JPH04316015A - Manufacture of liquid crystal electooptical device - Google Patents

Manufacture of liquid crystal electooptical device

Info

Publication number
JPH04316015A
JPH04316015A JP8374191A JP8374191A JPH04316015A JP H04316015 A JPH04316015 A JP H04316015A JP 8374191 A JP8374191 A JP 8374191A JP 8374191 A JP8374191 A JP 8374191A JP H04316015 A JPH04316015 A JP H04316015A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal material
substrate
phase
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8374191A
Other languages
Japanese (ja)
Inventor
Hirotsuna Miura
弘綱 三浦
Atsushi Amako
淳 尼子
Tomio Sonehara
富雄 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8374191A priority Critical patent/JPH04316015A/en
Publication of JPH04316015A publication Critical patent/JPH04316015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable using of a thin glass or film for a substrate and exact and simple control of a cell thickness and to eliminate a gap member. CONSTITUTION:A liquid crystal material 103 in solid phase is overlaid on the substrate 101 (b), and interposed between this substrate 101 and an opposite substrate 105, sealed (d), then, heated to raise temperature and convert it into a liquid phase (e), and the liquid crystal panel is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は液晶電気光学装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal electro-optical device.

【0002】0002

【従来の技術】従来の液晶電気光学装置の製造方法は、
図4に示すように封止材料404を塗布した2枚の基板
401,405の間にギャップ材402を挟み、この基
板に圧力をかけることによって基板間の距離(以後セル
厚と呼ぶ)をギャップ材の大きさにした後、そのあいだ
に液晶材料406を注入するものであった。
[Prior Art] A conventional method for manufacturing a liquid crystal electro-optical device is as follows:
As shown in FIG. 4, a gap material 402 is sandwiched between two substrates 401 and 405 coated with a sealing material 404, and the distance between the substrates (hereinafter referred to as cell thickness) is adjusted by applying pressure to the substrates. After the size of the material was sized, the liquid crystal material 406 was injected during that time.

【0003】0003

【発明が解決しようとする課題】しかし、従来の液晶電
気光学装置の製造方法には、基板に圧力をかけることに
よって基板間の距離(セル厚)を調整するため、堅固な
基板しか用いることができないという問題があった。さ
らにギャップ材により、不要な光の散乱を生じたりセル
厚のむらが生じるという問題もあった。本発明は、この
ような問題点を解決するものであって、その目的は、簡
便な手段により高性能な液晶電気光学装置を製造する方
法を提供するところにある。
[Problems to be Solved by the Invention] However, in the conventional manufacturing method of liquid crystal electro-optical devices, the distance between the substrates (cell thickness) is adjusted by applying pressure to the substrates, so only solid substrates can be used. The problem was that I couldn't do it. Furthermore, the gap material causes unnecessary scattering of light and uneven cell thickness. The present invention is intended to solve these problems, and its purpose is to provide a method for manufacturing a high-performance liquid crystal electro-optical device using simple means.

【0004】0004

【課題を解決するための手段】本発明の第1の液晶電気
光学装置の製造方法は、 a)第1の挟持部材上に固相の液晶材料を積層する工程
と、 b)第2の挟持部材により前記液晶材料を第1の挟持部
材との間に挟持する工程と、 c)前記液晶材料を液晶相にする工程とからなることを
特徴とする。
[Means for Solving the Problems] A first method of manufacturing a liquid crystal electro-optical device of the present invention includes the steps of: a) laminating a solid-phase liquid crystal material on a first clamping member; and b) a second clamping member. The method is characterized by comprising the steps of: holding the liquid crystal material between the members and a first holding member; and c) converting the liquid crystal material into a liquid crystal phase.

【0005】[0005]

【実施例】以下、実施例により本発明の詳細を示す。[Examples] The details of the present invention will be explained below with reference to Examples.

【0006】(実施例1)図1に本発明の液晶電気光学
装置の製造方法の工程を示す。
(Example 1) FIG. 1 shows the steps of a method for manufacturing a liquid crystal electro-optical device according to the present invention.

【0007】まずTFT素子を備えた基板101にポリ
イミドを塗布し、研磨してTFTの面を平坦化する。ラ
ビングにより配向処理を施した後、液晶相の液晶材料1
02をスピンコートにより均一な厚さで塗布する。液晶
層の厚さは5.0μmである。本実施例に用いた液晶材
料は、固相から液晶相への相転移温度が−15℃であり
、このときの体積膨張率は0.1%以下である(図1(
a))。
First, polyimide is applied to a substrate 101 provided with a TFT element, and the surface of the TFT is flattened by polishing. After alignment treatment by rubbing, liquid crystal material 1 in liquid crystal phase
02 is applied to a uniform thickness by spin coating. The thickness of the liquid crystal layer is 5.0 μm. The liquid crystal material used in this example has a phase transition temperature from a solid phase to a liquid crystal phase of -15°C, and the volumetric expansion coefficient at this time is 0.1% or less (Figure 1 (
a)).

