JPH0431639B2 - - Google Patents

Info

Publication number
JPH0431639B2
JPH0431639B2 JP27802186A JP27802186A JPH0431639B2 JP H0431639 B2 JPH0431639 B2 JP H0431639B2 JP 27802186 A JP27802186 A JP 27802186A JP 27802186 A JP27802186 A JP 27802186A JP H0431639 B2 JPH0431639 B2 JP H0431639B2
Authority
JP
Japan
Prior art keywords
fibers
diaphragm
alginate
fiber
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27802186A
Other languages
Japanese (ja)
Other versions
JPS63131800A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27802186A priority Critical patent/JPS63131800A/en
Publication of JPS63131800A publication Critical patent/JPS63131800A/en
Publication of JPH0431639B2 publication Critical patent/JPH0431639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は動電型スピーカ、マイクロホン等の
電気音響変換器に関し、さらに詳しくは、繊維系
材料を抄造して得た振動板を備える音響変換器に
関する。
The present invention relates to electro-acoustic transducers such as electrodynamic speakers and microphones, and more particularly to an acoustic transducer equipped with a diaphragm made from a fiber-based material.

【従来の技術】[Conventional technology]

動電型スピーカに代表される音響変換器の音響
特性は主として振動系の物理特性に左右され、そ
の振動系のなかで性能に対して最も重要な要素を
担つているのが振動板である。 この振動板の材料は主として天然繊維から得ら
れるものが多く用いられている。例えば、(A)硫酸
塩バルブ(KP)、亜硫酸パルプ(SP)、種子毛繊
維、綿パルプ、カポツク靭皮繊維、三椏、ラミ
ー、または、無機繊維などを配合して円錐状に抄
造成形し、これに樹脂などを配合して円錐状に抄
造成形し、これに樹脂などの溶剤を含浸すること
で成形されたものである。 また、(B)ポリプロピレン、ポリエチレンなどフ
イルムを用い、圧空真空により所定の形状に成形
した振動板もある。 さらに、(C)軽金属材料としてアルミニウム、チ
タン、ベリリウム等を円錐状に加圧成形したもの
や、近年脚光を浴びている材料であつて、金属酸
化物、窒化物、硼化物などの微粉末を焼結したセ
ラミツク振動板がある。 このように種々の振動板が用いられているが、
振動板材料としての必要な物理的特性は能率を向
上するために、密度ρの小さいことと、再生帯域
を拡げるために、比弾性率E/ρの大きいこと
と、共振を制動し、音圧―周波数特性を平坦にす
るために、適当な内部損失をもつていること、な
どを挙げることができる。
The acoustic characteristics of acoustic transducers, such as electrodynamic speakers, are mainly influenced by the physical characteristics of the vibration system, and the diaphragm plays the most important element in terms of performance in the vibration system. The material of this diaphragm is mainly made of natural fibers. For example, (A) sulfate valve (KP), sulfite pulp (SP), seed wool fiber, cotton pulp, kapok bast fiber, mitsumata, ramie, or inorganic fiber are blended and formed into a conical shape, This is mixed with a resin or the like, formed into a conical shape, and then impregnated with a solvent such as a resin. There is also a diaphragm (B) made of a film such as polypropylene or polyethylene, which is formed into a predetermined shape using compressed air or vacuum. Furthermore, (C) light metal materials such as aluminum, titanium, beryllium, etc., which are pressure-molded into conical shapes, and materials that have been in the spotlight in recent years, such as fine powders of metal oxides, nitrides, and borides, are also available. It has a sintered ceramic diaphragm. Various types of diaphragms are used in this way, but
The physical properties required for a diaphragm material are a low density ρ to improve efficiency, a high specific elastic modulus E/ρ to widen the reproduction band, and a high specific elastic modulus E/ρ to damp resonance and reduce sound pressure. -Having appropriate internal loss in order to flatten the frequency characteristics, etc.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

