JP2002365650A - Method for manufacturing liquid crystal display panel - Google Patents

Method for manufacturing liquid crystal display panel

Info

Publication number
JP2002365650A
JP2002365650A JP2001169337A JP2001169337A JP2002365650A JP 2002365650 A JP2002365650 A JP 2002365650A JP 2001169337 A JP2001169337 A JP 2001169337A JP 2001169337 A JP2001169337 A JP 2001169337A JP 2002365650 A JP2002365650 A JP 2002365650A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display panel
crystal display
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169337A
Other languages
Japanese (ja)
Inventor
Hideaki Tsuda
英昭 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2001169337A priority Critical patent/JP2002365650A/en
Publication of JP2002365650A publication Critical patent/JP2002365650A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a liquid crystal display panel with excellent liquid crystal response by preventing viscosity of a liquid crystal from varying in filling the liquid crystal and using a low viscosity material. SOLUTION: Patterns 11, 12 of a sealing material are formed by applying the sealing material for example on a CF (color filter) substrate 10 in a frame shape. Subsequently a low viscosity liquid crystal 13 is dropped thereon. While cooling the substrate 10 so as not to make volatile components of the liquid crystal 13 vaporize, the CF substrate 10 and a TFT (thin film transistor) substrate are superposed on each other under an atmosphere of the reduced pressure and the sealing material is hardened with ultraviolet rays irradiation or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、滴下注入法による
液晶表示パネルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display panel by a drop injection method.

【0002】[0002]

【従来の技術】液晶表示パネルは、薄くて軽量であると
ともに低電圧で駆動できて消費電力が少ないという長所
があり、各種電子機器に広く使用されている。テレビや
パーソナルコンピュータに使用される一般的な液晶表示
パネルは、2枚の基板の間に液晶を封入した構造を有し
ている。一方の基板には、マトリクス状に配置された多
数の画素電極と、それらの画素電極にそれぞれ接続され
た多数のTFT(Thin Film Transistor:薄膜トランジ
スタ)とが設けられている。また、他方の基板には、赤
色、緑色及び青色のカラーフィルタと、画素電極に対向
するコモン電極とが設けられている。なお、画素電極が
マトリクス状に配置された領域を表示領域という。
2. Description of the Related Art Liquid crystal display panels are advantageous in that they are thin and lightweight, can be driven at a low voltage, and consume little power, and are widely used in various electronic devices. A general liquid crystal display panel used for a television or a personal computer has a structure in which liquid crystal is sealed between two substrates. On one substrate, a number of pixel electrodes arranged in a matrix and a number of thin film transistors (TFTs) connected to the pixel electrodes are provided. The other substrate is provided with red, green, and blue color filters and a common electrode facing the pixel electrode. Note that a region where the pixel electrodes are arranged in a matrix is referred to as a display region.

【0003】従来は、以下に示す方法によって2枚の基
板間に液晶を封入している。すなわち、一方の基板の表
示領域を囲むようにして枠状にシール剤を塗布する。但
し、後工程で基板間に液晶を注入するために、液晶注入
口として枠状の一部にシール剤を塗布しない部分を設け
ておく。その後、2枚の基板の間に両者の間隔(セルギ
ャップ)を一定に維持するためのスペーサを配置し、シ
ール剤によって2枚の基板を接合して液晶表示パネルと
する。液晶注入前の液晶表示パネルは空パネルといわれ
る。
Conventionally, liquid crystal is sealed between two substrates by the following method. That is, a sealant is applied in a frame shape so as to surround the display area of one substrate. However, in order to inject the liquid crystal between the substrates in a later process, a portion where the sealant is not applied is provided in a part of the frame as a liquid crystal injection port. Thereafter, a spacer for maintaining a constant gap (cell gap) between the two substrates is arranged, and the two substrates are joined with a sealant to form a liquid crystal display panel. The liquid crystal display panel before liquid crystal injection is called an empty panel.

【0004】次いで、シール剤を十分に硬化させた後、
液晶を入れた容器と空パネルとを真空チャンバ内に入れ
る。そして、チャンバ内を真空にした後、空パネルの液
晶注入口を容器内の液晶中に入れ、チャンバ内を大気圧
に戻す。これにより、大気圧と空パネル内の圧力との差
によって液晶がパネル内に進入する。パネル内に液晶が
十分に充填された後、このパネルを平板の間に挟んで加
圧し、余分な液晶を排出してセルギャップを一定にす
る。そして、液晶注入口に樹脂を充填し、この樹脂を硬
化させる。これにより、液晶の封入が完了する。
[0004] Then, after sufficiently hardening the sealant,
The container containing the liquid crystal and the empty panel are placed in a vacuum chamber. Then, after the inside of the chamber is evacuated, the liquid crystal injection port of the empty panel is put into the liquid crystal in the container, and the inside of the chamber is returned to the atmospheric pressure. As a result, the liquid crystal enters the panel due to the difference between the atmospheric pressure and the pressure in the empty panel. After the panel is sufficiently filled with liquid crystal, the panel is sandwiched between flat plates and pressurized to discharge excess liquid crystal to make the cell gap constant. Then, a resin is filled into the liquid crystal injection port, and the resin is cured. Thereby, the enclosing of the liquid crystal is completed.

【0005】ところで、上述した従来の液晶封入方法
(ディップ注入法)では、パネル内の圧力と大気圧との
差により液晶を注入するので、パネル内に十分に液晶が
充填されるまでに長時間を要するという欠点がある。そ
こで、作業性を改善するために、滴下注入法といわれる
方法が開発されている。滴下注入法では、例えば一方の
基板上に、表示領域を囲むようにしてシール剤を塗布
し、この基板の上に液晶を滴下する。そして、真空雰囲
気中で一方の基板の上にスペーサを挟んで他方の基板を
配置し、圧着した後、基板間に液晶を拡散させ、シール
剤を硬化させて液晶封入工程を行う。
In the above-described conventional liquid crystal sealing method (dip injection method), the liquid crystal is injected by the difference between the pressure in the panel and the atmospheric pressure. Therefore, it takes a long time until the liquid crystal is sufficiently filled in the panel. Is required. Then, in order to improve workability, a method called a dropping method has been developed. In the drop-injection method, for example, a sealant is applied on one substrate so as to surround a display region, and liquid crystal is dropped on the substrate. Then, in a vacuum atmosphere, the other substrate is placed on one of the substrates with a spacer interposed therebetween, and after pressure bonding, the liquid crystal is diffused between the substrates, the sealant is cured, and a liquid crystal sealing step is performed.

【0006】なお、必ずしもシール剤を塗布した基板に
液晶を滴下する必要はなく、シール剤を塗布していない
ほうの基板に液晶を滴下してもよい。また、シール剤
は、光硬化性のもの及び熱硬化性のもののどちらを使用
してもよく、それらを併用してもよい。
Note that it is not always necessary to drop liquid crystal on a substrate coated with a sealant, and liquid crystal may be dropped on a substrate not coated with a sealant. Further, as the sealant, either a photo-curable or a thermo-curable sealant may be used, or a combination thereof may be used.

【0007】[0007]

【発明が解決しようとする課題】従来の注入法では、以
下に示す問題点がある。すなわち、従来の注入法では、
揮発性が少ない液晶を使用しており、減圧下においても
常温で一連の工程を実施していた。しかし、近年、液晶
表示パネルの高速応答性が要求されるようになり、それ
に伴って回転粘度γ1の小さい液晶の使用が見込まれて
いる。ところが、回転粘度γ1の小さい液晶は揮発性が
高く、従来の滴下注入法では減圧下で液晶中の揮発成分
が消失して、液晶の回転粘度γ1が大きくなってしま
う。従って、回転粘度γ1の小さい液晶を使用しても、
応答性を改善する効果が得られない。
The conventional injection method has the following problems. That is, in the conventional injection method,
Liquid crystal with low volatility was used, and a series of steps were performed at room temperature even under reduced pressure. However, in recent years, a high-speed response of a liquid crystal display panel has been required, and accordingly, use of a liquid crystal having a small rotational viscosity γ1 is expected. However, a liquid crystal having a small rotational viscosity γ1 has high volatility, and the volatile component in the liquid crystal disappears under reduced pressure by the conventional drop injection method, and the rotational viscosity γ1 of the liquid crystal increases. Therefore, even if a liquid crystal having a small rotational viscosity γ1 is used,
The effect of improving responsiveness cannot be obtained.

【0008】本発明の目的は、液晶封入時の液晶粘度の
変化を防止し、応答性が優れた液晶表示パネルの製造方
法を提供することである。
It is an object of the present invention to provide a method of manufacturing a liquid crystal display panel having excellent responsiveness while preventing a change in liquid crystal viscosity when liquid crystal is sealed.

【0009】[0009]

【課題を解決するための手段】本発明の液晶表示パネル
の製造方法は、低粘度の液晶を滴下注入法で注入基板滴
下すること、特に液晶を冷却して、減圧雰囲気下で基板
の貼合わせを行うことを特徴とする。この場合に、前記
液晶として、揮発性を有し、20℃における回転粘度γ
1が120mPa・s以下のものを使用することが好ま
しい。但し、本発明において揮発性を有する液晶とは、
常温かつ10-3Torrの減圧下で30分間放置したとき
に、放置後の重量が放置前の98%以下となるものをい
う。
According to a method of manufacturing a liquid crystal display panel of the present invention, a low-viscosity liquid crystal is dropped by a dropping method into an injection substrate, and particularly, the liquid crystal is cooled and the substrates are bonded together under a reduced pressure atmosphere. Is performed. In this case, the liquid crystal is volatile and has a rotational viscosity γ at 20 ° C.
It is preferable to use one having 120 mPa · s or less. However, in the present invention, the volatile liquid crystal is
When left at room temperature for 30 minutes under reduced pressure of 10 -3 Torr, the weight after standing is 98% or less of that before standing.

【0010】動きの激しい映像を表示するためには高速
応答性が優れた液晶表示パネルが必要であり、高速応答
性が優れた液晶表示パネルを実現するためには回転粘度
γ1が小さい液晶(具体的には、20℃における回転粘
度γ1が120mPa・s以下の液晶)を使用すること
が必要である。しかし、回転粘度γ1が小さい液晶は、
揮発性を有する液晶であるということもできる。なお、
回転粘度γ1は液晶分子の動きやすさに係わり、一般的
な粘度(フロー粘度)とは異なる。
[0010] A liquid crystal display panel having excellent high-speed response is required to display a moving image, and a liquid crystal having a small rotational viscosity γ1 (specifically, a liquid crystal display panel) is required to realize a liquid crystal display panel having excellent high-speed response. Specifically, it is necessary to use a liquid crystal having a rotational viscosity γ1 at 20 ° C. of 120 mPa · s or less. However, a liquid crystal having a small rotational viscosity γ1 is
It can also be said that the liquid crystal has volatility. In addition,
The rotational viscosity γ1 is related to the ease of movement of liquid crystal molecules, and is different from general viscosity (flow viscosity).

【0011】液晶表示パネルに使用される液晶は、複数
の液晶化合物の混合体であるが、極性を示さないニュー
トラル材(誘電率異方性がニュートラルの液晶化合物)
であって揮発性が高い成分を混合すると、液晶の回転粘
度を下げることができる。例えば、回転粘度γ1が13
5mPa・sの液晶にニュートラル材を混合することに
より、回転粘度γ1が82mPa・sの液晶を得ること
ができる。しかし、この液晶を注入法により常温かつ減
圧下でパネル内に封入すると、液晶中の揮発成分が消失
して回転粘度γ1が135以上となってしまう。これで
は、応答性が優れた液晶表示パネルを製造することはで
きない。
The liquid crystal used in the liquid crystal display panel is a mixture of a plurality of liquid crystal compounds, but a neutral material having no polarity (a liquid crystal compound having a neutral dielectric anisotropy).
However, when a highly volatile component is mixed, the rotational viscosity of the liquid crystal can be reduced. For example, when the rotational viscosity γ1 is 13
By mixing a neutral material with a liquid crystal of 5 mPa · s, a liquid crystal having a rotational viscosity γ1 of 82 mPa · s can be obtained. However, when this liquid crystal is sealed in a panel at room temperature and under reduced pressure by an injection method, the volatile component in the liquid crystal disappears and the rotational viscosity γ1 becomes 135 or more. In this case, a liquid crystal display panel having excellent responsiveness cannot be manufactured.

【0012】液晶中の成分の揮発は、液晶材料が存在す
る雰囲気の温度に支配されるため、低温であればその揮
発量を最小限に抑えることが可能である。例えば、上記
の液晶を0℃以下に冷却して減圧下においても、液晶の
組成は殆ど変化しない。従って、液晶を冷却した状態で
パネル内に封入すれば、より一層応答性が優れた液晶表
示パネルを製造することができる。
Since the volatilization of the components in the liquid crystal is governed by the temperature of the atmosphere in which the liquid crystal material is present, it is possible to minimize the amount of volatilization at a low temperature. For example, even if the above liquid crystal is cooled to 0 ° C. or less and the pressure is reduced, the composition of the liquid crystal hardly changes. Therefore, if the liquid crystal is sealed in the panel in a cooled state, a liquid crystal display panel with even better responsiveness can be manufactured.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1を用いて、滴下注入法による液晶表示
パネル(液晶表示装置)の製造方法を説明する。まず、
公知の方法でカラーフィルタ及びコモン電極を備えた基
板(以下、CF基板という)と、TFT及び画素電極を
備えた基板(以下、TFT基板という)とを形成する。
本実施の形態では、これらの基板として、いずれもサイ
ズが500mm×400mmのガラス基板を使用する。
このサイズの基板は、2台分の15型液晶表示パネルを
形成するためのいわゆる2面取り基板である。なお、こ
れらのCF基板及びTFT基板の上には、垂直配向膜
(例えば、ポリアミック酸タイプ/JSR製)を形成し
ておく。
Embodiments of the present invention will be described below. A method for manufacturing a liquid crystal display panel (liquid crystal display device) by the drop injection method will be described with reference to FIG. First,
A substrate provided with a color filter and a common electrode (hereinafter, referred to as a CF substrate) and a substrate provided with a TFT and a pixel electrode (hereinafter, referred to as a TFT substrate) are formed by a known method.
In this embodiment mode, glass substrates each having a size of 500 mm × 400 mm are used as these substrates.
A substrate of this size is a so-called two-chamfered substrate for forming two 15-inch liquid crystal display panels. Note that a vertical alignment film (for example, polyamic acid type / manufactured by JSR) is formed on the CF substrate and the TFT substrate.

【0014】その後、光硬化性のシール剤を用いて、図
1に示すように、CF基板10の表示領域を囲む第1の
枠状パターン11と、基板縁部に沿った第2の枠状パタ
ーン12でシール剤を塗布する。パターン11,12の
幅はいずれも1mmである。そして、各枠状パターン1
1内に液晶(N型液晶/メルクジャパン製)13を、シ
ール外形寸法とパネル厚から求まる必要量だけ滴下し、
真空中でCF基板10とTFT基板(図示せず)との貼
り合せを行う。
Then, as shown in FIG. 1, a first frame-shaped pattern 11 surrounding the display area of the CF substrate 10 and a second frame-shaped pattern A sealing agent is applied in a pattern 12. The width of each of the patterns 11 and 12 is 1 mm. And each frame pattern 1
Liquid crystal (N-type liquid crystal / manufactured by Merck Japan) 13 is dropped in a required amount determined from the seal outer dimensions and the panel thickness in 1,
The CF substrate 10 and the TFT substrate (not shown) are bonded in a vacuum.

【0015】その後、液晶がほぼ表示領域内の全体に拡
散してから大気圧に戻し、基板上方(CF基板側)から
紫外線を2000mJ照射して、シール剤を硬化させ
る。この貼合わせ基板を120℃の温度で1時間加熱し
た後、スクライブラインに沿って分割する。このように
して、液晶表示パネルを形成することができる。更に、
図2〜図6を参照して説明する。図2は液晶表示パネル
のセル構造を示す平面図、図3は図2のA−A線による
断面図、図4は基板上にシール剤を塗布した後の液晶を
滴下工程を示す図、図5はTFT基板とCF基板とを重
ね合わせる工程を示す模式図、図6はシール剤の硬化工
程を示す模式図である。なお、本実施の形態においては
MVA(Multi-domain Vertical Alignment )型液晶表
示パネルの製造方法について説明している。
After that, the liquid crystal is diffused almost entirely in the display area and then returned to the atmospheric pressure, and 2,000 mJ of ultraviolet light is irradiated from above the substrate (CF substrate side) to cure the sealant. After heating this bonded substrate at a temperature of 120 ° C. for one hour, it is divided along a scribe line. Thus, a liquid crystal display panel can be formed. Furthermore,
This will be described with reference to FIGS. 2 is a plan view showing a cell structure of the liquid crystal display panel, FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, and FIG. 4 is a view showing a process of dropping liquid crystal after applying a sealant on a substrate. FIG. 5 is a schematic view showing a step of superposing a TFT substrate and a CF substrate, and FIG. 6 is a schematic view showing a curing step of a sealant. In the present embodiment, a method for manufacturing an MVA (Multi-domain Vertical Alignment) type liquid crystal display panel is described.

【0016】まず、TFT基板20及びCF基板30を
それぞれ製造する。TFT基板20の製造には、公知の
成膜法及びフォトリソグラフィ法を使用して、ガラス基
板21の上に、ゲートバスライン22、補助容量バスラ
イン23,データバスライン24、TFT25及び画素
電極26を形成する。この場合に、画素電極26には、
配向分割用のスリット26aを設けておく。また、画素
電極26とTFT25のソース電極とは、コンタクトホ
ールを介して電気的に接続する。その後、画素電極26
の上を覆うように垂直配向膜27を形成する(図2,3
参照)。
First, the TFT substrate 20 and the CF substrate 30 are manufactured. In manufacturing the TFT substrate 20, a gate bus line 22, an auxiliary capacitance bus line 23, a data bus line 24, a TFT 25, and a pixel electrode 26 are formed on a glass substrate 21 by using a known film forming method and a photolithography method. To form In this case, the pixel electrode 26
A slit 26a for orientation division is provided. The pixel electrode 26 and the source electrode of the TFT 25 are electrically connected via a contact hole. After that, the pixel electrode 26
Vertical alignment film 27 is formed so as to cover the top of the substrate (FIGS. 2 and 3).
reference).

【0017】また、CF基板30の製造には、公知の成
膜法及びフォトリソグラフィ法を使用して、ガラス基板
31上に、ブラックマトリクス32、カラーフィルタ3
3、コモン電極34及び配向分割用突起(土手)35を
形成し、これらの上を覆うように垂直配向膜36を形成
する(図3参照)。図3において、突起(土手)層を利
用し、固定スペーサとすることで、狭セルギャップ化も
工程を追加することなく(突起層形成の工程のみ)可能
であり、高速応答化が図れる。この場合、適切な密度で
開口部外に固定スペーサを配置する。これにより、効率
よくセルギャップが4μm以下の液晶表示パネルが得ら
れ、高速応答化が実現できる。
In manufacturing the CF substrate 30, a black matrix 32 and a color filter 3 are formed on a glass substrate 31 by using a known film forming method and a photolithography method.
3. A common electrode 34 and a projection (bank) 35 for alignment division are formed, and a vertical alignment film 36 is formed so as to cover them (see FIG. 3). In FIG. 3, by using a protrusion (bank) layer as a fixed spacer, a narrow cell gap can be achieved without adding a step (only the step of forming a protrusion layer), and high-speed response can be achieved. In this case, a fixed spacer is arranged outside the opening at an appropriate density. Thereby, a liquid crystal display panel having a cell gap of 4 μm or less can be efficiently obtained, and high-speed response can be realized.

