JP4733322B2 - Acoustic vibration member - Google Patents

Acoustic vibration member Download PDF

Info

Publication number
JP4733322B2
JP4733322B2 JP2001280184A JP2001280184A JP4733322B2 JP 4733322 B2 JP4733322 B2 JP 4733322B2 JP 2001280184 A JP2001280184 A JP 2001280184A JP 2001280184 A JP2001280184 A JP 2001280184A JP 4733322 B2 JP4733322 B2 JP 4733322B2
Authority
JP
Japan
Prior art keywords
fiber
vibration member
polyketone
acoustic
acoustic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001280184A
Other languages
Japanese (ja)
Other versions
JP2003089954A (en
Inventor
仁一郎 加藤
龍 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2001280184A priority Critical patent/JP4733322B2/en
Publication of JP2003089954A publication Critical patent/JP2003089954A/en
Application granted granted Critical
Publication of JP4733322B2 publication Critical patent/JP4733322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ポリケトン繊維を用いた音響振動部材に関する。
【0002】
【従来の技術】
導電型スピーカーに代表される電気音響変換器の音響特性は、主として振動系の物理特性に左右される。なかでも、振動板は、スピーカーの性能に大きな影響を与える重要な部材である。
【0003】
このスピーカーに組み込まれる振動板やセンターキャップの材質としては、少なくとも次の基本特性が要求される。すなわち、1)能率を向上させ、過渡特性を良くするために、質量あるいは密度が小さいこと、2)周波数の再生帯域を広げ、過渡特性を良くすると共に、高音域を伸ばすために弾性率が大きいこと、3)分割振動を抑え、高音共振のピークディップを小さくし、音圧周波数特性をフラットにするため、適度な内部損失を有すること、等である。
【0004】
従来から振動板材料として使用されてきた代表的なものとして、木材パルプを主体とした紙がある。紙製の振動板は、設計の自由度が大きく、重宝なものである。しかし、紙製の振動板は、比弾性率(弾性率/密度)がそれほど大きくなく、再生周波数音圧レベルが低いという欠点がある。また、湿度の影響を受け易く、物性が不安定である。
【0005】
これらの欠点を解消するため、チタン,ベリリウム等の金属製の振動板やポリプロピレン等のプラスチックス製の振動板が使用されるようになってきている。ところが、金属製の振動板は、剛性の点で優れているものの、密度が大きく、重いという欠点があり、また、内部損失も小さい。他方、プラスチックス製の振動板は、低密度であるものの、剛性が小さいために厚肉化して使用せざるをえず、結果として質量が増加し、また、耐熱性にも劣る。
【0006】
このようなことから、設計の自由度を考慮して、木材パルプを主体とした紙製の振動板を依然として多用しているのが現状である。そして、この紙製の振動板をベースとして、たとえば炭素繊維、アラミド繊維、芳香族ポリエステル繊維等を木材パルプに混抄すること等によって、紙製振動板の物性を改善することが検討されている(特開昭56−48798号公報、特開昭56−57395号公報、特開昭62−36999号公報等参照)。
【0007】
また、近年、加工コストの低減から、熱可塑性樹脂に木材パルプや炭素繊維、アラミド繊維、芳香族ポリエステル繊維等を混ぜて射出成形により音響振動部材を製造することが行われている。
【0008】
しかしながら、木材パルプは比弾性率が低い、耐熱性が低い、湿度変化による音響変化の程度が大きい、加工性が悪いといった問題がある。また、炭素繊維、アラミド繊維、芳香族ポリエステル繊維は、バインダーや樹脂との接着性が悪い、高価である、密度が大きいといった問題があった。これらの問題は、音響振動部材の耐久性、耐熱性、耐湿性に悪影響を及ぼし、例えば、寒暖に晒される車両内部等の過酷な使用雰囲気においては、長期間にわたって音質の安定した再生音が得られないという問題を引き起こす。
【0009】
【発明が解決しようとする課題】
本発明の課題は、耐久性、耐熱性、耐湿性が優れ、音響特性に優れた音響振動部材を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、耐久性、耐熱性、耐湿性が優れ、音響特性の良好な音響振動部材を開発するために、様々な素材を検討した結果、オレフィンと一酸化炭素の共重合ポリマーから構成された脂肪族ポリケトン繊維がこれらの課題を解決しうる可能性を見出し、更に検討を重ねた結果、本発明に到達した。
【0011】
すなわち、本発明は下記の通りである。
【0012】
1.オレフィンと一酸化炭素の共重合ポリマーより構成されたポリケトン繊維を含むことを特徴とする音響振動部材。
【0013】
2.ポリケトン繊維の結晶化度が40%以上であることを特徴とする上記1記載の音響振動部材。
【0014】
3.ポリケトン繊維が、比表面積0.3m2/g以上のフィブリル状物であることを特徴とする上記1又は2記載の音響振動部材。
【0015】
4.ポリケトン繊維の引張弾性率が100cN/dtex以上であることを特徴とする上記1又は2記載の音響振動部材。
【0016】
5.音響振動部材中のポリケトン繊維の割合が5〜100wt%であることを特徴とする上記1〜4のいずれかに記載の音響振動部材。
【0017】
6.上記1〜5のいずれかに記載の音響振動部材を用いたことを特徴とする音響機器。
【0018】
以下、本発明につき詳述する。
【0019】
本発明において、ポリケトン繊維に用いるポリマーは、オレフィンと一酸化炭素が共重合したポリケトンポリマーである。ポリケトンポリマーの組成としては、強度、弾性率、樹脂との接着性、寸法安定性、耐湿熱性等の観点から、エチレンと一酸化炭素が結合した1−オキソトリメチレンを主たる繰り返し単位とするポリマーが好ましい。繰り返し単位中の1−オキソトリメチレンの割合は、多ければ多いほど高融点、高力学物性、高寸法安定性の繊維が得られるため、ポリケトンポリマー質量の90wt%以上であることが好ましく、さらに好ましくは97wt%以上である。
【0020】
このオレフィンと一酸化炭素が結合した繰り返し単位同士は、部分的にケトン基同士、エチレン同士が連結していてもよいが、90wt%以上がオレフィンと一酸化炭素が交互に配列したポリケトンポリマーであることが望ましい。オレフィンと一酸化炭素が交互に配列した部分の含有率は、多ければ多いほど耐熱性、高温時の物性保持が良好であることから、好ましくは97wt%以上、最も好ましくは100wt%である。
【0021】