上述のような抄造製により得た振動板は、前記
物理的諸条件を完全に満足させるものではなく、
所望の音圧周波数特性を得ることができなかつ
た。 また、成形法により得た振動板は、ポリプロピ
レンなどのプラスチツクフイルムを素材としてい
るため比較的密度が大きく、能率が低下するので
期待通りの特性を得ることができなかつた。 さらにまた、加圧成形法により得れた振動板
は、軽金属材料であつて、とくにベリリウムの振
動板は√(E:弾性率、ρ:密度)が非常
に大きく(12.3Km/sec程度)、きわめて良好な音
圧周波数特性が得られるが、その価格が非常に高
く、実用化しにくい。また他の軽金属材料を用い
た場合には、密度が大きく√が5.24Km/
sec以下であり、この種の材料による振動板では
構造を改良しても、現状の振動板以上の音圧周波
数特性の向上は期待できない。セラミツク材に関
しても、ベリリウム材料を用いた場合と同様に、
高特性のものが得られるが、製造過程における熱
の影響を受けて熱変形をおこし易く、寸法上高精
度のものが得られるが、コスト面でも高い欠点が
あつた。 上述のような振動板材料を用いた振動板の物理
特性を第1表に示す。
The diaphragm obtained by papermaking as described above does not completely satisfy the above physical conditions;
It was not possible to obtain the desired sound pressure frequency characteristics. Furthermore, since the diaphragm obtained by the molding method is made of a plastic film such as polypropylene, it has a relatively high density and efficiency is reduced, making it impossible to obtain the expected characteristics. Furthermore, the diaphragm obtained by the pressure molding method is a light metal material, and in particular, the beryllium diaphragm has a very large √(E: elastic modulus, ρ: density) (about 12.3 Km/sec). Although extremely good sound pressure frequency characteristics can be obtained, the price is extremely high and it is difficult to put it into practical use. In addition, when other light metal materials are used, the density is large and √ is 5.24Km/
sec or less, and even if the structure of a diaphragm made of this type of material is improved, it cannot be expected to improve the sound pressure frequency characteristics over the current diaphragm. Regarding ceramic materials, as well as when using beryllium materials,
Although products with high properties can be obtained, they are susceptible to thermal deformation due to the influence of heat during the manufacturing process.Although products with high dimensional precision can be obtained, they also have the drawback of high costs. Table 1 shows the physical properties of a diaphragm using the above-mentioned diaphragm material.

【表】【table】

【問題点を解決するための手段】[Means to solve the problem]

そこで、この発明は適当な内部損失と、剛性を
保持しながら、低密度の振動板を備える電気音響
変換器を提供することを目的とするもので、その
ために、アルギン酸系繊維を分散、離解した懸濁
液に、炭素繊維に代表される無機質系繊維を混合
し、これを抄造することで得た振動板を備えて構
成したことを特徴とするものである。
Therefore, the purpose of this invention is to provide an electroacoustic transducer equipped with a low-density diaphragm while maintaining appropriate internal loss and rigidity. The device is characterized in that it includes a diaphragm obtained by mixing inorganic fibers, typified by carbon fibers, into a suspension and forming the mixture into paper.