【0008】次に基板の温度を−20℃まで下げて液晶
相であった液晶材料を固相にする。封止材を塗布する場
所の液晶材料をレーザ光の照射により取り除く(図1(
b))。
Next, the temperature of the substrate is lowered to -20° C. to change the liquid crystal material from the liquid crystal phase to the solid phase. The liquid crystal material in the area where the sealant is applied is removed by laser light irradiation (Figure 1 (
b)).

【0009】液晶材料を取り除いた場所に、低温での粘
性が低く、硬化時の体積変化の無い、紫外線硬化型の封
止材104を塗布する(図1(c))。
An ultraviolet-curable encapsulant 104, which has low viscosity at low temperatures and does not change in volume upon curing, is applied to the area from which the liquid crystal material has been removed (FIG. 1(c)).

【0010】電極と配向膜をつけた基板105を−20
℃に冷やし、液晶材料103との間の空気を追い出しな
がら液晶材料上に重ねる。(図1(d))。
[0010] The substrate 105 on which the electrodes and alignment film are attached is heated to -20°C.
℃ and stacked on the liquid crystal material 103 while expelling air between the liquid crystal material 103 and the liquid crystal material. (Figure 1(d)).

【0011】紫外線の照射により封止材を硬化させた後
、徐々に温度を上げて固相であった液晶材料103を液
晶相に戻す(図1(e))。
After the sealing material is cured by irradiation with ultraviolet rays, the temperature is gradually raised to return the liquid crystal material 103, which was in a solid phase, to a liquid crystal phase (FIG. 1(e)).

【0012】2枚の基板間の距離(セル厚)は液晶材料
の厚さで決まる。本実施例ではスピンコートの条件を調
整することによって容易に所望のセル厚を実現すること
ができる。
The distance between the two substrates (cell thickness) is determined by the thickness of the liquid crystal material. In this example, a desired cell thickness can be easily achieved by adjusting the spin coating conditions.

【0013】この工程において第2の基板を重ねる際に
圧力を加える必要はない。このため第2の基板を極めて
薄くできる。本実施例では厚さ100μmのガラス基板
を用いた。
[0013] In this step, there is no need to apply pressure when stacking the second substrate. Therefore, the second substrate can be made extremely thin. In this example, a glass substrate with a thickness of 100 μm was used.

【0014】さらに本発明の製造法ではギャップ材が不
要となる点も大きな効果である。ギャップ材が不要にな
ったことにより、従来問題となっていた光の散乱やセル
厚むらがなくなり、高精細ディスプレイやコヒーレント
光源を用いた光波面制御などの目的にも液晶電気光学装
置を応用することができるようになった。
Another major advantage of the manufacturing method of the present invention is that no gap material is required. By eliminating the need for a gap material, the conventional problems of light scattering and uneven cell thickness are eliminated, allowing liquid crystal electro-optical devices to be applied for purposes such as high-definition displays and optical wavefront control using coherent light sources. Now I can do it.

【0015】(実施例2)図2は本発明の第2の実施例
の工程図である。本実施例では分子ビーム成長法を用い
て基板上に固相液晶材料を形成した。真空中に、電極と
配向膜を持つ基板201を液晶材料が固相となる程度に
冷却して、固定部材203で固定する。この固定部材は
液晶材料が封止材を塗布する場所に付くのを防ぐ遮蔽材
の働きを兼ねている。この基板上に気相の液晶材料20
2を吹き付けて固相の液晶材料205を形成する(図2
(a))。
(Embodiment 2) FIG. 2 is a process diagram of a second embodiment of the present invention. In this example, a solid phase liquid crystal material was formed on a substrate using a molecular beam growth method. A substrate 201 having electrodes and an alignment film is cooled in vacuum to such an extent that the liquid crystal material becomes a solid phase, and then fixed with a fixing member 203 . This fixing member also functions as a shielding material that prevents the liquid crystal material from adhering to the area where the sealant is applied. A vapor phase liquid crystal material 20 is placed on this substrate.
2 to form a solid phase liquid crystal material 205 (Fig. 2
(a)).