また、必要に応じて、プロペン、ブテン、ヘキセン、シクロヘキセン、ペンテン、シクロペンテン、オクテン、ノネン等のエチレン以外のオレフィンや、メチルメタクリレート、酢酸ビニル、アクリルアミド、ヒドロキシエチルメタクリレート、スチレン、スチレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルピロリドン、塩化ビニル等の不飽和炭化水素を有する化合物を共重合してもよい。
【0022】
本発明の音響振動部材に含まれるポリケトン繊維の形態としては、特に制限はないが、マルチフィラメント、短繊維、フィブリル状物が好ましい。
【0023】
ここで、フィブリル状物とは、(1)大きさが異なる繊維状、薄膜状又はリボン状、あるいはこれらの形状が合わさった不定形の微小な粒子からなり、(2)大抵の粒子の三次元の寸法の最大のものは他の2つの寸法よりはるかに大きく、かつ好ましくは小さい2つの寸法は10μmを越えず、(3)好ましくは他の粒子と機械的にもつれ合うことのできる多数の触手状突起を有する繊維状、薄膜状又はリボン状構造に形づくられ、かつ(4)普通の紡糸法によって同じ重合体から作られた普通の繊維より遥かに大きい水保有能力を有することを特徴とするパルプ状の粒子である。このフィブリル状物は、比表面積が大きく、堆積させたとき絡み合って紙に似た構造物を生じる能力を有し、このときの絡み合いは、得られた紙様の構造物が脱水後の湿潤時及び乾燥後においてその形態を保ち、その自重を支えるに十分な紙力を与える。
【0024】
本発明に用いるポリケトン繊維は、音響特性の良さ、耐熱性、寸法安定性、耐湿熱性の観点から、結晶化度が40%以上であることが好ましく、より好ましくは50%以上であり、更に好ましくは60%以上である。上限は特に制限はないが、通常は80%以下である。結晶化度をこの範囲にすると、ポリケトン繊維、特にフィブリル状物を用いることによる補強効果が十分発揮され、得られた紙や複合材料は優れた力学的強度を発現する。
【0025】
本発明においては、特にフィブリル状物として用いる場合、フィブリル状物の比表面積は0.3m2/g以上であることが好ましく、より好ましくは0.7m2/g以上であり、更に好ましくは2m2/g以上、最も好ましくは5m2/g以上である。比表面積がこの範囲であると、分散性が良好で、強度が高く、優れた音響特性が得られる。フィブリル状物の比表面積の上限は特に制限はないが、比表面積が高くなりすぎると凝集が激しく取り扱いが困難になるので、通常は100m2/g以下、好ましくは50m2/g以下である。
【0026】
また、繊維の形態で使用する時は、音響特性の観点から、引張弾性率が100cN/dtex以上であることが好ましく、より好ましくは200cN/dtex以上、特に好ましくは300cN/dtex以上である。引張弾性率の上限は特に制限はないが、通常は600cN/dtex以下である。
【0027】
繊維の熱や湿度に対する安定性としては、乾熱及び湿熱処理下での収縮率が低いほど形状変化や残留応力が少なく寸法安定性が優れるため、これらの値は小さいほど耐熱性に優れた材料といえる。乾熱収縮率としては、150℃、30分処理における収縮率が4%以下であることが好ましく、さらには3%以下であることがより好ましい。湿熱収縮率としては、100%湿度下、120℃、30分処理による収縮率が3%以下であることが好ましく、さらには2%以下であることがより好ましい。
【0028】
本発明の音響振動部材に含まれる繊維中のポリケトン繊維の割合は、特に制限はなく、上限は100wt%でもよい。優れた接着性、可撓性、取り扱い性を達成するという観点から、音響振動部材に含まれる繊維中のポリケトン繊維の割合は5〜95wt%が好ましく、より好ましくは50〜95wt%、さらに好ましくは70〜95wt%である。
【0029】
本発明の音響振動部材は、上述のポリケトン繊維を含んでいればよく、さらに、本発明の目的を阻害しない範囲でその他の物質や繊維を含んでいてもよい。ポリケトン繊維と混用可能な繊維としては、例えば、パルプ、炭素繊維、芳香族ポリエステル繊維、アラミド繊維、ポリベンザゾール繊維、ポリビニルアルコール繊維、ポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、ポリアセタール繊維等が挙げられる。これらの繊維は、長繊維、短繊維、フィブリル状物等、任意の形態をとりうる。
【0030】
本発明に用いるポリケトン繊維の製造法については、特に制約はなく、例えば、特開平1−124617号公報、特開平2−112413号公報、特開平4−228613号公報、特表平4−505344号公報、特開平4−228613号公報、特表平7−508317号公報、特表平8−507328号公報、WO9918143号公開パンフレット等に開示されている、従来公知の溶融紡糸、乾式紡糸、湿式紡糸法をそのまま、あるいは修正して適用することができる。これらの方法の中でも、とりわけ濃厚塩溶剤を用いる湿式紡糸法は、高弾性率、耐熱性、寸法安定性に優れたポリケトン繊維を製造出来るので、好ましい。
【0031】
以下、ポリケトン繊維の製造法の一例として、ハロゲン化亜鉛水溶液を溶剤とした湿式紡糸法について説明する。
【0032】
溶剤に用いるハロゲン化亜鉛化合物としては、溶解性、溶媒のコスト、水溶液の安定性等の点から、塩化亜鉛、よう化亜鉛が好ましい。また、必要に応じて、塩化ナトリウム、塩化カリウム、塩化カルシウム等のアルカリ金属あるいはアルカリ土類金属のハロゲン化物を60wt%以下の範囲で含んでいてもよい。ドープの溶解性、熱安定性、紡糸性の観点から、塩化ナトリウムや塩化カルシウムなどの金属塩を5〜30wt%含有したドープが好ましい。
【0033】
このポリケトンドープを紡糸口金より吐出し、必要に応じて、エアーギャップ部を経て凝固浴を通して糸状物とする。凝固浴の組成は、メタノール、アセトン等の有機溶剤、水、有機物水溶液、無機物水溶液等どのようなものであってもよいが、水を含んだ溶液が好ましい。このようにして得た糸状物を、必要に応じて、金属塩を洗浄して除去し、乾燥、延伸を行う。延伸は、通常、融点以下の温度で行われ、延伸倍率はトータルで10倍以上、特に15倍以上の熱延伸を行うことが好ましく、延伸温度を徐々に高くしていく多段延伸法が好適に用いられる。
【0034】
こうして得られたポリケトン繊維は、長繊維の形態で織編物としたり、あるいは、カットファイバーとした後、フィブリル化させたフィブリドとして、本発明の音響振動部材の製造に用いることができる。
【0035】
長繊維として用いる場合は、公知の方法により一旦織編物とした後、樹脂を含浸し、成型することができる。また、フィブリル状物を用いる場合は、公知の方法によって抄造し、加熱成型或いは加熱乾燥する。
【0036】
加熱成型或いは加熱乾燥後に他の樹脂と混合することも可能である。使用可能な樹脂としては、例えば、ナイロン6、ナイロン6・6等のポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリエーテルスルホン、ポリエーテルイミド、ポリカーボネート、ポリエーテルケトン、アクリル樹脂,ニトロセルロース、シリコーン樹脂,ブチルゴム,クロロプレン系ゴム、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂等を用いることができ、樹脂を適宜選択することにより、音響振動部材の密度、剛性等を調整することができる。
【0037】
【発明の実施の形態】
以下、実施例により本発明を更に詳しく説明するが、それらは本発明の範囲を限定するものではない。
【0038】
なお、各測定値の測定方法は次の通りである。
【0039】
(1)極限粘度[η]
極限粘度(g/dl)は、次の定義式に基づいて求められる値である。
【0040】
【数1】