【実施例】【Example】

以下に、この発明の実施例を添付した図面に沿
つて説明する。先ず、電気音響変換器用振動板の
製造工程を説明する。水可溶性アルギン酸アルカ
リ塩、または、これと水溶性高分子材料との混合
物からなる高粘度溶液を湿式紡糸機を用いて、凝
固剤としてアルギン酸に対して不溶性の塩形成能
を有する金属イオン及び又は酸を主成分とする水
溶液からなる凝固浴中に紡出することにより連続
繊維を形成させ、次いで、この連続繊維を短繊維
に切断する。その後、該短繊維をその繊維形態を
痛めないように分散、離解し、スクリーンまたは
クリーナなどで異物、結束繊維を除去し、無機質
系繊維を混合して抄紙を行うことにより振動板を
得る。 なお、アルギン酸は褐藻類に含まれる多糖類で
あつて、D―マンヌロン酸とL―グルクロン酸の
共重合体でβ―1,4結合を主体としているもの
である。このアルギン酸をナトリウムなどのアル
カリ塩として水溶液にすると、粘度の高いアルギ
ン酸アルカリ溶液が得られる。 ここで、水可溶性のアルギン酸アルカリとは、
アルギン酸のリチウム、ナトリウム、カリウム、
アンモニウムなどの塩である。 アルギン酸塩に対して、不溶性塩成形能を持つ
金属イオンは、周期律表のb,,,,
,bの各族の典型元素および遷移金属イオン
であり、具体的にはCa(),Sr(),Ba(),Al
(),Sn(),Pb(),Mn(),Cr(),Fe(),
Co(),Ni(),Cu(),Zn(),Ag()などが
ある。 また、酸としては、例えば塩類、硝酸、燐酸な
どの無機酸および、例えば蟻酸、酢酸などの有機
酸が用いられる。 連続繊維から切断された繊維は、繊維同志自己
接着を促し、さらに振動板の地合いの良好なもの
を得るために、アスペクト比(繊維径(湿潤)対
繊維長の比)を150以下とする。 また、無機質系繊維としては、金属繊維、炭素
繊維、ガラス繊維などが用いられる。 初めに、アルギン酸系繊維を下記の紡糸工程で
形成する。 アルギン酸ナトリウム溶液を用意し、該溶液を
直径0.05mm〜1mmの小径ノズルを通して、塩化カ
ルシウムの紡糸溶液中に注入して紡糸する。ま
た、該紡糸溶液に少量の塩酸、カチオン界面活性
剤を含めてもよい。アルギン酸ナトリウムを該紡
糸溶液に接触するとイオン交換が行われ、アルギ
ン酸カルシウムの長繊維に変えることができる。 ここで、アルギン酸アルカリ金属塩は水溶性で
あるが、2価以上の金属の塩であれば水に溶ける
ことなく繊維が得られる。また、このアルギン酸
系繊維は難燃性を有している。 実施例におけるアルギン酸系繊維の形成の紡糸
条件としては、重合度3.8×105ダルトンのアルギ
ン酸ナトリウムの5%水溶液を、湿度式紡糸機を
用いて、吐出速度3.5ml/分にて、ホール孔径
0.10mmからなる1000ホールのノズルから55%の
CaCl2溶液中に紡出し、温度は室温で、巻取り速
度は2.1〜28rpm程度、延伸率は1.3としている。 上記の紡糸条件で製造されたアルギン酸系繊維
を水洗した後、繊維長をほぼ3mmにしたステープ
ルとする。このようにして電気音響変換器用の振
動板の原材料であるアルギン酸系繊維を得る。 先ず、第1図のこの実施例に係る製造方法のフ
ローチヤートに示すように解繊工程として、アル
ギン酸系繊維80%、4Kgを所定の叩解機に投入し
て、紙料濃度2.5%程度にてアルギン酸系繊維の
繊維形態を損わないように解繊を施し、叩解度測
定機で所定の叩解度に離解、分散する。 分散したアルギン酸に、繊維断面=真円形、直
径=7.5μ、比重=1.7〜1.8、強度=290Kg/mm2、伸
度1.0〜1.2%、弾性率23t/mm2のカーボン繊維チヨ
ツプフアイバー、カツト長5mmを20%、1Kgを投
入し、紙料濃度3.1%で60分離解してカーボン繊
維を分散させ、所定の塩基性染料を5%用い、染
色を施す。 さらに、サイジングとして浸潤強度向上のた
め、尿素樹脂を紙料に対して(絶乾比率)3%添
加し、硫酸バンドを添加して、紙料液のPH値を
5.0〜5.5に調整する。 次に、調整された紙料は、第2図に概略断面図
として示す抄紙機の原料タンク1において、紙料
濃度0.3%の懸濁液2に調整される。この懸濁液
2を連通管を介して移送ポンプ3にて所定の紙料
機の紙料タンク4に送り、紙料タンク4で所定の
形状に具備された紙料工具5を用いて紙状にす
る。この図で符号6は吸引ポンプである。 紙状にされた振動板を、紙料タンク4から取出
し、乾燥機7にて、100℃程度の熱風にて乾燥さ
せる。ここで符号8は所定形状の治具であり、9
は真空吸引ポンプである。乾燥した振動板を所定
の寸法の内外径部分を切断して、アルギン酸繊維
と、炭素繊維の複合振動板を得ることができる。 このようにして得られたアルギン酸繊維と、炭
素繊維の混合による振動板の動的性質値を第2表
に示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, the manufacturing process of a diaphragm for an electroacoustic transducer will be explained. Using a wet spinning machine, a high viscosity solution consisting of a water-soluble alkali alginate salt or a mixture of this and a water-soluble polymer material is used as a coagulant, and metal ions and/or acids having the ability to form a salt insoluble in alginic acid are used. Continuous fibers are formed by spinning into a coagulation bath consisting of an aqueous solution containing as a main component, and then the continuous fibers are cut into short fibers. Thereafter, the short fibers are dispersed and disintegrated without damaging the fiber form, foreign matter and bound fibers are removed using a screen or cleaner, and inorganic fibers are mixed and paper is made to obtain a diaphragm. Incidentally, alginic acid is a polysaccharide contained in brown algae, and is a copolymer of D-mannuronic acid and L-glucuronic acid, mainly composed of β-1,4 bonds. When this alginic acid is made into an aqueous solution as an alkali salt such as sodium, a highly viscous alginate alkaline solution can be obtained. Here, the water-soluble alkali alginate is
Alginate lithium, sodium, potassium,
Salts such as ammonium. Metal ions that have the ability to form insoluble salts for alginate are b in the periodic table.
, b, and transition metal ions, specifically Ca(), Sr(), Ba(), Al
(), Sn(), Pb(), Mn(), Cr(), Fe(),
