JPH04315985A - Measuring device for radiation - Google Patents
Measuring device for radiationInfo
- Publication number
- JPH04315985A JPH04315985A JP3082542A JP8254291A JPH04315985A JP H04315985 A JPH04315985 A JP H04315985A JP 3082542 A JP3082542 A JP 3082542A JP 8254291 A JP8254291 A JP 8254291A JP H04315985 A JPH04315985 A JP H04315985A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- conversion element
- photoelectric conversion
- data
- dark current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 19
- 238000012545 processing Methods 0.000 claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims description 64
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 24
- 238000012937 correction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 239000011810 insulating material Substances 0.000 description 8
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、蛍光体と光電変換素子
を備えてなる放射線計測装置に係り、特にX線CT装置
のX線検出器に好適な放射線計測装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation measuring device comprising a phosphor and a photoelectric conversion element, and more particularly to a radiation measuring device suitable for an X-ray detector of an X-ray CT device.
【0002】0002
【従来の技術】X線CT装置用のX線検出器としてはX
e電離箱検出器が主流であったが、分解能の向上に伴い
、優れたX線利用効率・感度を有する固体検出器が採用
されつつある。[Prior Art] As an X-ray detector for an X-ray CT device,
E-ionization chamber detectors have been the mainstream, but with improved resolution, solid-state detectors with superior X-ray utilization efficiency and sensitivity are being adopted.
【0003】この固体検出器は、X線を光に変換する蛍
光体及び光を電流に変換する光電変換素子を主要部品(
検出器本体)として構成されるが、光電変換素子の暗電
流や、光電変換素子及び蛍光体の複合体の感度が、温度
によって変化するため、温度変化に対する対策が必要で
ある。The main components of this solid-state detector are a phosphor that converts X-rays into light and a photoelectric conversion element that converts light into electric current.
However, since the dark current of the photoelectric conversion element and the sensitivity of the composite of the photoelectric conversion element and phosphor change depending on the temperature, measures against temperature changes are required.
【0004】この対策としては、図4に示すように検出
器を恒温に保つ方法がある(特願平1−233260号
参照)。以下、これにつき説明する。As a countermeasure against this problem, there is a method of keeping the detector at a constant temperature as shown in FIG. 4 (see Japanese Patent Application No. 1-233260). This will be explained below.
【0005】図4において、入射したX線は蛍光体(一
般にシンチレータ)102により光に変換され、更に光
電変換素子(一般にシリコン・フォトダイオード)10
1により電流に変換される。この電流は更にボンディン
グワイヤ103、基板104上の導電パターン106、
コネクタ107、配線108を介して信号処理装置20
1に導かれる。In FIG. 4, incident X-rays are converted into light by a phosphor (generally a scintillator) 102, and then a photoelectric conversion element (generally a silicon photodiode) 10.
1 is converted into current. This current is further applied to the bonding wire 103, the conductive pattern 106 on the substrate 104,
Signal processing device 20 via connector 107 and wiring 108
I am guided by 1.
【0006】ここで、前記基板104は容器105内に
固定される。この容器105の底部外面には、ヒータ2
02及び温度センサ203が固定される。また容器10
5の外周には断熱材205が、断熱材205の外部には
温度コントローラ204が設置される。[0006] Here, the substrate 104 is fixed within a container 105. A heater 2 is provided on the outer surface of the bottom of this container 105.
02 and temperature sensor 203 are fixed. Also container 10
A heat insulating material 205 is installed around the outer periphery of the heat insulating material 5, and a temperature controller 204 is installed outside the heat insulating material 205.
【0007】温度コントローラ204は温度センサ20
3で検出された温度を基準温度と比較し、それによりヒ
ータ202をON,OFFし、温度コントロールする。
これにより、容器105内部は一定温度に保たれる。ま
た断熱材205により熱抵抗を大きくして外部温度の影
響を少なくしている。The temperature controller 204 is a temperature sensor 20
The temperature detected in step 3 is compared with the reference temperature, and the heater 202 is turned on and off accordingly to control the temperature. Thereby, the inside of the container 105 is kept at a constant temperature. Furthermore, the thermal resistance is increased by the heat insulating material 205 to reduce the influence of external temperature.
【0008】なお、信号処理装置201は送られてきた
電流信号を電圧に変換した後、A/D変換し、種々の一
般的な処理(Log変換、オフセット補正など)を行っ
た後、図示しない記憶装置に一般的な処理が済んだ計測
データとして格納するものである。[0008] The signal processing device 201 converts the sent current signal into a voltage, performs A/D conversion, performs various general processing (Log conversion, offset correction, etc.), and then converts the current signal (not shown) into a voltage. It is stored in the storage device as measurement data that has undergone general processing.