Figure 0004733322
【0041】
式中、t及びTは、ヘキサフルオロイソプロパノール、及びヘキサフルオロイソプロパノールに溶解したポリケトンの希釈溶液の25℃での粘度管の流過時間である。Cは、上記溶液100ml中のグラム単位による溶質の質量値である。
【0042】
(2)結晶化度
DSC(示差走査型熱分析装置)を用いた融点測定で、200〜300℃の範囲で得られる最大の吸熱ピーク面積から計算される熱量△H(J/g)より、下記式を用いて算出した(昇温速度は20℃/分)。ここで、225J/gは、完全結晶の融解熱である。
【0043】
結晶化度(%)=(△H/225)×100
(3)比表面積
マイクロメリテックス社製のフローソープ2300型を用いて、BET比表面積法により、窒素の吸収量から比表面積を求めた。試料が含水状態にある場合は、70℃、真空下で水分を除去してから測定した。
【0044】
(4)強度、伸度、引張弾性率
JIS−L−1013に準じて測定した。
【0045】
(5)乾熱収縮率
JIS−L−1013に準じて、150℃、30分処理前後の値を計測して求めた。
【0046】
(6)振動板の密度
3mm×30mmの大きさの試験片を10枚重ねて質量を測り、JIS−K−7112(A法)に準拠して求めた。
【0047】
(7)振動板の弾性率、内部損失
粘弾性測定器(オリエンテック社製:レオバイブロンDDV−II−EA)を用いて、振動板から切り出した3mm×30mmの試料片の弾性率及び内部損失を、周波数110Hz、測定温度23℃の条件下で測定した。
【0048】
(8)比弾性率
弾性率を密度で除して求めた。
【0049】
(9)音響振動部材の吸湿率
振動部材の紙様構造物を3cm角に切り取り、真空状態にて乾燥(120℃、6時間)した後、20℃、95%RHに調湿されたデシケーター内に1週間放置した。調湿前後の質量変化を電子天秤で測定し、下記式から吸湿率を求めた。なお、W0は乾燥後の質量であり、Wは調湿後の質量である。
【0050】
吸湿率(%)={(W−W0)/W0}×100
〔実施例1〕
エチレン/一酸化炭素の交互共重合ポリマー([η]=5.3dl/g)を8wt%、塩化亜鉛60wt%、塩化ナトリウム10wt%、純水22wt%の組成のポリマー溶液を調整し、80℃に保ちながら、直径0.1mm、50穴の紡口から吐出量20g/分、エアギャップ長10mmで押し出し、ポリマーに対し非溶媒である水で凝固させることにより繊維化した。
【0051】
次いで、2wt%硫酸水浴に繊維を通して塩化亜鉛を完全に除去し、水洗ロールにて硫酸を除去して巻き取った。巻き取り速度は6m/分で行った。続いて、200℃で乾燥後、非加熱ロールの間にあるホットプレート上で、延伸温度240℃、6倍延伸後、更に268℃、2倍延伸して75dtex/50fのポリケトン繊維を得た。得られた繊維の強度は14.8cN/dtex、伸度は5%、引張弾性率は350cN/dtex、乾熱収縮率は0.7%、結晶化度は75%、融点は270℃であった。
【0052】
得られたポリケトン繊維を5mmで定尺切断し、熊谷理機工業製のPF1ミルで粉砕して比表面積が6.3m2/gのフィブリル状物を得た。
【0053】
このフィブリル状物を水中に投入して撹拌分散させた後、コーン型をした抄網ですくい上げ、熱プレスで乾燥、成型し(200℃、6kg/cm2、5分間)、直径16cmのスピーカーコーンを作成した。得られたスピーカーコーンは、耐久性、耐熱性、耐湿性に優れ、音響特性が良好であった。
【0054】
〔実施例2〕
常法により、エチレン/一酸化炭素ユニットを94wt%、プロピレン/一酸化炭素ユニットを6wt%含有する、極限粘度1.5dl/gのポリケトンターポリマーを調製した。得られたポリマーにカルシウムヒドロキシアパタイトを0.3wt%添加し、235℃で溶融後、直径0.23mm、250穴の紡口から吐出し、速度400m/分で巻き取った。
【0055】
得られた未延伸糸を200℃で1段目の延伸を行った後、225℃で2段目の延伸を行い、トータル10倍の延伸を行い繊維を得た。延伸時に毛羽・糸切れ等のトラブルは発生しなかった。
【0056】
この繊維を用い、実施例1と同様にスピーカーコーンを作成した。得られたスピーカーコーンは、実施例1のものよりも若干性能は劣るが、耐久性、耐熱性、耐湿性に優れ、音響特性が良好であった。
【0057】
参考例3〕
実施例1で得たポリケトン繊維を3mmにカットしたものを10wt%及びアクリル樹脂を90wt%混合した混合物を成型してスピーカーコーンを作成した。得られたスピーカーコーンは、実施例1のものよりも若干性能は劣るが、耐久性、耐熱性、耐湿性に優れ、音響特性が良好であった。
【0058】
〔実施例4〕
実施例1と同様にして、167dtex/50fのポリケトンマルチフィラメントを製造し、その平織物(経・緯の密度10本/cm)を作成した。この織物に、実施例1で用いたフィブリル状物を抄造法により積層し、フィブリル状物67wt%、織物33wt%の複合体を得た。次いでこの複合体を成型してスピーカーコーンを作成した。得られたスピーカーコーンは、実施例1のものよりも若干性能は劣るが、耐久性、耐熱性、耐湿性に優れ、音響特性が良好であった。
【0059】
〔比較例1〕
アラミドフィブリッド70wt%にメタ系アラミド短繊維(長さ5mm)30wt%を配合して抄紙した以外は、実施例1と同様に行った。得られたスピーカーコーンは、吸湿性が低く、湿度によって性能に差異が生じるために、音響安定性に問題のあるものであった。また、接着性が悪く、形態が悪かった。
【0060】
以上の実施例、比較例の結果を表1、2にまとめて示す。表1は用いたポリケトン繊維の形態と物性を示し、表2は、ポリケトン繊維の含有量と得られたスピーカーコーンの特性を示すものである。
【0061】
【表1】
Figure 0004733322
【0062】
【表2】
Figure 0004733322
【0063】
【発明の効果】
本発明の音響振動部材は、音響特性が良好であり、耐久性、耐熱性、耐湿性等においても優れているため、寒暖に晒される車両内部等の過酷な使用雰囲気においても、長期間にわたって音質の安定した再生音が得られる。もちろん、家庭用、業務用スピーカーとしても有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acoustic vibration member using polyketone fibers.
[0002]
[Prior art]
The acoustic characteristics of electroacoustic transducers typified by conductive speakers depend mainly on the physical characteristics of the vibration system. Among them, the diaphragm is an important member that greatly affects the performance of the speaker.
[0003]
At least the following basic characteristics are required for the material of the diaphragm and center cap incorporated in the speaker. That is, 1) mass or density is small to improve efficiency and improve transient characteristics, 2) wide frequency reproduction band, improve transient characteristics, and high elastic modulus to extend high sound range. 3) In order to suppress the divided vibration, reduce the peak dip of the high frequency resonance, and flatten the sound pressure frequency characteristic, it has an appropriate internal loss.
[0004]
As a representative material conventionally used as a diaphragm material, there is paper mainly composed of wood pulp. Paper diaphragms are useful because of their great design freedom. However, the diaphragm made of paper has the disadvantages that the specific elastic modulus (elastic modulus / density) is not so large and the reproduction frequency sound pressure level is low. Moreover, it is easily affected by humidity and its physical properties are unstable.
[0005]
In order to eliminate these disadvantages, a vibration plate made of metal such as titanium or beryllium or a vibration plate made of plastics such as polypropylene has been used. However, although the metal diaphragm is excellent in terms of rigidity, it has the disadvantages of high density and heavyness, and the internal loss is also small. On the other hand, although the diaphragm made of plastics has a low density, since it has low rigidity, it must be used by increasing its thickness, resulting in an increase in mass and inferior heat resistance.
[0006]
For this reason, in consideration of the degree of design freedom, paper diaphragms mainly made of wood pulp are still used frequently. Based on this paper diaphragm, it has been studied to improve the physical properties of the paper diaphragm by, for example, mixing carbon fiber, aramid fiber, aromatic polyester fiber, etc. with wood pulp. JP, 56-48798, JP, 56-57395, JP, 62-36999, etc.).
[0007]
In recent years, in order to reduce processing costs, acoustic vibration members have been manufactured by mixing thermoplastic pulp with wood pulp, carbon fibers, aramid fibers, aromatic polyester fibers, and the like by injection molding.
[0008]
However, wood pulp has problems such as low specific elastic modulus, low heat resistance, large degree of acoustic change due to humidity change, and poor processability. In addition, carbon fibers, aramid fibers, and aromatic polyester fibers have problems such as poor adhesion to binders and resins, high cost, and high density. These problems adversely affect the durability, heat resistance, and moisture resistance of the acoustic vibration member.For example, in harsh usage environments such as inside a vehicle that is exposed to cold and warm conditions, reproduced sound with stable sound quality can be obtained over a long period of time. Cause problems
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an acoustic vibration member having excellent durability, heat resistance, and moisture resistance and excellent acoustic characteristics.