Examples include Co(), Ni(), Cu(), Zn(), Ag(), etc. Further, as the acid, for example, salts, inorganic acids such as nitric acid and phosphoric acid, and organic acids such as formic acid and acetic acid are used. The fibers cut from the continuous fibers have an aspect ratio (ratio of fiber diameter (wet) to fiber length) of 150 or less in order to promote self-adhesion among fibers and to obtain a good diaphragm texture. Further, as the inorganic fibers, metal fibers, carbon fibers, glass fibers, etc. are used. First, alginate fibers are formed by the following spinning process. A sodium alginate solution is prepared, and the solution is injected into a calcium chloride spinning solution through a small nozzle with a diameter of 0.05 mm to 1 mm for spinning. Further, a small amount of hydrochloric acid and a cationic surfactant may be included in the spinning solution. When sodium alginate is brought into contact with the spinning solution, ion exchange occurs and can be converted into long fibers of calcium alginate. Here, the alginate alkali metal salt is water-soluble, but if it is a salt of a divalent or higher metal, fibers can be obtained without dissolving in water. Moreover, this alginic acid fiber has flame retardancy. The spinning conditions for forming alginate-based fibers in the examples were as follows: A 5% aqueous solution of sodium alginate with a degree of polymerization of 3.8 x 10 5 Daltons was spun using a humidity spinning machine at a discharge rate of 3.5 ml/min.
55% from a 1000 hole nozzle consisting of 0.10mm
It was spun into a CaCl 2 solution, the temperature was room temperature, the winding speed was about 2.1 to 28 rpm, and the stretching ratio was 1.3. After washing the alginic acid fibers produced under the above spinning conditions with water, staples having a fiber length of approximately 3 mm are prepared. In this way, alginic acid fibers, which are raw materials for diaphragms for electroacoustic transducers, are obtained. First, as shown in the flowchart of the manufacturing method according to this embodiment in FIG. 1, in the defibration step, 4 kg of alginate fibers of 80% were put into a predetermined defibrator, and the paper stock concentration was about 2.5%. The alginic acid fibers are defibrated so as not to damage their fiber morphology, and then defibrated and dispersed to a predetermined degree of beating using a beating degree measuring machine. Carbon fiber chop fiber with fiber cross section = perfect circle, diameter = 7.5μ, specific gravity = 1.7-1.8, strength = 290Kg/mm 2 , elongation 1.0-1.2%, elastic modulus 23t/mm 2 in dispersed alginic acid, Input 20% and 1 kg of a 5 mm cut length, disintegrate for 60 minutes at a paper stock concentration of 3.1% to disperse carbon fibers, and dye using 5% of a specified basic dye. Furthermore, in order to improve the infiltration strength as a sizing, urea resin was added at 3% (absolute dry ratio) to the paper stock, and sulfuric acid was added to improve the pH value of the paper stock liquid.
Adjust to 5.0-5.5. Next, the adjusted stock is adjusted to a suspension 2 having a stock concentration of 0.3% in a raw material tank 1 of a paper machine shown as a schematic cross-sectional view in FIG. This suspension 2 is sent to a paper stock tank 4 of a predetermined paper stock machine by a transfer pump 3 via a communication pipe, and in the paper stock tank 4, a paper stock tool 5 equipped in a predetermined shape is used to form paper. Make it. In this figure, numeral 6 is a suction pump. The paper-shaped diaphragm is taken out from the paper stock tank 4 and dried in a dryer 7 with hot air at about 100°C. Here, reference numeral 8 is a jig of a predetermined shape, and 9
is a vacuum suction pump. A composite diaphragm made of alginate fibers and carbon fibers can be obtained by cutting the dried diaphragm into inner and outer diameter portions of predetermined dimensions. Table 2 shows the dynamic property values of the diaphragm obtained by mixing the alginate fibers and carbon fibers thus obtained.