【0018】次に、図4に示すように、TFT基板20
の上に、表示領域を囲むようにしてシール剤28を塗布
する。その後、滴下ディスペンサ41を用いて、TFT
基板20上の数箇所にN(ネガ)型液晶40を滴下す
る。この場合に、液晶40の滴下量は、表示領域の面積
と目標とするパネル厚とに応じて決定する。滴下注入は
セルギャップが3.0μmなどの小さいパネルを作製す
るのに適している。セルギャップが3.0μmになる
と、セル厚の2乗効果から極めて高速な液晶表示パネル
を得ることができる。
Next, as shown in FIG.
A sealant 28 is applied to surround the display area. Then, using the drop dispenser 41, the TFT
N (negative) liquid crystal 40 is dropped at several places on the substrate 20. In this case, the drop amount of the liquid crystal 40 is determined according to the area of the display area and the target panel thickness. The drop injection is suitable for manufacturing a small panel having a cell gap of 3.0 μm or the like. When the cell gap is 3.0 μm, an extremely high-speed liquid crystal display panel can be obtained from the square effect of the cell thickness.

【0019】次に、図5に示すように、貼合わせ装置の
チャンバ42内にTFT基板20及びCF基板30を入
れ、TFT基板20を0℃に冷却しながら、チャンバ4
2内を例えば10-3Torr程度の圧力になるまで排気す
る。そして、TFT基板20の上にCF基板30を重ね
合わせた後、図6に示すように、UV照射によってシー
ル剤28を硬化させる。TFT基板20とCF基板30
とを重ね合わせるときに、液晶40がシール剤28に囲
まれた領域内全体に広がって、パネル内に液晶が密封さ
れる。なお、シール剤の硬化は、減圧下(真空中)で行
ってもよいし、空気中(大気中)又はN2 等の不活性ガ
ス雰囲気中で行ってもよい。
Next, as shown in FIG. 5, the TFT substrate 20 and the CF substrate 30 are put in the chamber 42 of the bonding apparatus, and the TFT substrate 20 is cooled to 0 ° C.
2 is evacuated to a pressure of, for example, about 10 -3 Torr. Then, after the CF substrate 30 is overlaid on the TFT substrate 20, as shown in FIG. 6, the sealant 28 is cured by UV irradiation. TFT substrate 20 and CF substrate 30
When superimposed, the liquid crystal 40 spreads over the entire area surrounded by the sealant 28, and the liquid crystal is sealed in the panel. The curing of the sealant may be performed under reduced pressure (in vacuum), in air (in air), or in an atmosphere of an inert gas such as N 2 .

【0020】その後、パネルの表裏両面にそれぞれ偏光
板を貼り付ける。これにより、MVA型液晶表示パネル
が完成する。本実施の形態によれば、液晶封入時に基板
温度を0℃まで冷却するので、減圧下でも液晶の揮発成
分の消失がほぼ完全に回避される。これにより、液晶の
回転粘度γ1が小さく、応答性が優れた液晶表示パネル
を得ることができる。従来のディップ注入法よりも滴下
注入プロセスのほうが、減圧下におかれる時間が短いた
め、回転粘度の小さな液晶は滴下注入に適している。ま
た、MVA型液晶表示パネルに用いるN(ネガ)型の液
晶材料は、揮発性が小さい材料のみで構成しても低粘性
化は極めて難しい。よって、上記低粘性液晶及びこれを
用いた製造方法は、MVA型液晶表示パネルにおいて、
特に効果が大きいものとなる。
Thereafter, a polarizing plate is attached to each of the front and back surfaces of the panel. Thus, the MVA type liquid crystal display panel is completed. According to the present embodiment, since the substrate temperature is cooled to 0 ° C. when the liquid crystal is sealed, the disappearance of the volatile components of the liquid crystal is almost completely avoided even under reduced pressure. As a result, a liquid crystal display panel having a small liquid crystal rotational viscosity γ1 and excellent responsiveness can be obtained. The liquid crystal having a low rotational viscosity is more suitable for the drop injection process than the conventional dip injection method because the time during which the pressure is reduced is shorter in the drop injection process. Further, it is extremely difficult to reduce the viscosity of an N (negative) liquid crystal material used for an MVA type liquid crystal display panel even if it is composed of only a material having low volatility. Therefore, the low-viscosity liquid crystal and the manufacturing method using the same are used in an MVA type liquid crystal display panel.
The effect is particularly large.

【0021】なお、上記実施の形態ではMVA型液晶表
示パネルの製造に本発明を適用した場合について説明し
たが、これにより本発明がMVA型液晶表示パネルの製
造方法に限定されるものではなく、本発明はTN(Twis
ted Nematic )型及びその他の方式の液晶表示パネルの
製造に適用することができる。また、液晶材料もN(ネ
ガ)型に限定されるものではなく、P(ポジ)型液晶材
料を用いた場合も同様の効果を得ることができる。
In the above embodiment, the case where the present invention is applied to the manufacture of the MVA type liquid crystal display panel has been described. However, the present invention is not limited to the method of manufacturing the MVA type liquid crystal display panel. The present invention relates to TN (Twis
ted Nematic) and other types of liquid crystal display panels. Further, the liquid crystal material is not limited to the N (negative) liquid crystal material, and the same effect can be obtained when a P (positive) liquid crystal material is used.

【0022】更に、上記実施の形態ではTFT基板上に
液晶を滴下し、このTFT基板の上にCF基板を重ね合
わせたが、CF基板上に液晶を滴下し、CF基板上にT
FT基板を重ね合わせるようにしてもよい。以下、本実
施の形態により評価用液晶セルを製造し、その応答特性
を調べた結果について、比較例と比較して説明する。
Further, in the above embodiment, the liquid crystal was dropped on the TFT substrate and the CF substrate was superimposed on the TFT substrate. However, the liquid crystal was dropped on the CF substrate and the TFT was placed on the CF substrate.
The FT substrates may be overlapped. Hereinafter, a result of manufacturing a liquid crystal cell for evaluation according to the present embodiment and examining the response characteristics thereof will be described in comparison with a comparative example.

【0023】上述した滴下注入法により、評価用液晶セ
ルを作製した。ITO(Indium-TinOxide)からなる透
明電極が形成された第1のガラス基板に、レジストA
(シプレイ製)をスピンコート法により塗布してレジス
ト膜を形成し、フォトマスクを使ってレジスト膜に突起
形成用パターンを転写した。その後、現像処理してレジ
スト膜をパターニングした後、120℃の温度で40分
間、200℃の温度で40分間ベークした。これによ
り、基板上に、レジストからなる高さが1.4μmの配
向分割用突起が形成された。
A liquid crystal cell for evaluation was prepared by the above-described dropping injection method. On the first glass substrate on which a transparent electrode made of ITO (Indium-TinOxide) is formed, a resist A
(Manufactured by Shipley) was applied by spin coating to form a resist film, and the pattern for forming projections was transferred to the resist film using a photomask. Then, after developing and patterning the resist film, it was baked at a temperature of 120 ° C. for 40 minutes and at a temperature of 200 ° C. for 40 minutes. As a result, protrusions for alignment division having a height of 1.4 μm made of resist were formed on the substrate.

【0024】次に、ITOからなる透明電極が形成され
た第2のガラス基板を用意し、フォトレジスト法により
透明電極をパターニングした。ITOのない領域が第1
のガラス基板の突起と突起との間に配置されるように形
成した(図2,3参照)。次に、第1の基板及び第2の
基板の上にそれぞれ垂直配向膜(ポリアミック酸タイプ
/JSR製)を形成した。更に、第2の基板の上に固定
スペーサをレジストにより所定の位置にパターン形成
し、第1の基板側にはシール剤を枠状に塗布した(図4
参照)。
Next, a second glass substrate on which a transparent electrode made of ITO was formed was prepared, and the transparent electrode was patterned by a photoresist method. Area without ITO is first
(See FIGS. 2 and 3). Next, a vertical alignment film (polyamic acid type / manufactured by JSR) was formed on each of the first substrate and the second substrate. Further, a fixed spacer was formed in a predetermined position on the second substrate by a resist using a resist, and a sealant was applied in a frame shape on the first substrate side (FIG. 4).
reference).

【0025】実施例1として揮発性を有しない液晶A
(メルク・ジャパン製)を用い、実施例2として揮発性
を有する液晶Bを用いて、それぞれ滴下ディスペンサで
第1の基板上に液晶を滴下した。下記表1に、液晶A,
Bの物性値を示す。
Example 1 shows a liquid crystal A having no volatility.
(Merck Japan), and as Example 2, liquid crystal B having volatility was used, and liquid crystal was dropped on the first substrate with a drop dispenser. In Table 1 below, the liquid crystal A,
The physical properties of B are shown.

【0026】[0026]

【表1】 [Table 1]

【0027】第1及び第2の基板を貼合わせ装置のチャ
ンバ内に入れ、0℃に冷却しながらチャンバ内を10-3
Torrまで排気し、第1の基板の上に第2の基板を重ね合
わせた。このとき、第1の基板の突起と第2の基板のI
TOのない領域とが互い違いに配置されるように(MV
Aセルとなるように)、第1の基板と第2の基板とを貼
合わせてパネルとした(図3参照)。その後、UV照射
によりシール剤を硬化させた後、パネルの上下に偏光板
をクロスニコルに貼合わせた。
[0027] placed in the chamber of the first and second alignment bonded substrate device, while cooling to 0 ℃ in the chamber 10 -3
After evacuation to Torr, the second substrate was overlaid on the first substrate. At this time, the protrusions of the first substrate and the I
In such a way that the areas without TO are arranged alternately (MV
The first substrate and the second substrate were bonded together to form a panel (so as to form an A cell) (see FIG. 3). Then, after the sealing agent was cured by UV irradiation, polarizing plates were attached to the upper and lower sides of the panel in crossed Nicols.

【0028】同様に、比較例1として揮発性を有しない
液晶A(メルク・ジャパン製)を用い、比較例2として
揮発性を有する液晶Bを用いて、それぞれ滴下ディスペ
ンサで第1の基板上に滴下した。そして、これらの基板
を貼合わせ装置のチャンバ内に入れ、基板温度が室温
(23±1℃)のままチャンバ内を10-3Torrまで排気
し、第1の基板の上に第2の基板を重ね合わせた。その
後、UV照射によりシール剤を硬化させた後、パネルの
上下に偏光板をクロスニコルに貼合わせた。また、滴下
注入法ではなく、従来の注入法(ディップ法)により同
様のMVA液晶評価セルを作製した。すなわち、上述し
た方法と同様に、突起を有する第1のガラス基板と、パ
ターニングしたITOのない領域を有する第2のガラス
基板とを用意し、各々の基板に垂直配向膜を形成した。
ここまでの基板形成は、全て同じ工程で作製している。
Similarly, a liquid crystal A having no volatility (manufactured by Merck Japan) was used as Comparative Example 1, and a liquid crystal B having volatility was used as Comparative Example 2. It was dropped. Then, these substrates are put into a chamber of a bonding apparatus, and while the substrate temperature is room temperature (23 ± 1 ° C.), the inside of the chamber is evacuated to 10 −3 Torr, and the second substrate is placed on the first substrate. Superimposed. Thereafter, after the sealant was cured by UV irradiation, polarizing plates were attached to the upper and lower sides of the panel in crossed Nicols. Further, a similar MVA liquid crystal evaluation cell was manufactured by a conventional injection method (dip method) instead of the drop injection method. That is, in the same manner as in the above-described method, a first glass substrate having projections and a second glass substrate having a patterned region without ITO were prepared, and a vertical alignment film was formed on each substrate.
All the substrate formations up to this point are manufactured in the same process.

【0029】その後、第1の基板に液晶注入口ができる
パターンでシール剤(熱硬化性シール、XN−21F/
三井化学製)を設けた。そして、第1の基板と第2の基
板とをMVAセルとなるように貼合わせ(図3参照)、
135℃のオーブン内に90分間放置した。このように
して、空セルを作製した。この空セルに、比較例3とし
て揮発性を有しない液晶A(メルク・ジャパン製)を、
比較例4として揮発性を有する液晶B(メルク・ジャパ
ン)を、真空ディップ注入した。注入装置の真空度は、
10-3Torrであり、真空排気時間は40分間とした。こ
のとき、真空チャンバ内の温度制御は行わず、室温で一
連の注入工程を行った。
Thereafter, a sealing agent (thermosetting seal, XN-21F /
(Mitsui Chemicals). Then, the first substrate and the second substrate are bonded so as to form an MVA cell (see FIG. 3),
It was left in an oven at 135 ° C. for 90 minutes. Thus, an empty cell was produced. In this empty cell, a liquid crystal A having no volatility (manufactured by Merck Japan) was used as Comparative Example 3.
As Comparative Example 4, volatile liquid crystal B (Merck Japan) was injected by vacuum dip. The vacuum of the injection device is
The pressure was 10 -3 Torr, and the evacuation time was 40 minutes. At this time, the temperature in the vacuum chamber was not controlled, and a series of injection steps were performed at room temperature.

【0030】注入後、セルギャップが得られるようにし
て液晶注入口を市販のUV硬化性樹脂(スリーボンド
製)を用いて封止した。更に、パネルの上下に偏光板を
クロスニコルに貼合わせて、液晶セルを完成させた。実
施例1,2、比較例1,2及び比較例3,4の液晶セル
について、電気光学特性を調べた。その結果を表2に示
す。なお、応答性は光透過率の90%変動特性により求
めた。すなわち、液晶セルにパルス電圧を印加したとき
に、液晶セルの光透過率が飽和透過率の90%に至るま
での時間を調べた。
After the injection, the liquid crystal injection port was sealed with a commercially available UV curable resin (manufactured by Three Bond) so that a cell gap could be obtained. Further, polarizing plates were stuck on the upper and lower sides of the panel in crossed Nicols to complete a liquid crystal cell. The electro-optical characteristics of the liquid crystal cells of Examples 1 and 2, Comparative Examples 1 and 2, and Comparative Examples 3 and 4 were examined. Table 2 shows the results. In addition, the responsiveness was obtained from a 90% variation characteristic of the light transmittance. That is, the time required for the light transmittance of the liquid crystal cell to reach 90% of the saturated transmittance when a pulse voltage was applied to the liquid crystal cell was examined.

【0031】[0031]

【表2】 [Table 2]

【0032】上記表2から明らかなように、液晶を冷却
しながらパネル内に封入した実施例1,2の液晶セルで
は、同じ液晶を室温でパネル内に封入した比較例1,2
の液晶セルに比べて応答特性が良好であった。特に、揮
発性を有する液晶Bを使用した実施例2の液晶セルでは
応答性が20msecであり、極めて良好な高速応答性を有
する液晶表示パネルを製造できることが確認された。
As is clear from Table 2, in the liquid crystal cells of Examples 1 and 2 in which the liquid crystal was sealed in the panel while cooling the liquid crystal, Comparative Examples 1 and 2 in which the same liquid crystal was sealed in the panel at room temperature.
The liquid crystal cell had better response characteristics. In particular, the response of the liquid crystal cell of Example 2 using the volatile liquid crystal B was 20 msec, and it was confirmed that a liquid crystal display panel having extremely good high-speed response could be manufactured.

【0033】また、比較例3,4と上記した結果から、
従来注入法(ディップ法)と比較すると、滴下注入法で
は応答特性の改善に大きな効果があることもわかる。こ
れは、滴下注入法では、従来注入法に比較して、極端に
短い時間で真空脱泡処理が完了するためである。15型
の液晶表示パネルでいえば、従来注入法では排気時間が
数時間を要するのに対し、滴下注入法では数分以下に短
縮される。大型の液晶表示パネルを作製する場合ほど、
この違いは顕著となってくる。
From the results of Comparative Examples 3 and 4 and the above,
Compared with the conventional injection method (dip method), it is also found that the drop injection method has a great effect on improving the response characteristics. This is because the vacuum defoaming process is completed in an extremely short time in the drop injection method as compared with the conventional injection method. In the case of a 15-inch liquid crystal display panel, the exhaust time is several hours in the conventional injection method, but is reduced to several minutes or less in the drop injection method. When making a large liquid crystal display panel,
This difference becomes noticeable.

【0034】比較例3,4の応答性においては、液晶B
により高速化しなかったのは、真空排気時における液晶
B内の揮発性が高い成分が揮発し、結果的に液晶粘性γ
1が82から上昇してしまったためである。液晶Bの揮
発の度合いは、完成した液晶表示パネルを分解し、液晶
を採取してガスクロマトグラフィなどで分析することで
判別できた。低粘性に寄与している液晶成分が大幅に減
少していた。
In the response of Comparative Examples 3 and 4, the liquid crystal B
Is that the high-volatility component in the liquid crystal B at the time of vacuum evacuation volatilizes, and as a result, the liquid crystal viscosity γ
This is because 1 has risen from 82. The degree of volatilization of the liquid crystal B could be determined by disassembling the completed liquid crystal display panel, collecting the liquid crystal, and analyzing it by gas chromatography or the like. The liquid crystal component contributing to low viscosity was greatly reduced.

【0035】(変形例)上述した液晶表示パネルの製造
方法では、液晶を滴下した基板全体を0℃まで冷却した
が、図7に示すように、基板20の全体ではなく、液晶
40を滴下した部分のみを冷却体45で部分的に冷却し
ても、上記実施の形態と同様の効果を得ることができ
る。
(Modification) In the above-described method for manufacturing a liquid crystal display panel, the entire substrate on which the liquid crystal was dropped was cooled to 0 ° C., but the liquid crystal 40 was dropped instead of the entire substrate 20 as shown in FIG. Even if only a part is partially cooled by the cooling body 45, the same effect as in the above embodiment can be obtained.

【0036】また、TFT基板とCF基板とを重ね合わ
せた後のシール剤を硬化させる工程で、図8に示すよう
に、基板20,30の表示領域を加熱体46で加熱し、
シール剤28の近傍のみを冷却体47で冷却するように
してもよい。こうすることにより、液晶40がパネル内
部に均一に拡がってセル厚のばらつきが抑制されるとと
もに、シール剤28の近傍では液晶40の拡がり速度が
遅くなるので、シール剤28との接触による液晶40の
汚染が防止されるという効果を得ることができる。これ
により、表示むらの少ない液晶表示パネルを製造でき
る。
In the step of curing the sealant after the TFT substrate and the CF substrate are overlaid, as shown in FIG. 8, the display areas of the substrates 20 and 30 are heated by the heater 46,
Only the vicinity of the sealant 28 may be cooled by the cooling body 47. By doing so, the liquid crystal 40 spreads uniformly inside the panel to suppress the variation in cell thickness, and the spreading speed of the liquid crystal 40 is reduced in the vicinity of the sealant 28. Can be obtained. Thereby, a liquid crystal display panel with less display unevenness can be manufactured.

【0037】(付記1)第1の基板又は第2の基板上に
シール剤を設け、前記第1の基板及び前記第2の基板の
うちの一方の基板上に液晶を滴下し、前記第1の基板と
前記第2の基板とを重ね合わせ、前記シール剤を硬化し
て前記第1の基板と前記第2の基板を貼合わせる工程を
有する液晶表示パネルの製造方法において、前記液晶を
冷却し、減圧下で前記第1の基板と前記第2の基板との
重ね合わせを行うことを特徴とする液晶表示パネルの製
造方法。
(Supplementary Note 1) A sealant is provided on the first substrate or the second substrate, and liquid crystal is dropped on one of the first substrate and the second substrate. A method of manufacturing a liquid crystal display panel, comprising the steps of: laminating a substrate and the second substrate; curing the sealant; and laminating the first substrate and the second substrate. And superposing the first substrate and the second substrate under reduced pressure.

【0038】(付記2)前記液晶として、揮発性を有
し、20℃における回転粘度γ1が120mPa・s以
下のものを使用することを特徴とする付記1に記載の液
晶表示パネルの製造方法。 (付記3)前記液晶を冷却する工程において、前記液晶
の温度を0℃以下とすることを特徴とする付記1又は付
記2に記載の液晶表示パネルの製造方法。
(Supplementary Note 2) The method for producing a liquid crystal display panel according to Supplementary Note 1, wherein a liquid crystal having volatility and a rotational viscosity γ1 at 20 ° C. of 120 mPa · s or less is used. (Supplementary Note 3) The method for manufacturing a liquid crystal display panel according to Supplementary Note 1 or 2, wherein the temperature of the liquid crystal is set to 0 ° C. or less in the step of cooling the liquid crystal.

【0039】(付記4)前記液晶を冷却する工程におい
て、前記第1の基板又は前記第2の基板のうち液晶を滴
下した領域のみ冷却することで前記液晶を冷却すること
を特徴とする付記1又は付記2に記載の液晶表示パネル
の製造方法。 (付記5)前記第1及び第2の基板を重ね合わせた後
に、前記液晶を加熱し、前記シール剤の近傍を冷却する
ことを特徴とする付記1又は付記2に記載の液晶表示パ
ネルの製造方法。
(Supplementary Note 4) In the step of cooling the liquid crystal, the liquid crystal is cooled by cooling only a region of the first substrate or the second substrate where the liquid crystal is dropped. Alternatively, the method for manufacturing a liquid crystal display panel according to supplementary note 2. (Supplementary Note 5) The manufacturing of the liquid crystal display panel according to Supplementary Note 1 or 2, wherein the liquid crystal is heated and the vicinity of the sealant is cooled after the first and second substrates are overlapped. Method.

【0040】[0040]

【発明の効果】以上説明したように、本発明の液晶表示
パネルの製造方法によれば、液晶を冷却した状態で滴下
注入法によってパネル内に液晶を封入するので、揮発性
を有する液晶を使用しても揮発成分の消失が回避され
る。これにより、応答性が優れた液晶表示パネルを得る
ことが可能になる。
As described above, according to the liquid crystal display panel manufacturing method of the present invention, the liquid crystal is sealed in the panel by the drop injection method in a state where the liquid crystal is cooled. Even so, the disappearance of volatile components is avoided. This makes it possible to obtain a liquid crystal display panel having excellent responsiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シール剤の塗布パターンを示す斜視図である。FIG. 1 is a perspective view showing an application pattern of a sealant.

【図2】液晶表示パネルのセル構造を示す平面図であ
る。
FIG. 2 is a plan view showing a cell structure of the liquid crystal display panel.

【図3】図2のA−A線による断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】基板上にシール剤を塗布した後の液晶を滴下工
程を示す図である。
FIG. 4 is a view showing a step of dropping liquid crystal after applying a sealant on a substrate.

【図5】TFT基板とCF基板とを重ね合わせる工程を
示す模式図である。
FIG. 5 is a schematic view showing a step of superposing a TFT substrate and a CF substrate.

【図6】シール剤の硬化工程を示す模式図である。FIG. 6 is a schematic view illustrating a curing step of a sealant.

【図7】液晶表示パネルの製造方法の変形例を示す図で
ある。
FIG. 7 is a view showing a modification of the method of manufacturing the liquid crystal display panel.

【図8】液晶表示パネルの製造方法の他の変形例を示す
図である。
FIG. 8 is a view showing another modification of the method of manufacturing the liquid crystal display panel.

【符号の説明】[Explanation of symbols]

10,30…CF基板、 11…第1の枠状パターン、 12…第2の枠状パターン、 13,40…液晶、 20…TFT基板、 21,31…ガラス基板、 22…ゲートバスライン、 23…補助容量バスライン、 24…データバスライン、 25…TFT、 26…画素電極、 26a…スリット、 27,36…垂直配向膜、 28…シール剤、 32…ブラックマトリクス、 33…カラーフィルタ、 34…コモン電極、 35…配向分割用突起、 42…チャンバ。 10, 30: CF substrate, 11: first frame pattern, 12: second frame pattern, 13, 40: liquid crystal, 20: TFT substrate, 21, 31: glass substrate, 22: gate bus line, 23 ... Auxiliary capacitance bus line, 24 ... Data bus line, 25 ... TFT, 26 ... Pixel electrode, 26a ... Slit, 27,36 ... Vertical alignment film, 28 ... Sealant, 32 ... Black matrix, 33 ... Color filter, 34 ... Common electrode, 35: Projection for orientation division, 42: Chamber.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の基板又は第2の基板上にシール剤
を設け、前記第1の基板及び前記第2の基板のうちの一
方の基板上に液晶を滴下し、前記第1の基板と前記第2
の基板とを重ね合わせ、前記シール剤を硬化して前記第
1の基板と前記第2の基板を貼合わせる工程を有する液
晶表示パネルの製造方法において、 前記液晶を冷却し、減圧下で前記第1の基板と前記第2
の基板との重ね合わせを行うことを特徴とする液晶表示
パネルの製造方法。
A sealing agent provided on a first substrate or a second substrate; a liquid crystal is dropped on one of the first substrate and the second substrate; And the second
A method of manufacturing a liquid crystal display panel, comprising: laminating a substrate; and curing the sealant and laminating the first substrate and the second substrate. The first substrate and the second substrate
A method for manufacturing a liquid crystal display panel, comprising superimposing the liquid crystal display panel on a substrate.
【請求項2】 前記液晶として、揮発性を有し、20℃
における回転粘度γ1が120mPa・s以下のものを
使用することを特徴とする請求項1に記載の液晶表示パ
ネルの製造方法。
2. The liquid crystal has a volatility and a temperature of 20 ° C.
2. The method for manufacturing a liquid crystal display panel according to claim 1, wherein a rotational viscosity γ1 of 120 mPa · s or less is used.
JP2001169337A 2001-06-05 2001-06-05 Method for manufacturing liquid crystal display panel Pending JP2002365650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169337A JP2002365650A (en) 2001-06-05 2001-06-05 Method for manufacturing liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169337A JP2002365650A (en) 2001-06-05 2001-06-05 Method for manufacturing liquid crystal display panel

Publications (1)

Publication Number Publication Date
JP2002365650A true JP2002365650A (en) 2002-12-18

Family

ID=19011426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169337A Pending JP2002365650A (en) 2001-06-05 2001-06-05 Method for manufacturing liquid crystal display panel

Country Status (1)

Country Link
JP (1) JP2002365650A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352419A (en) * 2004-06-14 2005-12-22 Sharp Corp Method for manufacturing device substrate, device substrate, and mother substrate
JP2008107482A (en) * 2006-10-24 2008-05-08 Epson Imaging Devices Corp Display manufacturing method and machine
WO2011097252A3 (en) * 2010-02-02 2011-09-29 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US8519923B2 (en) 2005-02-23 2013-08-27 Pixtronix, Inc. Display methods and apparatus
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US8599463B2 (en) 2008-10-27 2013-12-03 Pixtronix, Inc. MEMS anchors
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
CN105487302A (en) * 2016-01-19 2016-04-13 京东方科技集团股份有限公司 Liquid crystal coating device and method
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
CN108828848A (en) * 2018-07-13 2018-11-16 张家港康得新光电材料有限公司 Sealant curing method and sealant solidification equipment
CN110262103A (en) * 2019-05-06 2019-09-20 惠科股份有限公司 The production method and device of display module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259621A (en) * 1987-04-17 1988-10-26 Matsushita Electric Ind Co Ltd Liquid crystal injection device
JPH07301787A (en) * 1994-05-02 1995-11-14 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH10239694A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Production of liquid crystal display device
JPH1164867A (en) * 1997-08-19 1999-03-05 Hitachi Ltd Production of liquid crystal panel and apparatus therefor
JP2001117118A (en) * 1999-10-20 2001-04-27 Hitachi Ltd Active matrix type liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259621A (en) * 1987-04-17 1988-10-26 Matsushita Electric Ind Co Ltd Liquid crystal injection device
JPH07301787A (en) * 1994-05-02 1995-11-14 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH10239694A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Production of liquid crystal display device
JPH1164867A (en) * 1997-08-19 1999-03-05 Hitachi Ltd Production of liquid crystal panel and apparatus therefor
JP2001117118A (en) * 1999-10-20 2001-04-27 Hitachi Ltd Active matrix type liquid crystal display device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352419A (en) * 2004-06-14 2005-12-22 Sharp Corp Method for manufacturing device substrate, device substrate, and mother substrate
US9274333B2 (en) 2005-02-23 2016-03-01 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US8519923B2 (en) 2005-02-23 2013-08-27 Pixtronix, Inc. Display methods and apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
JP2008107482A (en) * 2006-10-24 2008-05-08 Epson Imaging Devices Corp Display manufacturing method and machine
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US8891152B2 (en) 2008-08-04 2014-11-18 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US8520285B2 (en) 2008-08-04 2013-08-27 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9182587B2 (en) 2008-10-27 2015-11-10 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
US8599463B2 (en) 2008-10-27 2013-12-03 Pixtronix, Inc. MEMS anchors
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
WO2011097252A3 (en) * 2010-02-02 2011-09-29 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
CN102834763B (en) * 2010-02-02 2015-07-22 皮克斯特罗尼克斯公司 Methods for manufacturing cold seal fluid-filled display apparatus
CN102834763A (en) * 2010-02-02 2012-12-19 皮克斯特罗尼克斯公司 Methods for manufacturing cold seal fluid-filled display apparatus
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
CN105487302A (en) * 2016-01-19 2016-04-13 京东方科技集团股份有限公司 Liquid crystal coating device and method
WO2017124711A1 (en) * 2016-01-19 2017-07-27 京东方科技集团股份有限公司 Liquid crystal coating apparatus and method
CN105487302B (en) * 2016-01-19 2017-11-24 京东方科技集团股份有限公司 A kind of liquid crystal coating unit and method
US10268085B2 (en) 2016-01-19 2019-04-23 Boe Technology Group Co., Ltd. Liquid crystal coating apparatus and liquid crystal coating method
CN108828848A (en) * 2018-07-13 2018-11-16 张家港康得新光电材料有限公司 Sealant curing method and sealant solidification equipment
CN108828848B (en) * 2018-07-13 2022-03-01 张家港康得新光电材料有限公司 Frame sealing glue curing method and frame sealing glue curing device
CN110262103A (en) * 2019-05-06 2019-09-20 惠科股份有限公司 The production method and device of display module
CN110262103B (en) * 2019-05-06 2021-10-01 惠科股份有限公司 Manufacturing method and device of display module

Similar Documents

Publication Publication Date Title
JP2002365650A (en) Method for manufacturing liquid crystal display panel
JP3905448B2 (en) Liquid crystal display element and manufacturing method thereof
KR101183386B1 (en) liquid crystal display device and method for fabricating of the same
CN100465738C (en) Panel and method for manufacturing same
EP0990942A1 (en) Liquid crystal display device and method of manufacturing the same
JP2004093760A (en) Method of manufacturing liquid crystal display
JPH09244004A (en) Liquid crystal display element and its production
JP2001209060A (en) Method of producing liquid crystal display panel
JPH1138424A (en) Liquid crystal display panel and its production
TW200408889A (en) Method for manufacturing liquid crystal display device
US6870591B2 (en) Liquid crystal display with separating wall
KR20020036121A (en) Method for manufacturing liquid crystal display panel
JPH07159795A (en) Production of liquid crystal display panel
WO2013170494A1 (en) Liquid crystal panel manufacturing method and liquid crystal glass
TWI250352B (en) Liquid crystal display panel
US6879369B2 (en) Structure of LCD manufactured by one-drop fill technology including a substrate with transparent conductive patterns
JP4499653B2 (en) Manufacturing method of liquid crystal display element
US20090174855A1 (en) Self-developed micro-relief substrate for uniform cell gap
TW200415409A (en) Process and structure of liquid crystal panel with one drop fill
JP2010224094A (en) Method of manufacturing electrooptical device
US20050041194A1 (en) Liquid crystal display having narrow cell gap and method of producing the same
KR20030091541A (en) seal pattern for liquid crystal display device and fabrication method of liquid crystal display device using it
JP4362220B2 (en) Method for producing liquid crystal cell using UV curable liquid crystal
JP2000019540A (en) Liquid crystal display device
KR100321257B1 (en) Method for fabricating liquid crystal optical device and liquid crystal optical device obtained by the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608