【0009】[0009]
【発明が解決しようとする課題】図4に示す従来技術で
は、以下のような問題点があった。
(1)蛍光体102、光電変換素子101の温度を直接
測定しないため、外気の温度変動により誤差を生じやす
い。温度センサ203としては、例えば基板104の裏
面に熱電対や測温センサを固着することも考えられるが
、X線CT装置用の多チャンネルX線検出器は、その各
検出素子(チャンネル)の特性ばらつき低減に対する要
求が厳しく、上記熱電対や測温センサを直付けするとX
線を散乱する可能性があり、またノイズ混入の虞のある
金属を検出素子の近傍に設置することは困難である。
したがって、上記のように光電変換素子101の温度を
直接測定せず、外気の温度変動により誤差を生じやすい
ものとなっている。
(2)ヒータ202を使用するため、蛍光体102及び
光電変換素子101の温度が上昇し、光電変換素子10
1の暗電流が増大すると共に、それらの感度が低下し、
S/Nが低下する。
(3)断熱材205を使用するため、装置全体が大きく
なる。
(4)ヒータ202の過熱による火災発生の危険性があ
る。
(5)部品点数が多く、構成が繁雑になる。
本発明の目的は、恒温装置(ヒータ、温度センサ、温度
コントローラ、断熱材などからなる)を用いずに、外気
の温度変動による誤差のない計測データが得られ、した
がって構成簡単で小形化が図れ、また火災発生の危険が
なく、しかもS/Nのよい高精度の計測データが得られ
る放射線計測装置を提供することにある。The conventional technique shown in FIG. 4 has the following problems. (1) Since the temperatures of the phosphor 102 and the photoelectric conversion element 101 are not directly measured, errors are likely to occur due to temperature fluctuations in the outside air. As the temperature sensor 203, for example, it is possible to fix a thermocouple or a temperature sensor to the back surface of the substrate 104, but a multi-channel X-ray detector for an X-ray CT device depends on the characteristics of each detection element (channel). There is a strict requirement for variation reduction, and if the above thermocouples and temperature sensors are directly attached,
It is difficult to install metal near the detection element, which may scatter the radiation and introduce noise. Therefore, the temperature of the photoelectric conversion element 101 is not directly measured as described above, and errors are likely to occur due to temperature fluctuations in the outside air. (2) Since the heater 202 is used, the temperature of the phosphor 102 and the photoelectric conversion element 101 increases, and the temperature of the photoelectric conversion element 10 increases.
As the dark current of 1 increases, their sensitivity decreases,
S/N decreases. (3) Since the heat insulating material 205 is used, the entire device becomes large. (4) There is a risk of fire occurring due to overheating of the heater 202. (5) The number of parts is large and the configuration is complicated. The purpose of the present invention is to obtain measurement data without errors due to temperature fluctuations in the outside air without using a constant temperature device (consisting of a heater, temperature sensor, temperature controller, heat insulating material, etc.), and to achieve a simple and compact configuration. Another object of the present invention is to provide a radiation measuring device that is free from the risk of fire and can obtain highly accurate measurement data with a good S/N ratio.
【0010】本発明の他の目的は、温度センサを用いず
、光電変換素子の暗電流に基づいた信号を恒温制御のフ
ィードバック信号として恒温制御を行って温度制御の高
精度化を図り、精度の高い計測データが得られる放射線
計測装置を提供することにある。Another object of the present invention is to perform constant temperature control using a signal based on the dark current of a photoelectric conversion element as a feedback signal for constant temperature control without using a temperature sensor, thereby increasing the accuracy of temperature control. An object of the present invention is to provide a radiation measuring device that can obtain high measurement data.
【0011】[0011]
【課題を解決するための手段】上記目的は、放射線を蛍
光に変換する蛍光体と、この蛍光体に対応して配置され
、前記蛍光を電流に変換する光電変換素子と、前記蛍光
体,光電変換素子を収納する容器と、前記電流を計測し
、処理するための信号処理装置とを備えてなる放射線計
測装置において、放射線曝射一定時間前の前記光電変換
素子の暗電流を計測,保持し、その値から放射線曝射時
の前記光電変換素子の温度を求め、放射線曝射時の計測
データに対する温度補正を行う温度補正処理装置を設け
ることにより達成される。[Means for Solving the Problems] The above object is to provide a phosphor that converts radiation into fluorescence, a photoelectric conversion element that is arranged corresponding to the phosphor and converts the fluorescence into an electric current, and a photoelectric conversion element that converts the fluorescence into an electric current. A radiation measurement device comprising a container for storing a conversion element and a signal processing device for measuring and processing the current, which measures and retains the dark current of the photoelectric conversion element a certain time before radiation exposure. This is achieved by providing a temperature correction processing device that calculates the temperature of the photoelectric conversion element at the time of radiation exposure from the value and performs temperature correction on the measurement data at the time of radiation exposure.
【0012】上記他の目的は、放射線を蛍光に変換する
蛍光体と、この蛍光体に対応して配置され、前記蛍光を
電流に変換する光電変換素子と、前記蛍光体,光電変換
素子を収納する容器と、この容器の内部を一定温度に保
持する恒温装置と、前記電流を計測し、処理するための
信号処理装置とを備えてなる放射線計測装置において、
放射線曝射一定時間前の前記光電変換素子の暗電流を計
測,保持し、その値から放射線曝射時の前記光電変換素
子の温度を求め、その値に応じた信号を恒温制御のフィ
ードバック信号として前記恒温装置に与える暗電流フィ
ードバック装置を設けることにより達成される。[0012] The other object is to provide a phosphor that converts radiation into fluorescence, a photoelectric conversion element disposed corresponding to the phosphor and converting the fluorescence into electric current, and a housing for the phosphor and the photoelectric conversion element. A radiation measurement device comprising: a container for heating, a constant temperature device for maintaining the inside of the container at a constant temperature, and a signal processing device for measuring and processing the current,
Measure and hold the dark current of the photoelectric conversion element a certain time before radiation exposure, determine the temperature of the photoelectric conversion element at the time of radiation exposure from that value, and use a signal corresponding to the value as a feedback signal for constant temperature control. This is achieved by providing a dark current feedback device to the constant temperature device.
【0013】[0013]
【作用】光電変換素子(シリコン・フォトダイオードな
ど)の暗電流は、温度変化に対し、下式(1)に示すよ
うに一定の割合で変化する。[Operation] The dark current of a photoelectric conversion element (silicon photodiode, etc.) changes at a constant rate with respect to temperature changes, as shown in equation (1) below.
【0014】[0014]
【数1】[Math 1]
【0015】ただし、Id(t)は温度t℃における暗
電流、Id0は温度t0℃における暗電流、αは温度係
数、である。αの値は、例えばシリコン・フォトダイオ
ードでは〜0.07程度であり、温度が10℃上昇する
と暗電流は約2倍になる。##EQU1## where Id(t) is a dark current at a temperature of t.degree. C., Id0 is a dark current at a temperature of t0.degree. C., and α is a temperature coefficient. The value of α is, for example, about 0.07 for a silicon photodiode, and when the temperature increases by 10° C., the dark current approximately doubles.
【0016】このように暗電流を測定すれば光電変換素
子の温度を知ることができる。この原理を放射線計測装
置の温度特性の補正手段に適用すれば、従来より精度よ
く補正することができる。[0016] By measuring the dark current in this manner, the temperature of the photoelectric conversion element can be determined. If this principle is applied to the temperature characteristic correction means of a radiation measuring device, correction can be made more accurately than before.
【0017】なお温度係数αは、予め特定の温度t℃,
t0℃における暗電流を実測し、(1)式により求めら
れる。そして、求められたαと、測定された暗電流によ
り、今度は逆に温度を求めることができる。[0017] The temperature coefficient α is determined in advance at a specific temperature t°C,
The dark current at t0° C. is actually measured and calculated using equation (1). Then, from the obtained α and the measured dark current, the temperature can be obtained conversely.
【0018】前記温度補正処理装置は、放射線曝射一定
時間前の前記光電変換素子の暗電流を計測,保持し、そ
の値から上式(1)により、放射線曝射時の前記光電変
換素子の温度を求め、放射線曝射時の計測データに対す
る温度補正を行う。これにより、恒温装置(ヒータ、温
度センサ、温度コントローラ、断熱材など)を用いずに
、外気の温度変動による誤差のない計測データが得られ
、したがって構成簡単で小形化が図れ、また火災発生の
危険がなく、しかもS/Nのよい高精度の計測データが
得られることになる。The temperature correction processing device measures and holds the dark current of the photoelectric conversion element a certain period of time before radiation exposure, and calculates the dark current of the photoelectric conversion element at the time of radiation exposure from that value using the above equation (1). Calculate the temperature and perform temperature correction on the measurement data during radiation exposure. This makes it possible to obtain measurement data without errors caused by temperature fluctuations in the outside air without using a constant temperature device (heater, temperature sensor, temperature controller, insulation material, etc.), making it possible to simplify the configuration and downsize, and to prevent fires from occurring. There is no danger, and highly accurate measurement data with good S/N ratio can be obtained.
【0019】また前記暗電流フィードバック装置は、放
射線曝射一定時間前の前記光電変換素子の暗電流を計測
,保持し、その値から上式(1)により、放射線曝射時
の前記光電変換素子の温度を求め、その値に応じた信号
を恒温制御のフィードバック信号として前記恒温装置に
与える。これにより、温度センサを用いず、光電変換素
子の暗電流に基づいた信号を恒温制御のフィードバック
信号として恒温制御を行って温度制御の高精度化を図り
、精度の高い計測データが得られることになる。Further, the dark current feedback device measures and holds the dark current of the photoelectric conversion element a certain period of time before radiation exposure, and calculates the value of the dark current of the photoelectric conversion element at the time of radiation exposure from the measured value according to the above equation (1). The temperature of is determined, and a signal corresponding to that value is given to the constant temperature device as a feedback signal for constant temperature control. As a result, it is possible to perform constant temperature control without using a temperature sensor, using a signal based on the dark current of the photoelectric conversion element as a feedback signal for constant temperature control, increasing the precision of temperature control and obtaining highly accurate measurement data. Become.
【0020】[0020]
【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明による放射線計測装置の一実施例
を示す構成図である。この図1において、101〜10
8は各々第4図と同様である。201も図4と同様に信
号処理装置を示すが、本発明では後述温度補正処理装置
の一部をも構成している。111は、放射線曝射一定時
間前の光電変換素子102の暗電流を計測,保持し、そ
の値から放射線曝射時の光電変換素子102の温度を求
め、放射線曝射時の計測データに対する温度補正を行う
温度補正処理装置である。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a radiation measuring device according to the present invention. In this Figure 1, 101 to 10
8 are the same as in FIG. Similarly to FIG. 4, 201 also represents a signal processing device, but in the present invention, it also constitutes a part of a temperature correction processing device to be described later. 111 measures and holds the dark current of the photoelectric conversion element 102 a certain time before radiation exposure, calculates the temperature of the photoelectric conversion element 102 at the time of radiation exposure from that value, and performs temperature correction on the measured data at the time of radiation exposure. This is a temperature correction processing device that performs
【0021】この温度補正処理装置111は、ここでは
、放射線曝射直前の光電変換素子101の暗電流を計測
(オフセットデータとして計測),保持する暗電流デー
タ保持回路109と、上記暗電流の計測値から放射線曝
射時の光電変換素子101の温度を求めるための温度特
性データが記録された温度特性データメモリ110と、
信号処理装置201とで構成されている。信号処理装置
201は、従来技術におけると同様の一般的な補正処理
を行うと共に、本発明では、暗電流データ保持回路10
9と温度特性データメモリ110からのデータに基づき
、上式(1)によって光電変換素子101の温度を求め
、これにより、放射線曝射時の計測データに対する温度
補正を行うものである。The temperature correction processing device 111 includes a dark current data holding circuit 109 that measures (measures as offset data) and holds the dark current of the photoelectric conversion element 101 immediately before radiation exposure, and a dark current data holding circuit 109 that measures the dark current of the photoelectric conversion element 101 immediately before radiation exposure. a temperature characteristic data memory 110 in which temperature characteristic data for determining the temperature of the photoelectric conversion element 101 at the time of radiation exposure from the value is recorded;
It is composed of a signal processing device 201. The signal processing device 201 performs general correction processing similar to that in the prior art, and in the present invention, the dark current data holding circuit 10
9 and the data from the temperature characteristic data memory 110, the temperature of the photoelectric conversion element 101 is determined by the above equation (1), and thereby temperature correction is performed on the measurement data at the time of radiation exposure.
【0022】ここでは、温度補正処理装置111は光電
変換素子101及び蛍光体102の複合体の感度の温度
補正をも行うもので、温度特性データメモリ110には
、光電変換素子101の温度特性データに加えて、光電
変換素子101及び蛍光体102の複合体の感度の温度
特性データも記録されている。Here, the temperature correction processing device 111 also performs temperature correction of the sensitivity of the composite of the photoelectric conversion element 101 and the phosphor 102, and the temperature characteristic data memory 110 stores temperature characteristic data of the photoelectric conversion element 101. In addition, temperature characteristic data of the sensitivity of the composite of the photoelectric conversion element 101 and the phosphor 102 is also recorded.
【0023】次に動作について説明する。入射したX線
は蛍光体102により光に変換され、更に光電変換素子
101により電流に変換される。この電流は更にボンデ
ィングワイヤ103、基板104上の導電パターン10
6、コネクタ107、配線108を介して信号処理装置
201及び暗電流データ保持回路109に送られる。信
号処理装置201は送られてきた電流信号を電圧に変換
した後、A/D変換し、種々の一般的な処理(Log変
換、オフセット補正など)を行った後、図示しない記憶
装置に一般的な処理が済んだ計測データとして格納する
。Next, the operation will be explained. The incident X-rays are converted into light by the phosphor 102, and further converted into electric current by the photoelectric conversion element 101. This current is further applied to the bonding wire 103 and the conductive pattern 10 on the substrate 104.
6, the signal is sent to the signal processing device 201 and the dark current data holding circuit 109 via the connector 107 and the wiring 108. The signal processing device 201 converts the sent current signal into a voltage, performs A/D conversion, performs various general processing (Log conversion, offset correction, etc.), and then converts the current signal into a voltage (not shown). The measured data is stored as processed data.
【0024】暗電流データ保持回路109は、図2に示
すように、X線曝射直前のオフセットデータ(暗電流デ
ータも含む)計測時に、オフセットデータとしての暗電
流データ(暗電流値)を格納する。As shown in FIG. 2, the dark current data holding circuit 109 stores dark current data (dark current value) as offset data when measuring offset data (including dark current data) immediately before X-ray exposure. do.
【0025】また前記信号処理装置201は、温度補正
処理装置111の信号処理部として、図2に示したシー
ケンスにより測定されたオフセットデータ(暗電流値)
と温度特性データメモリ110に格納されている暗電流
の温度特性データとに基づき、上式(1)を用いて光電
変換素子101の温度を求め、更に温度特性データメモ
リ110に格納されている光電変換素子101及び蛍光
体102の複合体の感度の温度特性データにより、計測
したX線データを補正する。Further, the signal processing device 201, as a signal processing section of the temperature correction processing device 111, processes offset data (dark current value) measured according to the sequence shown in FIG.
Based on the temperature characteristic data of the dark current stored in the temperature characteristic data memory 110, the temperature of the photoelectric conversion element 101 is determined using the above equation (1), and The measured X-ray data is corrected using the temperature characteristic data of the sensitivity of the composite of the conversion element 101 and the phosphor 102.
【0026】上述発明によれば、従来技術のように恒温
装置(ヒータ、温度センサ、温度コントローラ、断熱材
など)を用いずに、外気の温度変動による誤差のない計
測データを得ることができる。According to the above-mentioned invention, it is possible to obtain measurement data free from errors due to temperature fluctuations in the outside air without using a constant temperature device (heater, temperature sensor, temperature controller, heat insulating material, etc.) as in the prior art.
【0027】なお、温度補正処理装置111の構成は上
述実施例のみに限定されないことは勿論である。次に、
他の発明の実施例を図3に示す。図3は、他の発明によ
る放射線計測装置の一実施例を示す構成図である。この
図3において、101〜108及び201は各々第4図
と同様である。It goes without saying that the configuration of the temperature correction processing device 111 is not limited to the above embodiment. next,
Another embodiment of the invention is shown in FIG. FIG. 3 is a configuration diagram showing an embodiment of a radiation measuring device according to another invention. In this FIG. 3, 101 to 108 and 201 are the same as in FIG. 4, respectively.
【0028】301は、放射線曝射一定時間前の光電変
換素子102の暗電流を計測,保持し、その値から放射
線曝射時の光電変換素子102の温度を求め、その値に
応じた信号を恒温制御のフィードバック信号として恒温
装置(ヒータ202、温度コントローラ204、断熱材
205などからなる)に与える暗電流処理装置である。301 measures and holds the dark current of the photoelectric conversion element 102 a certain time before radiation exposure, calculates the temperature of the photoelectric conversion element 102 at the time of radiation exposure from that value, and generates a signal according to the value. This is a dark current processing device that provides a constant temperature device (consisting of a heater 202, a temperature controller 204, a heat insulating material 205, etc.) as a feedback signal for constant temperature control.
【0029】次に動作について説明する。入射したX線
は蛍光体102により光に変換され、更に光電変換素子
101により電流に変換される。この電流は更にボンデ
ィングワイヤ103、基板104上の導電パターン10
6、コネクタ107、配線108を介して信号処理装置
201及び暗電流処理装置301に送られる。Next, the operation will be explained. The incident X-rays are converted into light by the phosphor 102, and further converted into electric current by the photoelectric conversion element 101. This current is further applied to the bonding wire 103 and the conductive pattern 10 on the substrate 104.
6, the signal is sent to the signal processing device 201 and the dark current processing device 301 via the connector 107 and wiring 108.
【0030】信号処理装置201は送られてきた電流信
号を電圧に変換した後、A/D変換し、種々の一般的な
処理(Log変換、オフセット補正など)を行った後、
図示しない記憶装置に一般的な処理が済んだ計測データ
として格納する。The signal processing device 201 converts the sent current signal into a voltage, performs A/D conversion, performs various general processing (Log conversion, offset correction, etc.), and then
It is stored in a storage device (not shown) as measurement data that has undergone general processing.
【0031】暗電流処理装置301は、放射線曝射一定
時間前の光電変換素子102の暗電流を計測,保持し、
その値から放射線曝射時の光電変換素子102の温度を
求め、その値に応じた信号を恒温制御のフィードバック
信号として恒温装置、詳しくは恒温装置の温度コントロ
ーラ204に与える。[0031] The dark current processing device 301 measures and holds the dark current of the photoelectric conversion element 102 a certain period of time before radiation exposure.
The temperature of the photoelectric conversion element 102 at the time of radiation exposure is determined from the value, and a signal corresponding to the value is given as a feedback signal for constant temperature control to the constant temperature device, specifically, to the temperature controller 204 of the constant temperature device.
【0032】温度コントローラ204は上記温度のフィ
ードバック信号を基準温度信号と比較し、それによりヒ
ータ202をON,OFF又は電力連続制御し、温度コ
ントロールする。これにより、容器105内部は一定温
度に保たれる。The temperature controller 204 compares the temperature feedback signal with a reference temperature signal, and thereby controls the heater 202 by turning it on and off or continuously controlling the power. Thereby, the inside of the container 105 is kept at a constant temperature.
【0033】上述本発明によれば、従来技術では測定で
きなかったX線検出器本体(蛍光体102、光電変換素
子101部分の温度を正確に測定することができ、実質
的な温度制御精度を向上させることができる。According to the present invention described above, it is possible to accurately measure the temperature of the X-ray detector main body (phosphor 102 and photoelectric conversion element 101 portion), which could not be measured with the conventional technology, and substantial temperature control accuracy can be achieved. can be improved.
【0034】なお上述実施例のいずれも、X線検出器の
1チャンネル分について説明したもので、実際には、上
述動作が全てのチャンネルについて行われる。It should be noted that all of the above-mentioned embodiments have been explained for one channel of the X-ray detector, but in reality, the above-mentioned operation is performed for all channels.
【0035】[0035]
【発明の効果】以上説明したように本発明によれば、次
のような効果がある。まず、図1に示す発明によれば、
以下のような効果がある。
(1)ヒータ、温度センサ、温度コントローラ、断熱材
などからなる恒温装置が不要となり、構成簡単で小形化
が図れる。
(2)ヒータを排除することにより、火災に対する安全
性が向上する。
(3)温度センサによらず、光電変換素子の暗電流に基
づいて光電変換素子の温度を求め、放射線曝射時の計測
データに対する温度補正を行うので、S/Nのよい高精
度の計測データが得られる。しかも多チャンネルX線検
出器の場合、各X線検出素子(チャンネル)の暗電流(
温度)は、通常のオフセットデータとして計測されるの
で、従来技術の温度センサのように特別な部品として付
加しなくとも、各X線検出素子(チャンネル)について
の暗電流(温度)として正確に把握することができ、温
度による特性変化を個別に、かつ高精度に補正すること
ができる。[Effects of the Invention] As explained above, the present invention has the following effects. First, according to the invention shown in FIG.
It has the following effects. (1) A constant temperature device consisting of a heater, a temperature sensor, a temperature controller, a heat insulator, etc. is not required, and the structure is simple and compact. (2) Fire safety is improved by eliminating the heater. (3) The temperature of the photoelectric conversion element is determined based on the dark current of the photoelectric conversion element without using a temperature sensor, and temperature correction is performed for the measurement data during radiation exposure, so high-precision measurement data with good S/N is obtained. is obtained. Moreover, in the case of a multi-channel X-ray detector, the dark current (
Temperature) is measured as normal offset data, so it can be accurately determined as the dark current (temperature) for each X-ray detection element (channel) without adding a special component like in conventional temperature sensors. Therefore, changes in characteristics due to temperature can be corrected individually and with high precision.
【0036】また、図3に示す発明によれば、以下のよ
うな効果がある。
(1)温度センサが不要となる。
(2)温度センサによらず、光電変換素子の暗電流に基
づいて光電変換素子の温度を求め、これを恒温制御のフ
ィードバック信号として恒温制御を行うので、S/Nの
よい高精度の計測データが得られる。しかも多チャンネ
ルX線検出器の場合、各X線検出素子(チャンネル)の
暗電流(温度)は、通常のオフセットデータとして計測
されるので、従来技術の温度センサのように特別な部品
として付加しなくとも、各X線検出素子(チャンネル)
についての暗電流(温度)として正確に把握することが
でき、温度による特性変化を個別に、かつ高精度に補正
することができる。Furthermore, the invention shown in FIG. 3 has the following effects. (1) Temperature sensor becomes unnecessary. (2) The temperature of the photoelectric conversion element is determined based on the dark current of the photoelectric conversion element without using a temperature sensor, and constant temperature control is performed using this as a feedback signal for constant temperature control, so high-precision measurement data with good S/N is obtained. is obtained. Moreover, in the case of a multi-channel X-ray detector, the dark current (temperature) of each X-ray detection element (channel) is measured as normal offset data, so it is not added as a special component like the temperature sensor of the conventional technology. At least each X-ray detection element (channel)
It is possible to accurately grasp the dark current (temperature) of the temperature, and to correct characteristic changes due to temperature individually and with high precision.
【図1】本発明装置の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the device of the present invention.
【図2】本発明装置におけるデータ計測のシーケンスを
示す図である。FIG. 2 is a diagram showing a sequence of data measurement in the apparatus of the present invention.
【図3】他の発明装置の一実施例を示す構成図である。FIG. 3 is a configuration diagram showing an embodiment of another inventive device.
【図4】従来装置を示す構成図である。FIG. 4 is a configuration diagram showing a conventional device.
【符号の説明】 101 光電変換素子 102 蛍光体 104 基板 105 容器 109 暗電流データ保持回路 110 温度特性データメモリ 111 温度補正処理装置 201 信号処理装置 202 ヒータ 203 温度センサ 204 温度コントローラ 205 断熱材 301 暗電流処理装置[Explanation of symbols] 101 Photoelectric conversion element 102 Phosphor 104 Board 105 Container 109 Dark current data retention circuit 110 Temperature characteristic data memory 111 Temperature correction processing device 201 Signal processing device 202 Heater 203 Temperature sensor 204 Temperature controller 205 Insulation material 301 Dark current processing device
Claims (2)
の蛍光体に対応して配置され、前記蛍光を電流に変換す
る光電変換素子と、前記蛍光体,光電変換素子を収納す
る容器と、前記電流を計測し、処理するための信号処理
装置とを備えてなる放射線計測装置において、放射線曝
射一定時間前の前記光電変換素子の暗電流を計測,保持
し、その値から放射線曝射時の前記光電変換素子の温度
を求め、放射線曝射時の計測データに対する温度補正を
行う温度補正処理装置を具備することを特徴とする放射
線計測装置。1. A phosphor that converts radiation into fluorescence, a photoelectric conversion element disposed corresponding to the phosphor and converts the fluorescence into an electric current, and a container that stores the phosphor and the photoelectric conversion element. In a radiation measuring device comprising a signal processing device for measuring and processing the current, the dark current of the photoelectric conversion element is measured and held a certain time before radiation exposure, and the dark current of the photoelectric conversion element is determined based on the value at the time of radiation exposure. A radiation measuring device characterized by comprising a temperature correction processing device that calculates the temperature of the photoelectric conversion element and performs temperature correction on measurement data during radiation exposure.
の蛍光体に対応して配置され、前記蛍光を電流に変換す
る光電変換素子と、前記蛍光体,光電変換素子を収納す
る容器と、この容器の内部を一定温度に保持する恒温装
置と、前記電流を計測し、処理するための信号処理装置
とを備えてなる放射線計測装置において、放射線曝射一
定時間前の前記光電変換素子の暗電流を計測,保持し、
その値から放射線曝射時の前記光電変換素子の温度を求
め、その値に応じた信号を恒温制御のフィードバック信
号として前記恒温装置に与える暗電流フィードバック装
置を具備することを特徴とする放射線計測装置。2. A phosphor that converts radiation into fluorescence, a photoelectric conversion element disposed corresponding to the phosphor and converting the fluorescence into electric current, and a container containing the phosphor and the photoelectric conversion element. In a radiation measuring device comprising a constant temperature device that maintains the inside of the container at a constant temperature and a signal processing device that measures and processes the current, the photoelectric conversion element is darkened for a certain period of time before radiation exposure. Measures and holds current,
A radiation measurement device characterized by comprising a dark current feedback device that determines the temperature of the photoelectric conversion element at the time of radiation exposure from the value and provides a signal corresponding to the value to the constant temperature device as a feedback signal for constant temperature control. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3082542A JPH04315985A (en) | 1991-04-15 | 1991-04-15 | Measuring device for radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3082542A JPH04315985A (en) | 1991-04-15 | 1991-04-15 | Measuring device for radiation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04315985A true JPH04315985A (en) | 1992-11-06 |
Family
ID=13777396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3082542A Pending JPH04315985A (en) | 1991-04-15 | 1991-04-15 | Measuring device for radiation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04315985A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202377A (en) * | 2001-01-05 | 2002-07-19 | Shimadzu Corp | Radiation detector |
US6713769B2 (en) * | 2002-02-07 | 2004-03-30 | Ge Medical Systems Global Technology Company, Llc | Method of sensing temperature of a digital X-ray imaging system |
JP2008126064A (en) * | 2006-11-17 | 2008-06-05 | General Electric Co <Ge> | Interface assembly thermally connecting data acquisition system to sensor array |
JP2012083307A (en) * | 2010-10-14 | 2012-04-26 | Fujifilm Corp | Radiation detection device, radiation image photographing system, radiation detection program and radiation detection method |
JP2013180182A (en) * | 2012-03-05 | 2013-09-12 | Nippon Koden Corp | Airway adaptor and biological information acquiring system |
JP2015158501A (en) * | 2009-03-26 | 2015-09-03 | コーニンクレッカ フィリップス エヌ ヴェ | data acquisition |
CN106154305A (en) * | 2015-04-17 | 2016-11-23 | Ge医疗系统环球技术有限公司 | The temperature adjustmemt system and method for X-ray detector |
JP2017015662A (en) * | 2015-07-06 | 2017-01-19 | 株式会社日立製作所 | Radiation monitor |
US10667774B2 (en) | 2017-07-20 | 2020-06-02 | Canon Medical Systems Corporation | X-ray CT apparatus |
US11413000B2 (en) | 2020-02-14 | 2022-08-16 | Canon Medical Systems Corporation | X-ray CT apparatus and storage medium |
-
1991
- 1991-04-15 JP JP3082542A patent/JPH04315985A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202377A (en) * | 2001-01-05 | 2002-07-19 | Shimadzu Corp | Radiation detector |
US6713769B2 (en) * | 2002-02-07 | 2004-03-30 | Ge Medical Systems Global Technology Company, Llc | Method of sensing temperature of a digital X-ray imaging system |
JP2008126064A (en) * | 2006-11-17 | 2008-06-05 | General Electric Co <Ge> | Interface assembly thermally connecting data acquisition system to sensor array |
JP2015158501A (en) * | 2009-03-26 | 2015-09-03 | コーニンクレッカ フィリップス エヌ ヴェ | data acquisition |
JP2012083307A (en) * | 2010-10-14 | 2012-04-26 | Fujifilm Corp | Radiation detection device, radiation image photographing system, radiation detection program and radiation detection method |
US8885795B2 (en) | 2010-10-14 | 2014-11-11 | Fujifilm Corporation | Radiation detector, radiographic image capturing system, radiation detection method, and radiation detection program storage medium |
JP2013180182A (en) * | 2012-03-05 | 2013-09-12 | Nippon Koden Corp | Airway adaptor and biological information acquiring system |
CN106154305A (en) * | 2015-04-17 | 2016-11-23 | Ge医疗系统环球技术有限公司 | The temperature adjustmemt system and method for X-ray detector |
CN106154305B (en) * | 2015-04-17 | 2020-12-11 | Ge医疗系统环球技术有限公司 | Temperature correction system and method for X-ray detector |
JP2017015662A (en) * | 2015-07-06 | 2017-01-19 | 株式会社日立製作所 | Radiation monitor |
US10667774B2 (en) | 2017-07-20 | 2020-06-02 | Canon Medical Systems Corporation | X-ray CT apparatus |
US11413000B2 (en) | 2020-02-14 | 2022-08-16 | Canon Medical Systems Corporation | X-ray CT apparatus and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6444983B1 (en) | Microbolometer focal plane array with controlled bias | |
CN102365562B (en) | Data acquisition | |
US6129673A (en) | Infrared thermometer | |
JP3092127B2 (en) | X-ray CT system | |
US8748808B2 (en) | Detection and correction of a loss of calibration of microbolometer thermal imaging radiometers | |
JP2007220087A (en) | Integrated circuit and method for controlling temperature of semiconductor material having integrated circuit | |
EP0651244A1 (en) | Method and apparatus for transient temperature compensation in gas analyzer equipment | |
JPH04315985A (en) | Measuring device for radiation | |
US6713769B2 (en) | Method of sensing temperature of a digital X-ray imaging system | |
US4955727A (en) | Method and apparatus for a non-contact measuring of a temperature of a body | |
US6437331B1 (en) | Bolometer type infrared sensor with material having hysterisis | |
JP3099470B2 (en) | Non-contact temperature measurement system for centrifuge | |
US4431306A (en) | Method and apparatus for precision control of radiometer | |
US4313257A (en) | Annealing methods for improving performance of a radiation sensor | |
US20100061589A1 (en) | Method for determining the temperature of a digital x-ray detector, method for generating a temperature-corrected x-ray image and digital x-ray detector | |
US20230123056A1 (en) | Temperature measuring device having a temperature calibration function | |
JP3442598B2 (en) | Fixed in-core instrumentation system | |
US20220187137A1 (en) | System and method for thermal imaging | |
JPH08278203A (en) | Infrared ray radiation thermometer | |
US7591586B2 (en) | Method of temperature measurement and temperature-measuring device using the same | |
JPH0560708A (en) | Calorimeter for testing thermal vacuum | |
JPS5614126A (en) | Radiation thermometer | |
SU609981A1 (en) | Differential microcalorimeter | |
JPH0524032Y2 (en) | ||
JPS6040904A (en) | Length measuring device |