【表】 第2表で明らかなように、アルギン酸系繊維と
炭素繊維による複合材を用いた振動板は、従来の
木材パルプ繊維による振動板より密度が小さく、
かつ、伝播速度すなわち音速が大きく、内部損失
の値について比較的に大きい値を示しており、高
調波歪がわずかであり、音圧周波数特性も広帯域
で平坦となり、伝播速度についても金属材料と比
較しては劣るが、共振に関しては優れたバランス
のよいものになる。 また、上記の実施例において、アルギン酸系繊
維と、炭素繊維の配合率を変化させることによ
り、振動板の諸特性の向上と、所望の特性を得る
ための製造上の調整が容易に行われる。
[Table] As is clear from Table 2, diaphragms made of composite materials made of alginate fibers and carbon fibers have a lower density than diaphragms made of conventional wood pulp fibers.
In addition, the propagation velocity, that is, the sound velocity, is high, the internal loss value is relatively large, the harmonic distortion is slight, the sound pressure frequency characteristics are flat over a wide band, and the propagation velocity is also compared to metal materials. However, the resonance is excellent and well-balanced. Furthermore, in the above embodiments, by changing the blending ratio of alginic acid fibers and carbon fibers, various characteristics of the diaphragm can be improved and manufacturing adjustments can be easily made to obtain desired characteristics.

【発明の効果】【Effect of the invention】

以上の説明から明らかなようにこの発明は、ア
ルギン酸系繊維を主体として無機質系繊維を配合
した懸濁液を抄造して振動板が得られるので、剛
性を繊維し、低密度で内部損失が大きく、伝播速
度も大幅に改善できる音響変換器が得られ、ま
た、従来からの抄造工程をそのまま用いることが
できるので、新たな製造設備を必要とせず、品質
面で安定したものが得られる。
As is clear from the above description, this invention provides a diaphragm by making a suspension of alginic acid fibers and inorganic fibers. , an acoustic transducer with significantly improved propagation speed can be obtained, and since the conventional papermaking process can be used as is, new manufacturing equipment is not required and a product with stable quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動板の製造工程を示すフローチヤー
ト図、第2図は振動板を製造するための紙料機、
および、乾燥機の概略説明図である。
Figure 1 is a flowchart showing the manufacturing process of the diaphragm, Figure 2 is a paper stock machine for manufacturing the diaphragm,
And, it is a schematic explanatory view of a dryer.

Claims (1)

【特許請求の範囲】 1 アルギン酸系繊維と、無機質系繊維を含む懸
濁液を抄造し得た振動板を備える電気音響変換
器。 2 無機質系繊維として炭素繊維を用いることを
特徴とする特許請求の範囲第1項記載の電気音響
変換器。
[Claims] 1. An electroacoustic transducer comprising a diaphragm made from a suspension containing alginic acid fibers and inorganic fibers. 2. The electroacoustic transducer according to claim 1, characterized in that carbon fiber is used as the inorganic fiber.
JP27802186A 1986-11-21 1986-11-21 Electric acoustic transducer Granted JPS63131800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27802186A JPS63131800A (en) 1986-11-21 1986-11-21 Electric acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27802186A JPS63131800A (en) 1986-11-21 1986-11-21 Electric acoustic transducer

Publications (2)

Publication Number Publication Date
JPS63131800A JPS63131800A (en) 1988-06-03
JPH0431639B2 true JPH0431639B2 (en) 1992-05-27

Family

ID=17591541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27802186A Granted JPS63131800A (en) 1986-11-21 1986-11-21 Electric acoustic transducer

Country Status (1)

Country Link
JP (1) JPS63131800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508683B1 (en) * 2014-11-10 2015-04-07 홍덕산업(주) Steel cord for reinforcing rubber and method for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701359A (en) * 1995-04-06 1997-12-23 Precision Power Flat-panel speaker
US6097829A (en) * 1995-04-06 2000-08-01 Precision Power, Inc. Fiber-honeycomb-fiber sandwich speaker diaphragm and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508683B1 (en) * 2014-11-10 2015-04-07 홍덕산업(주) Steel cord for reinforcing rubber and method for the same

Also Published As

Publication number Publication date
JPS63131800A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
CN103993380B (en) A kind of preparation method of Chitosan Fiber With High Tenacity
US2810644A (en) Paper products and method of making the same
JPH0423597A (en) Acoustic diaphragm and manufacture thereof
JP2002517630A (en) Nonwoven fabric manufacturing method
JPH0431639B2 (en)
CN111510845A (en) Paper cone for loudspeaker and preparation method and application thereof
JP4733322B2 (en) Acoustic vibration member
JPH0410800A (en) Diaphragm for electroacoustic transducer
CN113079451A (en) Foaming cone for loudspeaker and preparation method and application thereof
KR100323253B1 (en) The chitosan fiber having high degree of strength and elasticity
US5458958A (en) Speaker cone and process for production thereof
JPH0646836B2 (en) Electro-acoustic transducer
JPH0431638B2 (en)
JPH09107595A (en) Diaphragm for electroacoustic transducer
JPH0644835B2 (en) Electro-acoustic transducer
JP3606492B2 (en) Diaphragm for electroacoustic transducer
JP3048757B2 (en) Diaphragm for electroacoustic transducer
JP2562218B2 (en) Speaker diaphragm
CN117183041B (en) Gelatin-lignin sulfonic acid wood composite acoustic diaphragm and preparation method and application thereof
JPH05328486A (en) Electroacoustic transducer
JP4278801B2 (en) Speaker diaphragm
CN115734129A (en) Paper cone containing carbon fibers and preparation method and application thereof
JP3187915B2 (en) Method for manufacturing papermaking body, acoustic diaphragm and method for manufacturing the same
CN117156374A (en) Acoustic material, manufacturing method thereof, loudspeaker and electronic equipment
JP2569407B2 (en) Algin-based fiber entangled body and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term