【0016】この基板を固定部材からはずして(図2(
b))、封止材104を塗布し(図2(c))、実施例
1と同様にTFTの面を平坦化し、十分冷やした基板2
06を液晶材料上に重ねて紫外線によって封止材を硬化
する。この後で徐々に温度を上げて液晶材料を液晶相に
戻す(図2(d))。
Remove this board from the fixing member (FIG. 2(
b)), apply the sealing material 104 (FIG. 2(c)), flatten the surface of the TFT as in Example 1, and cool the substrate 2 sufficiently.
06 is placed on the liquid crystal material and the sealing material is cured by ultraviolet rays. After this, the temperature is gradually raised to return the liquid crystal material to the liquid crystal phase (FIG. 2(d)).

【0017】液晶材料が複数の液晶材料を混合したもの
である場合でも、順々に固相の液晶材料を積み重ねてお
き、後で溶かせば再び混合される。
Even when the liquid crystal material is a mixture of a plurality of liquid crystal materials, the solid phase liquid crystal materials are stacked one after another and are mixed again by melting them later.

【0018】本実施例においても、セル厚の制御は極め
て正確かつ容易に行うことができる。
In this embodiment as well, the cell thickness can be controlled extremely accurately and easily.

【0019】(実施例3)図3は本発明の第3の実施例
の工程図である。本実施例では第2の基板として薄膜を
用いた。
(Embodiment 3) FIG. 3 is a process diagram of a third embodiment of the present invention. In this example, a thin film was used as the second substrate.

【0020】第1の実施例と同様にして第1の基板上に
固相の液晶材料103を形成しておく。次に、この液晶
材料上に電極と配向膜を持つ絶縁性薄膜306を重ねる
。そして、この薄膜を固相の液晶相103に密着させる
ことにより所望のセル厚を得る。その後第2の実施例と
同様に封止材104を硬化させ、温度を上げることによ
って液晶材料を液晶相に戻す。
A solid phase liquid crystal material 103 is formed on the first substrate in the same manner as in the first embodiment. Next, an insulating thin film 306 having electrodes and an alignment film is overlaid on this liquid crystal material. Then, by bringing this thin film into close contact with the solid liquid crystal phase 103, a desired cell thickness is obtained. Thereafter, as in the second embodiment, the sealing material 104 is cured and the temperature is raised to return the liquid crystal material to the liquid crystal phase.

【0021】本実施例における絶縁性薄膜の厚さは20
μmである。この製造法により極めて薄い液晶電気光学
装置を製造することができる。
The thickness of the insulating thin film in this example is 20
It is μm. By this manufacturing method, an extremely thin liquid crystal electro-optical device can be manufactured.

【0022】なお以上の実施例では、固相から液晶相へ
の相転移における体積膨張率が0.1%以下の液晶材料
を用いたが、体積膨張率の大きな材料を用いる場合には
、封止材の一部に穴を開けておき、液晶材料を液晶相に
戻した後で穴をふさげば良い。
In the above examples, a liquid crystal material with a volume expansion coefficient of 0.1% or less during the phase transition from solid phase to liquid crystal phase was used, but when using a material with a large volume expansion coefficient, sealing It is sufficient to make a hole in a part of the stopper material and close the hole after returning the liquid crystal material to the liquid crystal phase.

【0023】[0023]

【発明の効果】本発明によれば、以下の効果が得られる
[Effects of the Invention] According to the present invention, the following effects can be obtained.

【0024】(1)固相の液晶材料上に基板を重ねるた
め、極めて薄いガラスや薄膜などを基板として用いるこ
とができる。
(1) Since the substrate is superimposed on the solid-phase liquid crystal material, extremely thin glass or a thin film can be used as the substrate.

【0025】(2)セル厚の制御を容易に高精度で行う
ことができる。
(2) Cell thickness can be easily controlled with high precision.

【0026】(3)セル厚調整用のギャップ材が不要な
ため、光の散乱がなく、波面制御などに有利である。
(3) Since there is no need for a gap material for cell thickness adjustment, there is no scattering of light, which is advantageous for wavefront control.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の液晶電気光学装置の製造方法を示す工
程図である。
FIG. 1 is a process diagram showing a method for manufacturing a liquid crystal electro-optical device of the present invention.

【図2】本発明の液晶電気光学装置の別の製造方法を示
す工程図である。
FIG. 2 is a process diagram showing another method of manufacturing the liquid crystal electro-optical device of the present invention.

【図3】本発明の液晶電気光学装置の別の製造方法を示
す工程図である。
FIG. 3 is a process diagram showing another method of manufacturing the liquid crystal electro-optical device of the present invention.

【図4】従来の液晶電気光学装置の製造方法を示す工程
図である。
FIG. 4 is a process diagram showing a conventional method for manufacturing a liquid crystal electro-optical device.

【符号の説明】[Explanation of symbols]

101  基板 102  液晶相の液晶材料 103  固相の液晶材料 104  封止材 105  基板 106  液晶相の液晶材料 201  基板 202  気相の液晶材料 203  固定部材 205  固相の液晶材料 206  基板 306  絶縁性薄膜 401  基板 402  ギャップ材 404  封止材 405  基板 406  液晶相の液晶材料 101 Board 102 Liquid crystal material with liquid crystal phase 103 Solid phase liquid crystal material 104 Sealing material 105 Board 106 Liquid crystal material with liquid crystal phase 201 Board 202 Gas phase liquid crystal material 203 Fixed member 205 Solid phase liquid crystal material 206 Board 306 Insulating thin film 401 Board 402 Gap material 404 Sealing material 405 Board 406 Liquid crystal material with liquid crystal phase

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の挟持部材で液晶材料を挟持する
液晶電気光学装置の製造方法において、 a)第1の挟持部材上に固相の液晶材料を積層する工程
と、 b)第2の挟持部材により前記液晶材料を第1の挟持部
材との間に挟持する工程と、 c)前記液晶材料を液晶相にする工程とからなることを
特徴とする液晶電気光学装置の製造方法。
1. A method for manufacturing a liquid crystal electro-optical device in which a liquid crystal material is held between a plurality of holding members, comprising: a) stacking a solid phase liquid crystal material on a first holding member; b) a second holding member. A method for manufacturing a liquid crystal electro-optical device, comprising the steps of: sandwiching the liquid crystal material between members and a first sandwiching member; c) converting the liquid crystal material into a liquid crystal phase.
JP8374191A 1991-04-16 1991-04-16 Manufacture of liquid crystal electooptical device Pending JPH04316015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8374191A JPH04316015A (en) 1991-04-16 1991-04-16 Manufacture of liquid crystal electooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374191A JPH04316015A (en) 1991-04-16 1991-04-16 Manufacture of liquid crystal electooptical device

Publications (1)

Publication Number Publication Date
JPH04316015A true JPH04316015A (en) 1992-11-06

Family

ID=13810952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374191A Pending JPH04316015A (en) 1991-04-16 1991-04-16 Manufacture of liquid crystal electooptical device

Country Status (1)

Country Link
JP (1) JPH04316015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317900A (en) * 2005-05-09 2006-11-24 Samsung Electronics Co Ltd Method for manufacturing liquid crystal display apparatus and manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317900A (en) * 2005-05-09 2006-11-24 Samsung Electronics Co Ltd Method for manufacturing liquid crystal display apparatus and manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP2002365650A (en) Method for manufacturing liquid crystal display panel
WO2015010426A1 (en) Aligning method for display panel
WO2020237993A1 (en) Display panel and preparation method for display panel
JPH02212816A (en) Liquid crystal display device
JPH04316015A (en) Manufacture of liquid crystal electooptical device
JPH0194318A (en) Liquid crystal display element
JPH01114822A (en) Manufacture of liquid crystal display device
TWI564637B (en) Liquid crystal display panel and method of fabricating the same
JP2506833B2 (en) Liquid crystal display manufacturing method
JPH06160874A (en) Production of feproelectric liquid crystal element
JPH0337624A (en) Liquid crystal element
JPS62165622A (en) Production of liquid crystal display device
JP3180335B2 (en) Liquid crystal panel manufacturing method
JPH06118423A (en) Production of liquid crystal display element
JP2004246046A (en) Method for manufacturing liquid crystal display element, and liquid crystal display element
JPS6132035A (en) Production of liquid crystal display element
JPH06202123A (en) Production of liquid crystal display device
KR100466391B1 (en) Method for manufacturing liquid crystal display device utilizing spin coating
JP2800390B2 (en) Liquid crystal device manufacturing method
HUO et al. 44‐4: Optimize the One Drop Filling (ODF) operation process for Ferroelectric Liquid Crystal
JPS61112128A (en) Liquid crystal display device
JPH04313728A (en) Production of liquid crystal display element
JPS5853527Y2 (en) Cell structure of field-effect birefringence-controlled liquid crystal display element
JPS63188118A (en) Liquid crystal device
JPH01167820A (en) Liquid crystal display element