[0010]
[Means for Solving the Problems]
As a result of studying various materials in order to develop an acoustic vibration member having excellent durability, heat resistance, and moisture resistance and good acoustic characteristics, the present inventors have constituted a copolymer of olefin and carbon monoxide. As a result of further finding out that the aliphatic polyketone fiber thus prepared can solve these problems, the present invention has been reached.
[0011]
That is, the present invention is as follows.
[0012]
1. An acoustic vibration member comprising polyketone fibers composed of a copolymer of olefin and carbon monoxide.
[0013]
2. 2. The acoustic vibration member according to 1 above, wherein the polyketone fiber has a crystallinity of 40% or more.
[0014]
3. 3. The acoustic vibration member according to 1 or 2 above, wherein the polyketone fiber is a fibrillar material having a specific surface area of 0.3 m 2 / g or more.
[0015]
4). 3. The acoustic vibration member according to 1 or 2 above, wherein the polyketone fiber has a tensile modulus of elasticity of 100 cN / dtex or more.
[0016]
5. 5. The acoustic vibration member according to any one of the above 1 to 4, wherein the proportion of the polyketone fiber in the acoustic vibration member is 5 to 100 wt%.
[0017]
6). 6. An acoustic device using the acoustic vibration member according to any one of 1 to 5 above.
[0018]
Hereinafter, the present invention will be described in detail.
[0019]
In the present invention, the polymer used for the polyketone fiber is a polyketone polymer obtained by copolymerizing an olefin and carbon monoxide. The composition of the polyketone polymer is a polymer having 1-oxotrimethylene as a main repeating unit in which ethylene and carbon monoxide are bonded from the viewpoints of strength, elastic modulus, adhesion to resin, dimensional stability, heat and heat resistance, and the like. preferable. The higher the proportion of 1-oxotrimethylene in the repeating unit, the higher the melting point, the high mechanical properties, and the high dimensional stability of the fiber. Therefore, it is preferably 90 wt% or more of the polyketone polymer mass, and more preferably Is 97 wt% or more.
[0020]
The repeating units in which the olefin and carbon monoxide are bonded may partially have ketone groups and ethylenes linked together, but 90 wt% or more is a polyketone polymer in which olefins and carbon monoxide are alternately arranged. It is desirable. The content of the portion where olefins and carbon monoxide are alternately arranged is preferably 97 wt% or more, and most preferably 100 wt%, because the greater the content, the better the heat resistance and the physical property retention at high temperatures.
[0021]
If necessary, olefins other than ethylene such as propene, butene, hexene, cyclohexene, pentene, cyclopentene, octene, nonene, methyl methacrylate, vinyl acetate, acrylamide, hydroxyethyl methacrylate, styrene, sodium styrenesulfonate, allyl A compound having an unsaturated hydrocarbon such as sodium sulfonate, vinyl pyrrolidone, or vinyl chloride may be copolymerized.
[0022]
The form of the polyketone fiber contained in the acoustic vibration member of the present invention is not particularly limited, but multifilaments, short fibers, and fibrils are preferable.
[0023]
Here, the fibrillar material is (1) fibrous, thin-film or ribbon-like particles having different sizes, or irregularly shaped particles in which these shapes are combined, and (2) three-dimensional of most particles. The largest of these dimensions is much larger than the other two dimensions, and preferably the smaller two dimensions do not exceed 10 μm, and (3) a number of tentacles that can preferably be mechanically entangled with other particles. Characterized in that it is shaped into a fibrous, thin-film or ribbon-like structure with protrusions, and (4) has a water retention capacity far greater than ordinary fibers made from the same polymer by ordinary spinning methods Pulp-like particles. This fibrillar material has a large specific surface area and has the ability to entangle with each other to form a structure resembling paper when deposited, and this entanglement occurs when the resulting paper-like structure is wet after dehydration. And maintains its form after drying and provides sufficient paper strength to support its own weight.
[0024]
The polyketone fiber used in the present invention preferably has a crystallinity of 40% or more, more preferably 50% or more, and still more preferably, from the viewpoints of good acoustic properties, heat resistance, dimensional stability, and heat and humidity resistance. Is 60% or more. The upper limit is not particularly limited, but is usually 80% or less. When the crystallinity is in this range, the reinforcing effect by using polyketone fibers, particularly fibrils, is sufficiently exhibited, and the obtained paper and composite material exhibit excellent mechanical strength.
[0025]
In the present invention, particularly when used as a fibrillated product, the specific surface area of the fibrillated product is preferably 0.3 m 2 / g or more, more preferably 0.7 m 2 / g or more, and further preferably 2 m. 2 / g or more, most preferably 5 m 2 / g or more. When the specific surface area is in this range, the dispersibility is good, the strength is high, and excellent acoustic characteristics can be obtained. The upper limit of the specific surface area of the fibrillar material is not particularly limited. However, if the specific surface area is too high, the agglomeration is severe and the handling becomes difficult, so it is usually 100 m 2 / g or less, preferably 50 m 2 / g or less.
[0026]
Further, when used in the form of a fiber, from the viewpoint of acoustic properties, the tensile elastic modulus is preferably 100 cN / dtex or more, more preferably 200 cN / dtex or more, and particularly preferably 300 cN / dtex or more. The upper limit of the tensile elastic modulus is not particularly limited, but is usually 600 cN / dtex or less.
[0027]
As the stability of fibers against heat and humidity, the lower the shrinkage rate under dry heat and moist heat treatment, the less the shape change and residual stress, and the better the dimensional stability. The smaller these values, the better the heat resistance. It can be said. The dry heat shrinkage rate is preferably 4% or less, more preferably 3% or less, at 150 ° C. for 30 minutes. The wet heat shrinkage rate is preferably 3% or less, more preferably 2% or less, at 120 ° C. for 30 minutes under 100% humidity.
[0028]
The ratio of the polyketone fiber in the fiber contained in the acoustic vibration member of the present invention is not particularly limited, and the upper limit may be 100 wt%. From the viewpoint of achieving excellent adhesiveness, flexibility, and handleability, the proportion of the polyketone fiber in the fiber contained in the acoustic vibration member is preferably 5 to 95 wt%, more preferably 50 to 95 wt%, and still more preferably. 70-95 wt%.
[0029]
The acoustic vibration member of the present invention only needs to contain the above-described polyketone fiber, and may further contain other substances and fibers as long as the object of the present invention is not impaired. Examples of the fiber that can be mixed with the polyketone fiber include pulp, carbon fiber, aromatic polyester fiber, aramid fiber, polybenzazole fiber, polyvinyl alcohol fiber, polyester fiber, polyamide fiber, polyethylene fiber, and polyacetal fiber. These fibers can take arbitrary forms such as long fibers, short fibers, and fibrils.
[0030]
The production method of the polyketone fiber used in the present invention is not particularly limited. For example, JP-A-1-124617, JP-A-2-112413, JP-A-4-228613, JP-A-4-505344 JP-A-4-228613, JP-A-7-508317, JP-A-8-507328, WO9918143 published pamphlet, etc., conventionally known melt spinning, dry spinning, wet spinning The law can be applied as is or modified. Among these methods, the wet spinning method using a concentrated salt solvent is particularly preferable because a polyketone fiber excellent in high elastic modulus, heat resistance and dimensional stability can be produced.
[0031]
Hereinafter, as an example of a method for producing polyketone fibers, a wet spinning method using a zinc halide aqueous solution as a solvent will be described.
[0032]
The zinc halide compound used for the solvent is preferably zinc chloride or zinc iodide from the viewpoints of solubility, solvent cost, aqueous solution stability, and the like. Further, if necessary, alkali metal or alkaline earth metal halides such as sodium chloride, potassium chloride, and calcium chloride may be contained in the range of 60 wt% or less. From the viewpoint of dope solubility, thermal stability, and spinnability, a dope containing 5 to 30 wt% of a metal salt such as sodium chloride or calcium chloride is preferable.
[0033]
This polyketone dope is discharged from a spinneret and, if necessary, is formed into a filament through an air gap portion and a coagulation bath. The composition of the coagulation bath may be any organic solvent such as methanol and acetone, water, an organic aqueous solution, an inorganic aqueous solution, etc., but a solution containing water is preferred. The filamentous material thus obtained is washed and removed, if necessary, dried and stretched. Stretching is usually performed at a temperature not higher than the melting point, and the stretching ratio is preferably 10 times or more, particularly preferably 15 times or more, and a multistage stretching method in which the stretching temperature is gradually increased is preferable. Used.
[0034]
The polyketone fiber thus obtained can be used in the production of the acoustic vibration member of the present invention in the form of a woven or knitted fabric in the form of long fibers, or as a fibril obtained after forming a cut fiber.
[0035]
When used as a long fiber, it can be once woven or knitted by a known method, then impregnated with a resin, and molded. Moreover, when using a fibrillar thing, it forms by a well-known method and heat-molds or heat-drys.
[0036]
It is also possible to mix with other resins after heat molding or heat drying. Usable resins include, for example, polyamide resins such as nylon 6 and nylon 6/6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, polyethersulfone, polyetherimide, polycarbonate, Polyether ketone, acrylic resin, nitrocellulose, silicone resin, butyl rubber, chloroprene rubber, unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, bismaleimide resin, etc. can be used, and the resin should be selected appropriately Thus, the density, rigidity, etc. of the acoustic vibration member can be adjusted.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, they do not limit the scope of the present invention.
[0038]
In addition, the measuring method of each measured value is as follows.
[0039]
(1) Intrinsic viscosity [η]
The intrinsic viscosity (g / dl) is a value determined based on the following definition formula.
[0040]
[Expression 1]
Figure 0004733322
[0041]
In the formula, t and T are the flow time of the viscosity tube at 25 ° C. of hexafluoroisopropanol and a dilute solution of polyketone dissolved in hexafluoroisopropanol. C is the mass value of the solute in grams per 100 ml of the solution.
[0042]
(2) From the calorific value ΔH (J / g) calculated from the maximum endothermic peak area obtained in the range of 200 to 300 ° C. in the melting point measurement using a crystallinity DSC (differential scanning thermal analyzer), It calculated using the following formula (temperature rising rate is 20 ° C./min). Here, 225 J / g is the heat of fusion of a complete crystal.
[0043]
Crystallinity (%) = (ΔH / 225) × 100
(3) Specific surface area The specific surface area was determined from the amount of nitrogen absorbed by the BET specific surface area method using a flow soap type 2300 manufactured by Micromeritex. When the sample was in a water-containing state, it was measured after removing moisture at 70 ° C. under vacuum.
[0044]
(4) Strength, elongation, and tensile modulus Measured according to JIS-L-1013.
[0045]
(5) Dry heat shrinkage rate According to JIS-L-1013, the value before and after the treatment at 150 ° C. for 30 minutes was measured.
[0046]
(6) Ten test pieces having a vibration plate density of 3 mm × 30 mm were stacked and weighed, and determined according to JIS-K-7112 (Method A).
[0047]
(7) Elastic modulus and internal loss of a 3 mm × 30 mm sample piece cut out from the diaphragm using an elastic modulus and internal loss viscoelasticity measuring device (Orientec Co., Ltd .: Leo Vibron DDV-II-EA) The frequency was 110 Hz and the measurement temperature was 23 ° C.
[0048]
(8) Specific elastic modulus The specific elastic modulus was obtained by dividing by the density.
[0049]
(9) Moisture absorption rate of the acoustic vibration member The paper-like structure of the vibration member is cut into a 3 cm square, dried in a vacuum state (120 ° C., 6 hours), and then adjusted to 20 ° C. and 95% RH in a desiccator. Left for 1 week. The change in mass before and after conditioning was measured with an electronic balance, and the moisture absorption rate was determined from the following formula. Note that W0 is the mass after drying, and W is the mass after conditioning.
[0050]
Moisture absorption rate (%) = {(W−W0) / W0} × 100
[Example 1]
An ethylene / carbon monoxide alternating copolymer ([η] = 5.3 dl / g) 8 wt%, zinc chloride 60 wt%, sodium chloride 10 wt%, and pure water 22 wt% of a polymer solution was prepared at 80 ° C. The fiber was extruded from a spinner having a diameter of 0.1 mm and 50 holes with a discharge rate of 20 g / min and an air gap length of 10 mm, and solidified with water as a non-solvent for the polymer.
[0051]
Next, the zinc chloride was completely removed by passing the fibers through a 2 wt% sulfuric acid water bath, and the sulfuric acid was removed by a water washing roll and wound up. The winding speed was 6 m / min. Subsequently, after drying at 200 ° C., on a hot plate between unheated rolls, after stretching at a stretching temperature of 240 ° C. and 6 times, further stretching at 268 ° C. and 2 times, a 75 dtex / 50 f polyketone fiber was obtained. The strength of the obtained fiber was 14.8 cN / dtex, elongation was 5%, tensile modulus was 350 cN / dtex, dry heat shrinkage was 0.7%, crystallinity was 75%, and melting point was 270 ° C. It was.
[0052]
The obtained polyketone fiber was cut to a regular length of 5 mm and pulverized with a PF1 mill manufactured by Kumagai Riki Kogyo to obtain a fibrillar product having a specific surface area of 6.3 m 2 / g.
[0053]
This fibrillar material is poured into water, stirred and dispersed, then scooped up with a corn-shaped net, dried and molded with a hot press (200 ° C, 6 kg / cm 2 , 5 minutes), and a speaker cone with a diameter of 16 cm. It was created. The obtained speaker cone was excellent in durability, heat resistance and moisture resistance, and had good acoustic characteristics.
[0054]
[Example 2]
By an ordinary method, a polyketone terpolymer having an intrinsic viscosity of 1.5 dl / g and containing 94 wt% of ethylene / carbon monoxide units and 6 wt% of propylene / carbon monoxide units was prepared. 0.3 wt% of calcium hydroxyapatite was added to the obtained polymer, melted at 235 ° C., discharged from a spinner having a diameter of 0.23 mm and 250 holes, and wound up at a speed of 400 m / min.
[0055]
The obtained unstretched yarn was stretched at the first stage at 200 ° C. and then stretched at the second stage at 225 ° C. for a total of 10 times to obtain a fiber. Troubles such as fluff and yarn breakage did not occur during stretching.
[0056]
Using this fiber, a speaker cone was prepared in the same manner as in Example 1. The obtained speaker cone was slightly inferior in performance to that of Example 1, but was excellent in durability, heat resistance and moisture resistance, and had good acoustic characteristics.
[0057]
[ Reference Example 3]
A speaker cone was prepared by molding a mixture of 10 wt% of the polyketone fiber obtained in Example 1 cut to 3 mm and 90 wt% of acrylic resin. The obtained speaker cone was slightly inferior in performance to that of Example 1, but was excellent in durability, heat resistance and moisture resistance, and had good acoustic characteristics.
[0058]
Example 4
In the same manner as in Example 1, a 167 dtex / 50f polyketone multifilament was produced, and a plain fabric (density of warp / weft 10 / cm) was prepared. The fibrillar material used in Example 1 was laminated on this woven fabric by a papermaking method to obtain a composite of fibrillar 67 wt% and woven fabric 33 wt%. Next, this composite was molded to prepare a speaker cone. The obtained speaker cone was slightly inferior in performance to that of Example 1, but was excellent in durability, heat resistance and moisture resistance, and had good acoustic characteristics.
[0059]
[Comparative Example 1]
The same procedure as in Example 1 was carried out except that 70% by weight of aramid fibrid and 30% by weight of meta-aramid short fibers (length 5 mm) were blended to make paper. The obtained speaker cone had low hygroscopicity and had a problem in acoustic stability because of a difference in performance depending on humidity. Moreover, adhesiveness was bad and the form was bad.
[0060]
The results of the above examples and comparative examples are summarized in Tables 1 and 2. Table 1 shows the form and physical properties of the polyketone fiber used, and Table 2 shows the content of the polyketone fiber and the characteristics of the obtained speaker cone.
[0061]
[Table 1]
Figure 0004733322
[0062]
[Table 2]
Figure 0004733322
[0063]
【The invention's effect】
The acoustic vibration member of the present invention has good acoustic characteristics and excellent durability, heat resistance, moisture resistance, etc., so that the sound quality can be maintained over a long period of time even in a harsh use atmosphere such as inside a vehicle that is exposed to cold and warm. Stable sound can be obtained. Of course, it is also useful as a home or business speaker.

Claims (3)

オレフィンと一酸化炭素の共重合ポリマーより構成されたポリケトン繊維を含み、かつ、該ポリケトン繊維が、比表面積0.3m 2 /g以上のフィブリル状物であることを特徴とする音響振動部材。 Look including the polyketone fiber is composed of a copolymer of an olefin with carbon monoxide and an acoustic vibration member in which the polyketone fibers, characterized in that a specific surface area 0.3 m 2 / g or more fibrillated material. 前記音響振動部材中のポリケトン繊維の割合が5〜100wt%である請求項に記載の音響振動部材。 The proportion of the polyketone fiber in the acoustic vibration member is 5~100wt%, acoustic vibration member according to claim 1. 請求項1又は2に記載の音響振動部材を用い音響機器。Acoustic device using an acoustic vibrating member according to claim 1 or 2.
JP2001280184A 2001-09-14 2001-09-14 Acoustic vibration member Expired - Fee Related JP4733322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280184A JP4733322B2 (en) 2001-09-14 2001-09-14 Acoustic vibration member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280184A JP4733322B2 (en) 2001-09-14 2001-09-14 Acoustic vibration member

Publications (2)

Publication Number Publication Date
JP2003089954A JP2003089954A (en) 2003-03-28
JP4733322B2 true JP4733322B2 (en) 2011-07-27

Family

ID=19104229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280184A Expired - Fee Related JP4733322B2 (en) 2001-09-14 2001-09-14 Acoustic vibration member

Country Status (1)

Country Link
JP (1) JP4733322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686517A (en) * 2017-01-20 2017-05-17 广西玉林市禹力音响配件有限公司 Manufacturing method of super bass drum paper

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131478A1 (en) * 2004-02-18 2007-06-14 Masatoshi Okazaki Speaker, speaker-use diaphragm, dust cap, production methods and production devices for them
JP2007049471A (en) * 2005-08-10 2007-02-22 Sony Corp Loudspeaker diaphragm
JP2007217552A (en) * 2006-02-16 2007-08-30 Asahi Kasei Fibers Corp Joint sheet
JP5116984B2 (en) * 2006-04-06 2013-01-09 ポリプラスチックス株式会社 Nonwoven fabric and method for producing the same
JP2008124589A (en) * 2006-11-09 2008-05-29 Asahi Kasei Fibers Corp Speaker damper
JP2008131436A (en) * 2006-11-22 2008-06-05 Asahi Kasei Fibers Corp Edge for speaker unit
JP5417775B2 (en) * 2008-09-05 2014-02-19 パナソニック株式会社 Manufacturing method of speaker diaphragm, speaker diaphragm manufactured by the manufacturing method, speaker using the speaker diaphragm, electronic apparatus and moving body using the speaker
JP5326640B2 (en) * 2009-02-19 2013-10-30 パナソニック株式会社 Speaker diaphragm, speaker using the speaker diaphragm, electronic apparatus and moving means using the speaker
JP2009177842A (en) * 2009-05-11 2009-08-06 Panasonic Corp Loudspeaker diaphragm, loudspeaker using the same, and electronic equipment and apparatus using this loudspeaker
TWI672223B (en) * 2018-08-24 2019-09-21 國立臺灣科技大學 Diaphragm structure and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648798A (en) * 1979-09-28 1981-05-02 Matsushita Electric Ind Co Ltd Diaphragm for loudspeaker
JPS6236999A (en) * 1985-08-09 1987-02-17 Sumitomo Chem Co Ltd Acoustic component
JPH06165289A (en) * 1992-11-27 1994-06-10 Matsushita Electric Ind Co Ltd Diaphragm for speaker and its manufacture
JP2000354293A (en) * 1999-06-10 2000-12-19 Onkyo Corp Member for speaker
JP2001131825A (en) * 1999-11-02 2001-05-15 Asahi Kasei Corp Polyketone fiber and method for producing the same
JP2001146638A (en) * 1999-11-22 2001-05-29 Asahi Kasei Corp Monofilament and method for producing the same
JP2001164422A (en) * 1999-12-07 2001-06-19 Asahi Kasei Corp Polyketone fiber and manufacturing method thereof
JP2001169387A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd Diaphragm for speaker
JP2001207335A (en) * 2000-01-27 2001-08-03 Asahi Kasei Corp Fibrillar material and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648798A (en) * 1979-09-28 1981-05-02 Matsushita Electric Ind Co Ltd Diaphragm for loudspeaker
JPS6236999A (en) * 1985-08-09 1987-02-17 Sumitomo Chem Co Ltd Acoustic component
JPH06165289A (en) * 1992-11-27 1994-06-10 Matsushita Electric Ind Co Ltd Diaphragm for speaker and its manufacture
JP2000354293A (en) * 1999-06-10 2000-12-19 Onkyo Corp Member for speaker
JP2001131825A (en) * 1999-11-02 2001-05-15 Asahi Kasei Corp Polyketone fiber and method for producing the same
JP2001146638A (en) * 1999-11-22 2001-05-29 Asahi Kasei Corp Monofilament and method for producing the same
JP2001169387A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd Diaphragm for speaker
JP2001164422A (en) * 1999-12-07 2001-06-19 Asahi Kasei Corp Polyketone fiber and manufacturing method thereof
JP2001207335A (en) * 2000-01-27 2001-08-03 Asahi Kasei Corp Fibrillar material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686517A (en) * 2017-01-20 2017-05-17 广西玉林市禹力音响配件有限公司 Manufacturing method of super bass drum paper

Also Published As

Publication number Publication date
JP2003089954A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US3047456A (en) Manufacture of paper products from fibers wet spun from polymer blends
KR101421317B1 (en) Wet-laid non-woven fabric and filter
US3047455A (en) Paper manufacture from synthetic non-cellulosic fibers
JP4733322B2 (en) Acoustic vibration member
KR20180121613A (en) Filter for liquid filter and liquid filter
WO2006090790A1 (en) Alkaline battery separator and alkaline primery battery
JP2009150005A (en) Fibrous structure, its use, and production method
JP6548634B2 (en) Polyester binder fiber
CA2352753A1 (en) Thermoplastic fibers and fabrics
JP2009224100A (en) Separator for battery
JP4342065B2 (en) FIBRILLATE AND MANUFACTURING METHOD THEREOF
JP2009007727A (en) Method for producing polypropylene fiber excellent in heat resistance and strength
JP3864020B2 (en) Battery separator paper and manufacturing method thereof
JP2008266871A (en) Polypropylene yarn excellent in heat resistance
JP3864015B2 (en) Battery separator paper and manufacturing method thereof
JP4820836B2 (en) Polypropylene fiber
JPH09316731A (en) Conjugate fiber and nonwoven cloth for electric cell separator comprising the same
JPH08284021A (en) Readily fibrillated fiber comprising polyvinyl alcohol and cellulosic polymer
JP3851021B2 (en) Battery separator paper and manufacturing method thereof
JP6534885B2 (en) Stretched polyester-based fiber and fiber structure containing the fiber
JP4579445B2 (en) Unstretched polyester fiber for papermaking
JPH10102322A (en) Readily fibrillatable fiber
EP0432489A2 (en) Heat-adhesive composite fiber and nonwoven fabric made by using same
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
JP2002151358A (en) Separator for capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees