察する手段とを有するこ
とを特徴とする眼科用測定装置である。
[Means for solving the invention] The gist of the present invention for achieving the above-mentioned objects is as follows:
A subject's eye refractive power measurement optical system, a corneal shape measurement optical system that partially shares an optical system with the eye refractive power measurement optical system, and a two-dimensional fixation target, and the two-dimensional fixation target is Corneal shape measurement comprising: a first fixation means for measuring eye refractive power that is presented to the subject's eye and performs fogging; and a central fixation target that fixates approximately the center of the visual field; and that presents the central fixation target to the subject's eye. means for adjusting the second fixation means to a position that adapts to the eye refractive power of the eye to be examined obtained by the eye refractive power measuring optical system; This is an ophthalmological measurement device characterized by having a means for observing the ophthalmologic region.

[作用] 上述の構成を有する眼科用測定装置は、二次元
固視標を用いて眼屈折力測定を行い、得られた眼
屈折力に対応する位置に中心固視標を移動して角
膜形状測定を行う。
[Operation] The ophthalmological measuring device having the above-described configuration measures eye refractive power using a two-dimensional fixation target, moves the central fixation target to a position corresponding to the obtained eye refractive power, and measures the corneal shape. Take measurements.

[実施例] 本発明を図示の実施例に基づいて詳細に説明す
る。
[Example] The present invention will be described in detail based on the illustrated example.

第1図は本発明の一実施例を示す光学系であ
り、角膜形状測定時には、リング状ストロボ1か
ら発せられた可視光が、被検眼Eに対向するコリ
メータ用リングレンズ2に設けた円形のスリツト
3を照明するようになつている。スリツト3は光
軸を含む一断面で見たときにリングレンズ2の焦
点面上にあり、このスリツト3を光学的に無限遠
点にあるようにし、その無限遠点から投影された
光が被検眼Eの角膜Ecを照明するようにされて
いる。被検眼Eはその表面が凸面鏡のようになつ
ているので、スリツト3の角膜反射像を作り、こ
の角膜反射像は対物レンズ4を介して近赤外光の
みを反射し他の波長の光を透過するダイクロイツ
クミラー5を透過し、可視光反射・赤外光透過の
ダイクロイツクミラー6で上方に反射され、ビー
ムスプリツタ7で右方に反射されて多数穴絞り8
を通り、プリズム9によつて偏向されてCCD(電
荷結合素子)から成る一次元位置検出素子10に
再結像される。
FIG. 1 shows an optical system showing an embodiment of the present invention. During corneal shape measurement, visible light emitted from a ring-shaped strobe 1 is transmitted through a circular lens provided on a collimator ring lens 2 facing the eye E to be examined. It is designed to illuminate slit 3. The slit 3 is located on the focal plane of the ring lens 2 when viewed in a cross section including the optical axis, and the slit 3 is optically positioned at an infinity point so that the light projected from that infinity point is illuminated. It is designed to illuminate the cornea Ec of the optometrist E. Since the surface of the eye E to be examined is shaped like a convex mirror, a corneal reflection image of the slit 3 is created, and this corneal reflection image reflects only the near-infrared light through the objective lens 4 and rejects light of other wavelengths. It passes through a dichroic mirror 5 that transmits light, is reflected upward by a dichroic mirror 6 that reflects visible light and transmits infrared light, is reflected to the right by a beam splitter 7, and is transmitted to a multi-hole aperture 8.
is deflected by a prism 9 and reimaged onto a one-dimensional position detection element 10 made of a CCD (charge coupled device).

多数穴絞り8は第2図aに示すように、例えば
5個の開口部8a〜8eを有し、プリズム9も開
口部8a〜8eに対応して点線で区分したような
5個のエレメント9a〜9eを有し、これらの各
エレメント9a〜9eは第2図bに示すような断
面形状となつている。この多数穴絞り8とプリズ
ム9とによつて分離された5個の角膜反射像は、
検出素子10の位置で第3図に示すような関係で
結合される。この第3図において、Sbは角膜Ec
で反射された像が対物レンズ4で結像し分離され
た角膜反射像を表し、また10a〜10eはそれ
ぞれ検出素子であり、開口部8a〜8e、プリズ
ムエレメント9a〜9eのそれぞれに対応してい
る。これによつて、角膜反射像Sbの中のの5点
の座標を検知することになり、この5点の座標を
二次曲線の一般式、 AX2+BXY+CY2+DX+EY+F=0 に代入して、連立方程式を解くことにより係数A
〜Eを求め、楕円の一般式、 (x−x02/a2+(y−y02/b2=1 ただし、x=Xcosθ−Ysinθ y=Xsinθ+Ycosθ に変形し、楕円の長径a、短径bから角膜Ecの
両主経線の曲率半径を導出し、角度θから乱視軸
を算出することができる。
As shown in FIG. 2a, the multi-hole diaphragm 8 has, for example, five apertures 8a to 8e, and the prism 9 also has five elements 9a as divided by dotted lines corresponding to the apertures 8a to 8e. -9e, and each of these elements 9a-9e has a cross-sectional shape as shown in FIG. 2b. The five corneal reflection images separated by the multi-hole diaphragm 8 and the prism 9 are as follows:
They are coupled at the position of the detection element 10 in a relationship as shown in FIG. In this figure 3, Sb is corneal Ec
The reflected image is formed by the objective lens 4 and represents a separated corneal reflection image, and 10a to 10e are detection elements, respectively, corresponding to the apertures 8a to 8e and prism elements 9a to 9e. There is. As a result, the coordinates of the five points in the corneal reflection image Sb are detected, and the coordinates of these five points are substituted into the general formula of the quadratic curve, AX 2 + BXY + CY 2 + DX + EY + F = 0, and the simultaneous The coefficient A by solving the equation
Find ~E and use the general formula for the ellipse, (x-x 0 ) 2 /a 2 + (y-y 0 ) 2 /b 2 = 1. However, transform it into The radius of curvature of both principal meridians of the cornea Ec can be derived from a and the minor axis b, and the astigmatism axis can be calculated from the angle θ.

一方、屈折力測定の場合は、第1図に示すよう
に赤外光を発する発光ダイオード11からの光
が、集光レンズ12を通つて眼底投影チヤート1
3を照明するようになつている。このチヤート1
3には、第4図に示すように相互に120度の角度
をなす3経線方向の3本のスリツト13a〜13
cが設けられている。発光ダイオード11からの
光は、更にリレーレンズ14を通つて眼底照明絞
り15に一旦結像されてから、穴あきミラー16
を通つて赤外光であるためにダイクロイツクミラ
ー6を通り、遠赤外光のみがダイクロイツクミラ
ー5を透過して、対物レンズ4を介して被検眼E
の瞳孔に結像され眼底Efを照明するようになつ
ている。
On the other hand, in the case of refractive power measurement, as shown in FIG.
It is designed to illuminate 3. This chart 1
As shown in FIG.
c is provided. The light from the light emitting diode 11 further passes through the relay lens 14 and forms an image on the fundus illumination diaphragm 15, and then passes through the perforated mirror 16.
Since the infrared light passes through the dichroic mirror 6, only the far infrared light passes through the dichroic mirror 5 and passes through the objective lens 4 to the subject's eye E.
The image is formed on the pupil of the eye and illuminates the fundus Ef.

この遠赤外光によるチヤート13の像はリレー
レンズ14を通つて一旦結像し、対物レンズ4に
より正視眼底と共役になるように投影される。眼
底Efからの反射像は、再び対物レンズ4を経由
してダイクロイツクミラー5,6を透過して結像
し、穴あきミラー16で下方に反射される。穴あ
きミラー16の近くには絞り板17が配置されて
おり、この絞り板17は第5図に示すように環状
の透過部から成る6個の開口部17a〜17fを
有している。そして、開口部17aと17d、1
7bと17e、17cと17fは、それぞれ対応
して1つのチヤンネルを形成している。眼底照明
絞り15と絞り板17とは、被検眼Eの瞳孔上で
は第6図の15A,17Aで示すように結像し、
チヤート13の像を投影光学系と測定光学系とに
分離するようになつている。
The image of the chart 13 formed by this far-infrared light is once formed through the relay lens 14 and projected by the objective lens 4 so as to be conjugate with the emmetropic fundus. The reflected image from the fundus Ef passes through the objective lens 4 again, passes through the dichroic mirrors 5 and 6, forms an image, and is reflected downward by the perforated mirror 16. A diaphragm plate 17 is disposed near the perforated mirror 16, and this diaphragm plate 17 has six apertures 17a to 17f each consisting of an annular transmitting portion, as shown in FIG. Then, the openings 17a and 17d, 1
7b and 17e, and 17c and 17f correspond to each other and form one channel. The fundus illumination diaphragm 15 and the diaphragm plate 17 form images on the pupil of the subject's eye E as shown at 15A and 17A in FIG.
The image of the chart 13 is separated into a projection optical system and a measurement optical system.

絞り板17により分割された光束は、結像レン
ズ18を介してプリズム19によつて分離され、
反射ミラー20、シリンドリカルレンズ21を経
て検出素子22の短手方向に集光され、3個の検
出素子22a〜22c上に結像されるようになつ
ている。プリズム19は第7図aに示すように6
個のエレメント19a〜19fを有しており、絞
り板17の6個の開口部17a〜17fに対応し
て像を分離するようになつていて、第7図bはプ
リズム19の断面形状を示している。
The light beam divided by the diaphragm plate 17 is separated by a prism 19 via an imaging lens 18.
The light is focused in the transverse direction of the detection element 22 through the reflection mirror 20 and the cylindrical lens 21, and is imaged onto the three detection elements 22a to 22c. The prism 19 is 6 as shown in FIG. 7a.
The prism 19 has six elements 19a to 19f and is designed to separate images corresponding to the six openings 17a to 17f of the aperture plate 17. FIG. 7b shows the cross-sectional shape of the prism 19. ing.

このように分離された像は、第8図に示すよう
に配置された3個のシリンドリカルレンズ21a
〜21cにより像の長手方向に集光されて検出素
子22a〜22c上に結像され、開口部17a〜
17fに対応した眼底像Pa〜Pfとなる。
The images separated in this way are captured by three cylindrical lenses 21a arranged as shown in FIG.
~21c focuses the light in the longitudinal direction of the image and forms an image on the detection elements 22a~22c, and the openings 17a~
The fundus images Pa to Pf correspond to 17f.

被検眼Eが非正視眼であれば、眼底Efから出
射して瞳孔上の或る一点を出た光線は、屈折力に
応じた角度で出射されるから、本実施例のような
光学系を使用すれば被検眼Eの屈折力に応じて検
出素子22上での2つの眼底像Pの距離が変化す
る。
If the eye E to be examined is an ametropic eye, the light ray that exits from the fundus Ef and exits at a certain point on the pupil will exit at an angle that corresponds to the refractive power. When used, the distance between the two fundus images P on the detection element 22 changes depending on the refractive power of the eye E to be examined.

従つて、予め2つの眼底像Pの間隔と屈折力の
関係を求めておけば、3径線方向の屈折力が測定
でき、その各屈折力を次式、 D=A sin(2ω+θ)+B に代入して球面度数、乱視度数、乱視角を計算す
ることができる。変数D、ωは屈折力及び径線方
向の角度をそれぞれ表し、定数A、B、θはそれ
ぞれ乱視度、平均屈折力、乱視軸に相当する。
Therefore, if the relationship between the distance between the two fundus images P and the refractive power is determined in advance, the refractive power in the three radial directions can be measured, and each refractive power can be expressed as follows: D=A sin(2ω+θ)+B By substitution, the spherical power, astigmatic power, and astigmatic angle can be calculated. The variables D and ω represent the refractive power and the radial angle, respectively, and the constants A, B, and θ correspond to the degree of astigmatism, the average refractive power, and the astigmatic axis, respectively.

被検眼Eと器械との位置合わせは、図示しない
光源から出射され、対物レンズ4によりダイクロ
イツクミラー5を下方に反射した前眼部からの赤
外光を、テレビリレーレンズ23によつてテレビ
撮像管24上に結像し、本体に付属又は別個に設
けられたテレビモニタによつて行うことができ
る。
To align the eye E and the instrument, infrared light from the anterior segment of the eye, which is emitted from a light source (not shown) and reflected downward by the objective lens 4 on the dichroic mirror 5, is captured by the television relay lens 23. The image is formed on the tube 24 and can be performed by a television monitor attached to the main body or provided separately.

眼屈折力測定用としての二次元固視標25を備
えた第1の固視手段は光源26と共にビームスプ
リツタ7の上方に設けられ、光源26によつて照
明された固視標25は、リレーレンズ27、ビー
ムスプリツタ7を介して被検眼Eにより注視され
るようになつている。固視標25は光源26と共
に光軸上を上下に移動、つまり雲霧を行い複数の
位置に被検眼Eを固定させて測定を行うことによ
り、被検眼Eの器械近視を除去するように制御さ
れる。
A first fixation means equipped with a two-dimensional fixation target 25 for eye refractive power measurement is provided above the beam splitter 7 together with a light source 26, and the fixation target 25 illuminated by the light source 26 is It is designed to be gazed at by the eye E through the relay lens 27 and beam splitter 7. The fixation target 25 is controlled to move up and down on the optical axis together with the light source 26, that is, to perform fogging, and to fix the eye E at a plurality of positions and perform measurements, thereby eliminating instrumental myopia in the eye E. Ru.

固視標25に中心固視が困難な一般の風景等の
スライドが用いられた場合には、これを角膜形状
測定用固視標として使用するのは不適当であるか
ら、被検眼Eの眼底Efの正視眼位置に別の点状
固視標を備えた第2の固視手段が設けられる。例
えば本実施例では、プリズム9の中心にフアイバ
28の一端が配され、他端近傍に可視光を発する
発光ダイオード29が配されている。そして、角
膜形状測定時には照明光源26は消灯され、発光
ダイオード29が点灯され、プリズム9の中心に
フアイバ28を介した発光ダイオード29が発光
することにより、被検眼Eは鮮明な輝点を注視す
ることができ、被検眼Eは固定されることにな
る。
If the fixation target 25 is a slide of a general scene where central fixation is difficult, it is inappropriate to use this as a fixation target for corneal shape measurement. A second fixation means having another punctate fixation target is provided at the emmetropic eye position of Ef. For example, in this embodiment, one end of the fiber 28 is arranged at the center of the prism 9, and a light emitting diode 29 that emits visible light is arranged near the other end. When measuring the corneal shape, the illumination light source 26 is turned off, the light emitting diode 29 is turned on, and the light emitting diode 29 emits light through the fiber 28 at the center of the prism 9, so that the eye E to be examined gazes at a clear bright spot. Therefore, the eye E to be examined is fixed.

第9図はフアイバ28を被検眼Eの他の正視眼
位置に設置した第2の実施例を示しており、眼屈
折力測定用の二次元固視標25の照明光源26側
の中心位置にフアイバ28の一端が設置され、他
端に発光ダイオード29が配置されている。この
実施例においても、先の実施例と同様の手順を追
つて角膜形状が測定されるが、この第2の実施例
の場合には固視標25と共にフアイバ28も移動
できるので、角膜形状測定の際に中心の輝点を周
辺部に対する相対的な明るさを調整して、被検眼
Eに注視させることができる。
FIG. 9 shows a second embodiment in which the fiber 28 is installed at another emmetropic eye position of the eye E to be examined, and is placed at the center position on the side of the illumination light source 26 of the two-dimensional fixation target 25 for eye refractive power measurement. One end of the fiber 28 is installed, and a light emitting diode 29 is placed at the other end. In this embodiment, the corneal shape is also measured following the same procedure as in the previous embodiment, but in the case of this second embodiment, the fiber 28 can also be moved together with the fixation target 25, so the corneal shape can be measured. At this time, the brightness of the central bright spot relative to the surrounding area can be adjusted to allow the subject's eye E to gaze at it.

屈折力測定用固視標25に放射状パターンが用
いられた場合には、これを角膜形状測定にも共用
させることができるが、固視標25は通常では正
視位置に設置されているので、正視被検眼しか注
視することができない。そこで、被検眼Eの屈折
力に応じた位置に固視標25をを設置するため
に、角膜形状測定前に屈折力測定を簡単に行つて
おくことが好ましい。即ち、発光ダイオード11
を1回発光させ、眼底Efからの反射像を検出素
子22で把え、その屈折力に応じた位置に固視標
25を移動させると、被検者に固視標25が鮮明
に見えるようになり、被検眼Eを確実に固定する
ことができる。なお、固視標25の位置決定に必
要な球面度数の値は概略の数字でよいため、1径
線のみ処理し測定処理時間を短縮してもよい。
If a radial pattern is used as the fixation target 25 for refractive power measurement, it can also be used for corneal shape measurement, but since the fixation target 25 is usually installed at the emmetropic position, Only the eye to be examined can be gazed at. Therefore, in order to set the fixation target 25 at a position corresponding to the refractive power of the eye E to be examined, it is preferable to simply measure the refractive power before measuring the corneal shape. That is, the light emitting diode 11
is emitted once, the reflected image from the fundus Ef is detected by the detection element 22, and the fixation target 25 is moved to a position according to its refractive power, so that the fixation target 25 can be clearly seen by the subject. Therefore, the eye E to be examined can be reliably fixed. Note that since the value of the spherical power necessary for determining the position of the fixation target 25 may be a rough number, only one radius line may be processed to shorten the measurement processing time.

角膜形状測定のみの場合は、このように先に簡
単に屈折力測定を行うようにするが、屈折力測
定・角膜形状測定を連続して行う場合には、屈折
力測定の測定結果をそのまま利用することができ
る。即ち、屈折力測定によつて得られた球面度数
に相当する位置に固視標25を移動させてから角
膜形状測定に移行すればよい。
If only corneal topography is to be measured, perform a simple refractive power measurement like this, but if refractive power and corneal topography measurements are to be performed consecutively, the measurement results of the refractive power measurement can be used as is. can do. That is, it is sufficient to move the fixation target 25 to a position corresponding to the spherical power obtained by the refractive power measurement and then proceed to the corneal shape measurement.

第10図は本装置の制御回路であり、検出素子
10のの信号を入力する角膜形状測定回路30、
検出素子22の信号を入力する眼屈折力測定回路
31、眼屈折力測定回路31の信号を入力し、一
体化した固視標25及び光源26を制御する固視
標制御回路32、光源26及び発光ダイオード2
9を制御する固視標照明制御回路33が、測定の
選択や連続測定時の手順及び固視標25や照明装
置の制御行う測定選択制御回路34にそれぞれ接
続されている。
FIG. 10 shows the control circuit of this device, including a corneal shape measuring circuit 30 which inputs signals from the detection element 10;
An eye refractive power measuring circuit 31 that inputs the signal of the detection element 22, a fixation target control circuit 32 that inputs the signal of the eye refractive power measuring circuit 31, and controls the integrated fixation target 25 and the light source 26, the light source 26, and light emitting diode 2
A fixation target illumination control circuit 33 that controls the fixation target 9 is connected to a measurement selection control circuit 34 that performs measurement selection, continuous measurement procedures, and control of the fixation target 25 and illumination device.

なお、固視標照明制御回路33は測定選択制御
回路34の指令により、光源26及び発光ダイオ
ード29の点灯を適宜に切換えるための回路であ
るから、固視標25が放射状パターン等の中心を
注視させることができるものであるときには、こ
の制御回路33は省略できる。
Note that the fixation target illumination control circuit 33 is a circuit for appropriately switching the lighting of the light source 26 and the light emitting diode 29 according to commands from the measurement selection control circuit 34, so that the fixation target 25 is fixed at the center of the radial pattern, etc. This control circuit 33 can be omitted if it is possible to do so.

固視標25には中心固視が困難な一般の風景等
のスライドを使用したためにフアイバ28を設け
た装置においては、測定選択制御回路34で眼屈
折力測定或いは連続測定が選択されると、固視標
照明制御回路33により光源26が点灯され、固
視標制御回路32によつて固視標25及び光源2
6を移動させながら、検出素子22の信号を眼屈
折力測定回路31に入力し、器械近視が除去され
た正確な屈折力測定結果を得ることができる。
In a device in which a fiber 28 is provided because the fixation target 25 is a slide of a general scene or the like in which central fixation is difficult, when eye refractive power measurement or continuous measurement is selected in the measurement selection control circuit 34, The fixation target illumination control circuit 33 turns on the light source 26, and the fixation target control circuit 32 turns on the fixation target 25 and the light source 2.
6, the signal from the detection element 22 is input to the eye refractive power measuring circuit 31, thereby obtaining accurate refractive power measurement results in which instrumental myopia is removed.

連続測定の場合は固視標照明制御回路33によ
り光源26を消灯し、発光ダイオード29を点灯
して被検眼Eや注視し易いフアイバ28の輝点を
生じさせて被検眼Eを固定し測定を行い、検出素
子10からの信号を角膜形状測定回路30により
角膜形状測定結果を得ることができる。測定選択
制御回路34で角膜形状測定が選択されたとき
は、固視標照明制御回路33によつて発光ダイオ
ード29を点灯し、以下は前述と同様の手順を追
つて角膜形状測定値を得る。
In the case of continuous measurement, the light source 26 is turned off by the fixation target illumination control circuit 33, and the light emitting diode 29 is turned on to produce a bright spot on the eye E to be examined or the fiber 28 that is easy to gaze at, and the eye E to be examined is fixed and the measurement is performed. The corneal shape measuring circuit 30 uses the signal from the detection element 10 to obtain a corneal shape measurement result. When corneal shape measurement is selected by the measurement selection control circuit 34, the light emitting diode 29 is turned on by the fixation target illumination control circuit 33, and the corneal shape measurement value is obtained by following the same procedure as described above.

固視標25として放射状パターンを使用した場
合に、測定選択制御回路34で眼屈折力測定或い
は連続測定が選択されると、先と同様にして眼屈
折力測定が行われ、連続測定が選択された場合に
は、固視標制御回路32により固視標25を眼屈
折力測定によつて得られた位置に移動させ、固視
標25を被検眼Eに注視させて角膜形状測定を行
う。
When a radial pattern is used as the fixation target 25, if eye refractive power measurement or continuous measurement is selected by the measurement selection control circuit 34, eye refractive power measurement is performed in the same manner as before, and continuous measurement is selected. In this case, the fixation target control circuit 32 moves the fixation target 25 to the position obtained by the eye refractive power measurement, and the eye E is made to gaze at the fixation target 25 to measure the corneal shape.

測定選択制御回路34によつて角膜形状測定の
みが選択されたときには、眼屈折力測定時の手順
に従つて1径線方向のみのデータを検出素子22
から眼屈折力測定回路31に入力させ、その結果
により固視標制御回路32で固視標25を移動さ
せ、それを被検眼Eに注視させて通常の角膜形状
測定を行う。
When only corneal shape measurement is selected by the measurement selection control circuit 34, data in only one radial direction is sent to the detection element 22 according to the procedure for eye refractive power measurement.
is inputted to the eye refractive power measurement circuit 31, and based on the result, the fixation target control circuit 32 moves the fixation target 25, and causes the eye E to gaze at it to perform normal corneal shape measurement.

[発明の効果] 以上説明したように本発明に係る眼科用測定装
置によれば、眼屈折力測定及び角膜形状測定のそ
れぞれに適した固視標を設け、測定時にそられを
切換えて呈示し、或いは同一の固視標を用い角膜
形状測定時には眼屈折力測定によつて得られた被
検眼に適した位置に固視手段を切換える、即ち例
えば固視手段に備えられた固視標を移動させるこ
とによつて、被検眼に鮮明に見える固視差を呈示
し、測定に際しての位置合わせの時間を短縮する
と共に、前眼部観察により固視状態が確認可能と
なり、正確な測定結果を得ることが可能である。
[Effects of the Invention] As explained above, according to the ophthalmological measuring device according to the present invention, fixation targets suitable for eye refractive power measurement and corneal shape measurement are provided, and deflection is switched and presented during measurement. , or when measuring the corneal shape using the same fixation target, the fixation means is switched to a position suitable for the eye to be examined obtained by eye refractive power measurement, that is, for example, the fixation target provided in the fixation means is moved. By doing so, it is possible to present a clearly visible fixation difference to the subject's eye, shorten the time for alignment during measurement, and make it possible to confirm the fixation state by observing the anterior segment of the eye, thereby obtaining accurate measurement results. is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る眼科用測定装置の実施例を
示し、第1図はその光学的構成図、第2図aは多
数穴絞りの正面図、bはプリズムの断面図、第3
図は角膜反射像と検出素子との関係の説明図、第
4図は眼底投影チヤートの正面図、第5図は眼屈
折測定用絞り板の正面図、第6図は被検眼瞳孔上
での絞りの結像状態のの正面図、第7図aは眼屈
折力測定用像分離プリズムの正面図、bはその断
面図、第8図は眼底像と受光素子との関係の説明
図、第9図は角膜形状測定用固視標の別の実施例
を示す構成図、第10図は制御回路のブロツク回
路構成図である。 符号1はリング状ストロボ、2はリングレン
ズ、3はスリツト、4は対物レンズ、5,6はダ
イクロイツクミラー、7はビームスプリツタ、8
は多数穴絞り、9,19はプリズム、10,22
は検出素子、11,29は発光ダイオード、13
はチヤート、15は照明絞り、16は穴あきミラ
ー、17は絞り板、21はシリンドリカルレン
ズ、24はテレビ撮影管、25は固視標、26は
光源、28はフアイバ、30は角膜形状測定回
路、31は眼屈折力測定回路、32は固視標制御
回路、33は固視標照明制御回路、34は測定選
択制御回路である。
The drawings show an embodiment of the ophthalmological measurement device according to the present invention, in which FIG. 1 is an optical configuration diagram thereof, FIG. 2a is a front view of a multi-hole aperture, FIG.
The figure is an explanatory diagram of the relationship between the corneal reflection image and the detection element, Figure 4 is a front view of the fundus projection chart, Figure 5 is a front view of the aperture plate for eye refraction measurement, and Figure 6 is the diagram on the pupil of the eye to be examined. 7a is a front view of the image separation prism for measuring eye refractive power, FIG. 7b is a sectional view thereof, FIG. 8 is an explanatory diagram of the relationship between the fundus image and the light receiving element, FIG. 9 is a block diagram showing another embodiment of the fixation target for corneal shape measurement, and FIG. 10 is a block circuit diagram of the control circuit. 1 is a ring-shaped strobe, 2 is a ring lens, 3 is a slit, 4 is an objective lens, 5 and 6 are dichroic mirrors, 7 is a beam splitter, 8
is a multi-hole aperture, 9, 19 is a prism, 10, 22
is a detection element, 11 and 29 are light emitting diodes, 13
is a chart, 15 is an illumination diaphragm, 16 is a perforated mirror, 17 is an aperture plate, 21 is a cylindrical lens, 24 is a television camera tube, 25 is a fixation target, 26 is a light source, 28 is a fiber, 30 is a corneal topography measurement circuit , 31 is an eye refractive power measurement circuit, 32 is a fixation target control circuit, 33 is a fixation target illumination control circuit, and 34 is a measurement selection control circuit.

Claims (1)

【特許請求の範囲】 1 被検眼の眼屈折力測定光学系と、該眼屈折力
測定光学系と部分的に光学系を共有する角膜形状
測定光学系と、二次元固視標を備え該二次元固視
標を被検眼に提示し雲霧を行う眼屈折力測定用の
第1の固視手段と、視野の略中心を固視させる中
心固視標を備え該中心固視標を被検眼に提示する
角膜形状測定用の第2の固視手段と、前記眼屈折
力測定光学系により得られた被検眼の眼屈折力に
適応する位置に前記第2の固視手段を調整する手
段と、被検眼の前眼部を観察する手段とを有する
ことを特徴とする眼科用測定装置。 2 前記眼屈折力測定光学系により得られた1径
線方向のみの眼屈折力に適応する位置に前記第2
の固視手段を調整する請求項1に記載の眼科用測
定装置。 3 前記二次元固視標と前記中心固視標は同一固
視標である請求項1に記載の眼科用測定装置。 4 前記同一固視標は放射状パターンを有する請
求項3に記載の眼科用測定装置。 5 前記同一固視標は前記二次元固視標の中心に
周辺部と独立して作動する輝点を配置した請求項
3に記載の眼科用測定装置。
[Scope of Claims] 1. An optical system for measuring the eye refractive power of the eye to be examined, an optical system for measuring the corneal shape that partially shares an optical system with the optical system for measuring the eye refractive power, and a two-dimensional fixation target. A first fixation means for measuring eye refractive power that presents a dimensional fixation target to the subject's eye and performs fogging, and a central fixation target for fixating approximately the center of the visual field, the central fixation target being presented to the subject's eye. a second fixation means for measuring the corneal shape to be presented; a means for adjusting the second fixation means to a position adapted to the eye refractive power of the eye to be examined obtained by the eye refractive power measurement optical system; 1. An ophthalmological measuring device comprising means for observing the anterior segment of an eye to be examined. 2. The second eye refractive power is located at a position that adapts to the eye refractive power in only one radial direction obtained by the eye refractive power measuring optical system.
The ophthalmological measuring device according to claim 1, wherein the fixation means of the ophthalmological measuring device is adjusted. 3. The ophthalmologic measuring device according to claim 1, wherein the two-dimensional fixation target and the central fixation target are the same fixation target. 4. The ophthalmological measuring device according to claim 3, wherein the same fixation target has a radial pattern. 5. The ophthalmologic measuring device according to claim 3, wherein the same fixation target has a bright spot arranged at the center of the two-dimensional fixation target and operates independently of the surrounding area.
JP2105936A 1990-04-21 1990-04-21 Measuring device for ophthalmology Granted JPH02289227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105936A JPH02289227A (en) 1990-04-21 1990-04-21 Measuring device for ophthalmology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105936A JPH02289227A (en) 1990-04-21 1990-04-21 Measuring device for ophthalmology

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60023727A Division JPS61185242A (en) 1983-06-13 1985-02-09 Ophthalmic measuring apparatus

Publications (2)

Publication Number Publication Date
JPH02289227A JPH02289227A (en) 1990-11-29
JPH0431690B2 true JPH0431690B2 (en) 1992-05-27

Family

ID=14420737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105936A Granted JPH02289227A (en) 1990-04-21 1990-04-21 Measuring device for ophthalmology

Country Status (1)

Country Link
JP (1) JPH02289227A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587484B2 (en) * 2015-09-29 2019-10-09 株式会社トプコン Ophthalmic equipment
JP7103814B2 (en) * 2018-03-27 2022-07-20 株式会社トプコン Ophthalmic equipment

Also Published As

Publication number Publication date
JPH02289227A (en) 1990-11-29

Similar Documents

Publication Publication Date Title
JP3740546B2 (en) Ophthalmic measuring device
US6267477B1 (en) Three dimensional imaging apparatus and a method for use thereof
JP6685144B2 (en) Ophthalmic equipment and ophthalmic examination system
JP7304780B2 (en) ophthalmic equipment
US20040070730A1 (en) Eye characteristic measuring device
JPS63267331A (en) Non-contact type tonometer
US6086205A (en) Apparatus and method for simultaneous bilateral retinal digital angiography
WO2018135175A1 (en) Ophthalmological device
JPH08103413A (en) Ophthalmological measuring instrument
US11571123B2 (en) Ophthalmologic apparatus and method of controlling the same
JP7266375B2 (en) Ophthalmic device and method of operation thereof
US4929076A (en) Ophthalmic measuring apparatus
JPH0123133B2 (en)
JP6833081B2 (en) Ophthalmic equipment and ophthalmic examination system
JPH0431690B2 (en)
JPS6117494B2 (en)
JPS61100227A (en) Ophthalmic measuring apparatus
JPS6257534A (en) Ophthalmic measuring apparatus
JPH0342885Y2 (en)
JP7459491B2 (en) Ophthalmology measuring device
JP7133995B2 (en) Ophthalmic device and its control method
JP7219312B2 (en) ophthalmic equipment
JP7281877B2 (en) ophthalmic equipment
JP7292072B2 (en) ophthalmic equipment
JP7116572B2 (en) Ophthalmic device and ophthalmic information processing program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees