JP2002202377A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JP2002202377A
JP2002202377A JP2001000705A JP2001000705A JP2002202377A JP 2002202377 A JP2002202377 A JP 2002202377A JP 2001000705 A JP2001000705 A JP 2001000705A JP 2001000705 A JP2001000705 A JP 2001000705A JP 2002202377 A JP2002202377 A JP 2002202377A
Authority
JP
Japan
Prior art keywords
ray
temperature
detector
conversion layer
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001000705A
Other languages
Japanese (ja)
Inventor
Junichi Oi
淳一 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001000705A priority Critical patent/JP2002202377A/en
Publication of JP2002202377A publication Critical patent/JP2002202377A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector that can eliminate a variation per hour caused from a leak current of a detector which converts an X-ray to an electric charge signal to prevent generation of an artifact. SOLUTION: A voltage is applied from a bias power source 9 to an electrode of an X-ray converting layer 27 mounted on a detector module 4 in advance, and a temperature sensor 13 and a rubber heater 5 made of a rubber are placed on a member that holds the detector module 4. Then temperature of the X-ray converting layer 27 is adjusted within 30±0.5 degrees C by a temperature controller 10. The X-ray enters into the detector module 4 and therewith electric charge generates on the X-ray converting layer 27 controlled at a fixed temperature and current flows. This current is accumulated for a unit time to be converted in current/voltage and thereafter is A/D converted by a DAS(data acquisition system) 8 to be data processed by a CPU in a console 11 and image reconfigured, and then a CT image is displayed on a monitor 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線検出器に係
わり、特に、医用X線CT装置、医用X線透視撮影装
置、あるいは、食品などの異物を非破壊検査するX線異
物検査装置等に用いられる放射線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detector, and more particularly to a medical X-ray CT apparatus, a medical X-ray fluoroscopic apparatus, and an X-ray foreign substance inspection apparatus for non-destructively inspecting foreign substances such as food. It relates to the radiation detector used.

【0002】[0002]

【従来の技術】X線CT装置は、X線管から放射された
X線が放射口のコリメータによって扇状のX線ビームに
絞られるとともに、被検体を中心にして、X線管とこれ
に対向して配置された円弧状のコリメータと検出器が回
転して、被検体を透過したX線情報を検出器が捉え、そ
の信号をコンピュータで処理して被検体のX線断層画像
を得るものである。X線管から放射されたX線は、被検
体を直進して透過するものと被検体で散乱するものがあ
り、前者の情報のみを取り込んで、斜めから入る散乱線
を除去し、そのクロストークを防ぐために、検出器の前
にコリメータが設けられている。このコリメータは1次
元に配列された検出器の前で各チャンネル毎にX線の透
過し難い材料でX線遮蔽壁を形成している。
2. Description of the Related Art In an X-ray CT apparatus, an X-ray radiated from an X-ray tube is narrowed down to a fan-shaped X-ray beam by a collimator of a radiation port, and an X-ray tube and an object facing the X-ray tube are centered on a subject. The detector rotates the arc-shaped collimator and the detector, which are arranged in such a way that the detector captures the X-ray information transmitted through the subject, and the signal is processed by a computer to obtain an X-ray tomographic image of the subject. is there. X-rays emitted from the X-ray tube can be transmitted straight through the subject or scattered by the subject. By taking in only the former information, scattered rays entering obliquely are removed, and the crosstalk occurs. To prevent this, a collimator is provided in front of the detector. In this collimator, an X-ray shielding wall is formed of a material that is difficult to transmit X-rays for each channel in front of detectors arranged one-dimensionally.

【0003】そして、検出器はX線を光に変換するシン
チレータ素子と、このシンチレータ素子で変換された光
を検出し、電気信号として出力するフォトダイオードと
からなるX線検出素子を、X線管を中心として円弧状に
約500〜1000チャンネル程度配列した構成を有す
る。製作する上で機械的な配列から、シンチレータとフ
ォトダイオードを光学接着して組合わせたものを、基板
上に8〜30個並べたものが1モジュールとされ、この
ような検出器モジュールを円周上に連続して略円弧状に
配置して、コリメータと組合わせて、CT用の放射線検
出器を構成している。
[0003] The detector is an X-ray tube comprising an X-ray detecting element comprising a scintillator element for converting X-rays into light and a photodiode for detecting the light converted by the scintillator element and outputting it as an electric signal. And about 500 to 1000 channels arranged in an arc with the center as the center. Due to the mechanical arrangement in manufacturing, a combination of a scintillator and a photodiode, which are optically bonded and combined, and 8 to 30 units are arranged on a substrate is considered as one module. The radiation detector for CT is arranged continuously in a substantially arc shape on the upper side and combined with a collimator.

【0004】しかし、近年、半導体単結晶または多結晶
を用いた放射線検出器が提案されている。その放射線検
出器は、X線等の放射線が照射されることで電荷(電子
‐正孔)を発生する半導体材料からなるX線変換層が用
いられ、暗抵抗が高く、X線照射に対してダイナミック
レンジが広く、S/Nのよい、良好な光導電特性を示す
ものである。例えば、CdTe単結晶やCdZnTe単
結晶などが提案されている。
However, in recent years, radiation detectors using semiconductor single crystals or polycrystals have been proposed. The radiation detector uses an X-ray conversion layer made of a semiconductor material that generates charges (electrons-holes) when irradiated with radiation such as X-rays. It has a wide dynamic range, good S / N, and good photoconductive properties. For example, a CdTe single crystal or a CdZnTe single crystal has been proposed.

【0005】図4に、上記の放射線検出器の構造を示
す。この放射線検出器は、CdTe単結晶またはCdZ
nTe単結晶からなるX線変換層27に、バイアス電圧
が上部電極26から印加され、X線変換層27の直下
の、アクティブマトリックス基板31に行列状に配置さ
れた画素電極28に、TFT30のスイツチ素子が接続
され、照射時に、各TFT30のスイツチ素子をゲート
ドライバ回路33からFPC35を介して順次ONする
することにより、各画素の蓄積容量29に蓄積された信
号電荷が、FPC34を介して増幅回路32に読出され
る。そして増幅回路32からA/D変換器(図示せず)
を介して、外部のデータ処理回路(図示せず)に送ら
れ、データ処理回路で画像構成されて、モニタ(図示せ
ず)にX線画像が表示される。
FIG. 4 shows the structure of the above radiation detector. The radiation detector is a CdTe single crystal or CdZ
A bias voltage is applied to the X-ray conversion layer 27 made of nTe single crystal from the upper electrode 26, and the switch 30 of the TFT 30 is applied to the pixel electrodes 28 arranged directly below the X-ray conversion layer 27 in a matrix on the active matrix substrate 31. The elements are connected, and at the time of irradiation, the switch elements of each TFT 30 are sequentially turned on from the gate driver circuit 33 via the FPC 35 so that the signal charges accumulated in the storage capacitor 29 of each pixel are amplified via the FPC 34. 32. And an A / D converter (not shown) from the amplifier circuit 32.
The data is sent to an external data processing circuit (not shown) via the CPU, the image is formed by the data processing circuit, and an X-ray image is displayed on a monitor (not shown).

【0006】このCdTe単結晶やCdZnTe単結晶
は、印加するバイアス電圧にもよるが、従来のものより
感度が数倍〜数十倍程度高く、有用であることがわかっ
ている。また、各チャンネルは電極によって分けること
が出来るので、シンチレータアレイを作る場合のように
セパレータなどが不用となり、容易にチャンネル分離が
出来るという利点がある。
[0006] The CdTe single crystal and CdZnTe single crystal have been found to be useful, having sensitivity several to several tens times higher than the conventional one, depending on the applied bias voltage. In addition, since each channel can be separated by an electrode, there is an advantage that a separator or the like is not required as in the case of forming a scintillator array, and channels can be easily separated.

【0007】[0007]

【発明が解決しようとする課題】従来の放射線検出器は
以上のように構成されているが、CdTe単結晶又はC
dZnTe単結晶からなるX線変換層27は、放射線に
より発生した電荷をとりだすために、厚さ1mm当たり
数百ボルトのバイアス電圧を上部電極26に加える必要
があり、このバイアス電圧を印加することで、放射線が
入射しない場合であっても、リーク電流が流れ、そのリ
ーク電流はX線変換層27の温度変化により増減する。
そして、温度が高いほどリーク電流は増加する。しか
し、リーク電流は直流成分であり、例えば、入射γ線を
パルスカウントモードで計測する場合は、その信号を交
流結合で処理して計測するのであまり影響することがな
かった。図5に、X線管から放射されたX線フォトン1
個が検出器に入射した場合の、パルスカウントモードに
対応したDAS(Data Aquisition S
ystem:データ収集系)内部のプリアンプでの信号
波形を示す。(a)はX線変換層27からの信号波形を
示し、リーク電流成分(LC)がオフセットとして加算
されている。この信号を交流結合により波形整形する
と、(b)に示すように、オフセット成分は消える。そ
の後、通常、やや低い閾値(スレッシュドレベル)LL
を設け、(c)それ以上の信号のみ有効な信号とみな
し、散乱成分を除去する。(d)この信号を1ビューの
サンプリング時間STの間カウントすると、(e)デー
タCoが得られる。したがって、極めて短時間のリーク
電流の変化がなければ厳しい環境温度範囲でなくても画
像上ほとんど影響しないことになる。これに対し、X線
変換層27を電流モードで使用する場合は、図6に示す
ように、(a)入射したX線フォトンは全て電流出力に
変換され、リーク電流成分(LC)は信号成分に加算さ
れる。そのため、通常放射線の入射しない条件でリーク
電流を測定し、これをオフセット値として、データ収集
後に減算(オフセット補正)して補正を行なう。そし
て、(b)1ビューのサンプリング時間STの間、電荷
を積分し、(c)A/D変換してデータVoを得る。従
って、収集後にオフセットを引くオフセット補正は、リ
ーク電流の変化がない一定の場合にのみ有効である。こ
のため、電流モードでのデータ収集は、リーク電流の変
化を引き起こすX線変換層27の温度変化を極力抑えて
行なわなければならないという問題がある。
The conventional radiation detector is constructed as described above, but is composed of CdTe single crystal or CdTe.
The X-ray conversion layer 27 made of dZnTe single crystal needs to apply a bias voltage of several hundred volts per 1 mm in thickness to the upper electrode 26 in order to take out the charge generated by the radiation. Even when no radiation is incident, a leak current flows, and the leak current increases or decreases due to a temperature change of the X-ray conversion layer 27.
The higher the temperature is, the more the leak current increases. However, the leak current is a DC component. For example, when the incident γ-ray is measured in the pulse count mode, the signal is processed by the AC coupling and measured. FIG. 5 shows an X-ray photon 1 emitted from the X-ray tube.
DAS (Data Aquisition S) corresponding to the pulse count mode when the light enters the detector.
(system: data collection system) shows a signal waveform at a preamplifier inside. (A) shows a signal waveform from the X-ray conversion layer 27, and a leak current component (LC) is added as an offset. When the waveform of this signal is shaped by AC coupling, the offset component disappears as shown in FIG. Then, usually, a slightly lower threshold (threshold level) LL
(C) Only signals higher than that are regarded as valid signals and scattered components are removed. (D) When this signal is counted during the sampling time ST for one view, (e) data Co is obtained. Therefore, if there is no change in the leakage current in a very short time, there is almost no effect on the image even in a severe environmental temperature range. On the other hand, when the X-ray conversion layer 27 is used in the current mode, as shown in FIG. 6, (a) all the incident X-ray photons are converted into a current output, and the leak current component (LC) is a signal component. Is added to For this reason, the leak current is measured under conditions where normal radiation does not enter, and this is used as an offset value, and correction is performed by subtracting (offset correction) after data collection. Then, (b) the charge is integrated during the sampling time ST for one view, and (c) A / D conversion is performed to obtain data Vo. Therefore, the offset correction for subtracting the offset after the acquisition is effective only when the leak current does not change and is constant. For this reason, there is a problem that data collection in the current mode must be performed while minimizing a temperature change of the X-ray conversion layer 27 that causes a change in the leak current.

【0008】リーク電流は、温度に敏感であるため、僅
かな温度変化がノイズとなり、例えばX線CT装置の場
合、アーチファクトと呼ばれる虚像が現われ、診断に影
響を及ぼす。このリーク電流そのものを減らすには、X
線変換層27の温度を下げ、かつ、一定に保つことが最
も効果的である。しかし、温度を下げることは、結露対
策や制御の難しさがあり現実的ではない。
[0008] Since the leak current is sensitive to temperature, a slight change in temperature causes noise. For example, in the case of an X-ray CT apparatus, a virtual image called an artifact appears and affects diagnosis. To reduce the leakage current itself, X
It is most effective to lower the temperature of the line conversion layer 27 and keep it constant. However, lowering the temperature is not realistic due to the difficulty of dew condensation countermeasures and control.

【0009】本発明は、このような事情に鑑みてなされ
たものであって、X線変換層の温度を一定に保ち、リー
ク電流の経時的変化をなくし、アーチファクトの発生を
防止することができる放射線検出器を提供することを目
的とする。
The present invention has been made in view of such circumstances, and it is possible to keep the temperature of an X-ray conversion layer constant, eliminate a change in leak current with time, and prevent the occurrence of artifacts. It is an object to provide a radiation detector.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の放射線検出器は、上下面に電極を有しX線
を電荷信号に変換する半導体からなるフラットなX線変
換層と、散乱X線除去用のコリメータ板で構成されたコ
リメータとを、一次元もしくは2次元状に配置した放射
線検出器において、前記X線変換層を保持している部材
にヒータと温度センサを設け、X線変換層を所定の温度
に調整する温度調整手段を備えるものである。
In order to achieve the above object, a radiation detector according to the present invention comprises a flat X-ray conversion layer made of a semiconductor having electrodes on upper and lower surfaces and converting X-rays into a charge signal. In a radiation detector in which a collimator formed of a collimator plate for removing scattered X-rays is arranged in a one-dimensional or two-dimensional manner, a heater and a temperature sensor are provided on a member holding the X-ray conversion layer, It is provided with a temperature adjusting means for adjusting the X-ray conversion layer to a predetermined temperature.

【0011】さらに、請求項2の放射線検出器は、X線
を電荷信号に変換する半導体からなるフラットな前記X
線変換層がCdTe単結晶またはCdZnTe単結晶か
らなり、そのX線変換層の温度を30℃以上に温度調整
することを特徴とするものである。
Further, in the radiation detector according to the present invention, the flat X-ray detector made of a semiconductor for converting an X-ray into a charge signal is provided.
The X-ray conversion layer is made of a CdTe single crystal or a CdZnTe single crystal, and the temperature of the X-ray conversion layer is adjusted to 30 ° C. or more.

【0012】本発明の放射線検出器は上記のように構成
されており、装置に温調制御器が設けられ、CdTe単
結晶又はCdZnTe単結晶等からなるX線変換層を保
持している部材に、ヒータと温度センサが設けられて、
そのX線変換層の温度が、室温よりもやや高い温度、3
0℃以上に温度調整される。これによって、X線変換層
のリーク電流は、絶対値が増加するものの、リーク電流
の経時的変化がなく一定に保つことができ、ノイズの少
ない信号によってアーチファクトの発生を防止すること
ができる。
The radiation detector of the present invention is constituted as described above, and is provided with a temperature control controller in the apparatus, and a member holding an X-ray conversion layer made of a single crystal of CdTe or single crystal of CdZnTe. , A heater and a temperature sensor are provided,
When the temperature of the X-ray conversion layer is slightly higher than room temperature,
The temperature is adjusted to 0 ° C or higher. As a result, although the absolute value of the leakage current of the X-ray conversion layer increases, the leakage current can be kept constant without a change over time, and the occurrence of artifacts can be prevented by a signal having less noise.

【0013】[0013]

【発明の実施の形態】本発明の放射線検出器の一実施例
を図1、図4を参照しながら説明する。図1は本発明の
放射線検出器がX線CT装置にセットされた原理図を示
す図である。本放射線検出器は、X線散乱線を除去する
コリメータ3と、その後方に配置され入射X線を電荷信
号に変換するX線変換層27を有する複数の検出器モジ
ュール4と、X線変換層27にバイアス電圧を印加する
バイアス電源9と、検出器モジュール4を保持する部材
に取付けられX線変換層27を加温するラバー製のラバ
ーヒータ5と、X線変換層27の温度を検出する温度セ
ンサ13と、温度センサ13で検出された温度情報によ
ってラバーヒータ5に流す電流を調節しX線変換層27
の温度を制御する温調制御器10からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the radiation detector of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a principle diagram in which the radiation detector of the present invention is set in an X-ray CT apparatus. The radiation detector includes a collimator 3 for removing X-ray scattered radiation, a plurality of detector modules 4 disposed behind the X-ray conversion layer 27 for converting incident X-rays into a charge signal, and an X-ray conversion layer. A bias power supply 9 for applying a bias voltage to 27, a rubber heater 5 attached to a member holding the detector module 4 for heating the X-ray conversion layer 27, and detecting the temperature of the X-ray conversion layer 27. The X-ray conversion layer 27 is controlled by adjusting the current flowing through the rubber heater 5 based on the temperature sensor 13 and the temperature information detected by the temperature sensor 13.
And a temperature control controller 10 for controlling the temperature.

【0014】X線CT装置は、コンソール11の操作に
よって、ガントリコントローラ7を介し、被検者2を中
心にしてX線管1とそれと対向配置された放射線検出器
を回転し、X線制御器6により制御されるX線管1から
X線が放射され、被検者2を透過し、被検者2で散乱さ
れたX線はコリメータ3で除去される。予め、検出器モ
ジュール4に設けられたCdTe単結晶またはCdZn
Te単結晶からなるX線変換層27の上部電極26に、
バイアス電源9からバイアス電圧が印加され、検出器モ
ジュール4を保持する部材に取付けられた温度センサ1
3とラバーヒータ5によって温調制御器10でX線変換
層27が温度制御され、その温度が、室温よりもやや高
い温度、30℃以上に温度調整され、その温度調整精度
が±0.5℃以内に制御されている。そして、被検者2
を透過したX線像は複数の検出器モジュール4に設けら
れ一定の温度に制御されたX線変換層27の各チャンネ
ルに入射し、各チャンネルで電荷が発生し電流が流れ
る。これを単位時間蓄積し、電流電圧変換後、DAS
(データ収集系)8にてA/D変換を行なう。全てのチ
ャンネルのA/D値がコンソール11内のCPUによっ
てデータ処理されて、画像再構成が行なわれ、モニタ1
2にCT画像が表示される。
The X-ray CT apparatus rotates the X-ray tube 1 and the radiation detector arranged opposite to the X-ray tube 1 around the subject 2 through the gantry controller 7 by operating the console 11, and the X-ray controller. X-rays are radiated from the X-ray tube 1 controlled by 6, transmitted through the subject 2, and scattered by the subject 2 are removed by the collimator 3. CdTe single crystal or CdZn previously provided in the detector module 4
The upper electrode 26 of the X-ray conversion layer 27 made of Te single crystal
A bias voltage is applied from a bias power supply 9 and the temperature sensor 1 attached to a member holding the detector module 4
The temperature of the X-ray conversion layer 27 is controlled by the temperature control controller 10 by the temperature controller 3 and the rubber heater 5, the temperature is adjusted to a temperature slightly higher than room temperature, 30 ° C. or more, and the temperature adjustment accuracy is ± 0.5. It is controlled within ℃. And subject 2
The X-ray image transmitted through is incident on each channel of the X-ray conversion layer 27 provided in the plurality of detector modules 4 and controlled at a constant temperature, and charges are generated in each channel and current flows. This is stored for a unit time, and after current-voltage conversion, DAS
(Data collection system) 8 performs A / D conversion. The A / D values of all the channels are subjected to data processing by the CPU in the console 11, image reconstruction is performed, and the monitor 1
2 displays a CT image.

【0015】図2に、放射線検出器のシングルスライス
のスライス方向の断面図を示す。コリメータ板15は円
弧形状をした主支持板16と支持板17にその両端部を
固着され、X線管焦点の方向を向いて配置されている。
そして、その下方に、支持板17に取付けられた検出器
取付プレート18と主支持板16とに、温度センサ13
を備えた基板14に搭載された検出器モジュール4が、
取付けネジ19で固定されている。そして、それらの部
材が底板20、側板22、保護板23で保護されて、主
支持板16の側面に、検出器モジュール4を加温するラ
バー製のラバーヒータ5が設けられている。そして、全
体がX線CT装置のガントリベース24の取付枠25に
固定される。
FIG. 2 is a sectional view of a single slice of the radiation detector in the slice direction. The two ends of the collimator plate 15 are fixed to a main support plate 16 and a support plate 17 each having an arc shape, and are arranged facing the focal point of the X-ray tube.
Below that, a temperature sensor 13 is attached to a detector attachment plate 18 attached to the support plate 17 and the main support plate 16.
The detector module 4 mounted on the substrate 14 having
It is fixed with mounting screws 19. These members are protected by a bottom plate 20, a side plate 22, and a protection plate 23, and a rubber heater 5 made of rubber for heating the detector module 4 is provided on a side surface of the main support plate 16. Then, the whole is fixed to a mounting frame 25 of a gantry base 24 of the X-ray CT apparatus.

【0016】検出器モジュール4に搭載したCdTe単
結晶またはCdZnTe単結晶は、温度により感度やリ
ーク電流が変化することが知られている。感度変化は1
0℃で約1.5倍程度であるが、リーク電流は温度が上
がるほど増加し、常温では10℃で約2.3倍と非常に
大きい。対策として冷却によりリーク電流の絶対値を下
げることが考えられるが、わずかな温度差で検出モジュ
ール4に結露が生じ、CdTe単結晶またはCdZnT
e単結晶にダメージを与える可能性があり、また、冷却
装置が大掛かりなものとなることから実用的とは言えな
い。そこで、逆に室温よりやや高い一定温度で保温する
と、リーク電流は増大するが一定温度であれば直流であ
ることから、得られた信号成分からあらかじめ計測して
おいたリーク成分を引くこと(オフセット補正)で、真
の信号成分が得られる。従って、本実施例では検出器部
の主支持板16にラバーヒータ5を張合わせ、検出器モ
ジュール4を搭載している基板に温度センサ13を設け
て、温調制御器10にて検出器部全体を一定温度に調節
する。温調設定温度は室温よりやや高い30°が理想で
あるが、ガントリー内部は高温となるX線管1やそれを
冷却する熱交換器や電源等の発熱体が混載されるため、
ここでは40℃とする。制御範囲は狭いほど良いが実用
的に±0.3℃程度である。1チャンネルの素子面積が
小さければ、リーク電流も比例して小さくなるため±
0.5℃でも良い。
It is known that the sensitivity and the leak current of the CdTe single crystal or CdZnTe single crystal mounted on the detector module 4 change depending on the temperature. Sensitivity change is 1
Although it is about 1.5 times at 0 ° C., the leakage current increases as the temperature rises, and is very large at room temperature, about 2.3 times at 10 ° C. As a countermeasure, it is conceivable to lower the absolute value of the leak current by cooling.
It is not practical because the e-crystal may be damaged and the cooling device becomes large-scale. Conversely, if the temperature is kept at a constant temperature slightly higher than room temperature, the leakage current will increase. However, if the temperature is constant, the current is DC, so the previously measured leak component is subtracted from the obtained signal component (offset). Correction), a true signal component is obtained. Therefore, in the present embodiment, the rubber heater 5 is attached to the main support plate 16 of the detector section, the temperature sensor 13 is provided on the substrate on which the detector module 4 is mounted, and the temperature controller 10 controls the detector section. The whole is adjusted to a constant temperature. Ideally, the temperature control setting temperature is 30 °, which is slightly higher than room temperature. However, since the inside of the gantry is mixed with heating elements such as the high-temperature X-ray tube 1, a heat exchanger for cooling it, and a power supply,
Here, the temperature is set to 40 ° C. The smaller the control range, the better, but practically it is about ± 0.3 ° C. If the element area of one channel is small, the leakage current is proportionally reduced, so that ±
It may be 0.5 ° C.

【0017】図3に、CdTe単結晶またはCdZnT
e単結晶からなるX線変換層27のアフターグロー特性
(X線の励起を受け電荷を発生し検出器の一定の出力が
ある状態で、X線励起を急に遮断した時の検出器出力の
時間的低下を示す曲線)を示す。縦軸は検出器出力のl
og目盛、横軸は時間軸を表し、結晶の温度が20℃の
場合と40℃の場合を示す。結晶の温度が20℃の場合
に較べ、40℃の場合、アフターグローが10秒間で急
激に下がることが確認され、アフターグローの画像に与
える影響が少なくなることが分かった。
FIG. 3 shows a single crystal of CdTe or CdZnT.
The afterglow characteristic of the X-ray conversion layer 27 made of e-single crystal (the detector output when the X-ray excitation is suddenly cut off in a state where the X-ray excitation generates charges and the detector has a constant output). Curve showing time drop). The vertical axis is l of the detector output.
The og scale and the horizontal axis represent the time axis, and show the case where the temperature of the crystal is 20 ° C. and the case where it is 40 ° C. When the temperature of the crystal was 40 ° C. as compared with the case where the temperature of the crystal was 20 ° C., it was confirmed that the afterglow dropped sharply in 10 seconds, and it was found that the afterglow had less influence on the image.

【0018】上記の実施例では、温度センサ13の位置
を検出器モジュール4を搭載している基板14の裏側に
設定したが、検出器モジュール4の温度を検出できる場
所であればどこでもよい。また、ラバーヒータ5の張付
ける位置についても、主支持板16の側位置に限らず検
出器部の温度が一様に制御できる場所であればよい。
In the above embodiment, the position of the temperature sensor 13 is set on the back side of the substrate 14 on which the detector module 4 is mounted. However, the temperature sensor 13 may be located anywhere as long as the temperature of the detector module 4 can be detected. In addition, the position where the rubber heater 5 is attached is not limited to the position on the side of the main support plate 16 but may be any place where the temperature of the detector unit can be uniformly controlled.

【0019】[0019]

【発明の効果】本発明の放射線検出器は上記のように構
成されており、X線を電荷信号に変換するCdTe単結
晶またはCdZnTe単結晶等からなるフラットなX線
変換層を、検出器モジュールとして、X線CT装置等の
検出器として用い、その検出器モジュールを保持してい
る部材に、ラバー製のヒータとX線変換層の温度を検出
する温度センサを設け、コンソールに温調制御器を設け
て、そのX線変換層の温度が、室温よりもやや高い温
度、30℃以上±0.5℃以内に温度調整される。これ
により、X線変換層のリーク電流は、絶対値が増加する
ものの、リーク電流の経時的変化がなく一定に保つこと
ができ、さらに、アフターグロー特性が10秒程度で急
峻に低下し、ノイズの少ない信号によってアーチファク
トの発生を防止することができる。
According to the radiation detector of the present invention, a flat X-ray conversion layer made of a CdTe single crystal or a CdZnTe single crystal for converting X-rays into a charge signal is used as a detector module. A rubber heater and a temperature sensor for detecting the temperature of an X-ray conversion layer are provided on a member holding the detector module, and a temperature control controller is provided on a console. Is provided, the temperature of the X-ray conversion layer is adjusted to a temperature slightly higher than room temperature, that is, 30 ° C. or more and ± 0.5 ° C. or less. Thereby, although the absolute value of the leakage current of the X-ray conversion layer increases, the leakage current can be kept constant without a temporal change of the leakage current, and the afterglow characteristic is sharply reduced in about 10 seconds, and the noise is reduced. The occurrence of artifacts can be prevented by a signal having a small number of signals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の放射線検出器の一実施例を示す図で
ある。
FIG. 1 is a diagram showing one embodiment of a radiation detector of the present invention.

【図2】 本発明の放射線検出器のスライス方向の断面
構造を示す図である。
FIG. 2 is a diagram showing a cross-sectional structure in a slice direction of the radiation detector of the present invention.

【図3】 本発明の放射線検出器のアフターグロー特性
を示す図である。
FIG. 3 is a diagram showing an afterglow characteristic of the radiation detector of the present invention.

【図4】 X線変換層を有する検出器の構造を示す図で
ある。
FIG. 4 is a diagram showing a structure of a detector having an X-ray conversion layer.

【図5】 パルスカウントモードでの信号処理を示す図
である。
FIG. 5 is a diagram illustrating signal processing in a pulse count mode.

【図6】 電流モードでの信号処理を示す図である。FIG. 6 is a diagram showing signal processing in a current mode.

【符号の説明】[Explanation of symbols]

1…X線管 2…被検者 3…コリメータ 4…検出器モジュール 5…ラバーヒータ 6…X線制御器 7…ガントリコントローラ 8…DAS 9…バイアス電源 10…温調制御器 11…コンソール 12…モニタ 13…温度センサ 14…基板 15…コリメータ板 16…主支持板 17…支持板 18…検出器取付プレート 19…取付けネジ 20…底板 21…フレキケーブル 22…側板 23…保護板 24…ガントリベース 25…取付枠 26…上部電極 27…X線変換層 28…画素電極 29…蓄積容量 30…TFT 31…アクティブマトリックス基板 32…増幅回路 33…ゲートドライバ回路 34、35…FPC REFERENCE SIGNS LIST 1 X-ray tube 2 Subject 3 Collimator 4 Detector module 5 Rubber heater 6 X-ray controller 7 Gantry controller 8 DAS 9 Bias power supply 10 Temperature controller 11 Console 12 Monitor 13 Temperature sensor 14 Substrate 15 Collimator plate 16 Main support plate 17 Support plate 18 Detector mounting plate 19 Mounting screw 20 Bottom plate 21 Flexible cable 22 Side plate 23 Protective plate 24 Gantry base 25 ... Mounting frame 26 ... Upper electrode 27 ... X-ray conversion layer 28 ... Pixel electrode 29 ... Storage capacitor 30 ... TFT 31 ... Active matrix substrate 32 ... Amplifier circuit 33 ... Gate driver circuit 34,35 ... FPC

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 5/32 H01L 31/00 A Fターム(参考) 2G088 EE01 EE02 EE30 FF02 GG21 JJ04 JJ05 JJ09 JJ11 LL11 LL12 LL21 4C093 AA22 CA13 EB13 FA32 FA58 4M118 AA08 AA10 AB01 BA05 CA14 CB05 FB08 FB09 FB13 GA10 HA36 5C024 AX11 CX32 CY01 CY47 EX15 5F088 AA11 AB09 BA13 BB03 BB07 EA04 EA08 EA20 JA20 KA10 LA08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04N 5/32 H01L 31/00 A F term (Reference) 2G088 EE01 EE02 EE30 FF02 GG21 JJ04 JJ05 JJ09 JJ11 LL11 LL12 LL12 LL21 4C093 AA22 CA13 EB13 FA32 FA58 4M118 AA08 AA10 AB01 BA05 CA14 CB05 FB08 FB09 FB13 GA10 HA36 5C024 AX11 CX32 CY01 CY47 EX15 5F088 AA11 AB09 BA13 BB03 BB07 EA04 EA08 EA20 JA20 KA10 LA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上下面に電極を有しX線を電荷信号に変換
する半導体からなるフラットなX線変換層と、散乱X線
除去用のコリメータ板で構成されたコリメータとを、一
次元もしくは2次元状に配置した放射線検出器におい
て、前記X線変換層を保持している部材にヒータと温度
センサを設け、X線変換層を所定の温度に調整する温度
調整手段を備えることを特徴とする放射線検出器。
A flat X-ray conversion layer made of a semiconductor having electrodes on upper and lower surfaces for converting X-rays into a charge signal, and a collimator formed of a collimator plate for removing scattered X-rays, are one-dimensional or one-dimensional. In the two-dimensionally arranged radiation detector, a heater and a temperature sensor are provided on a member holding the X-ray conversion layer, and a temperature adjusting unit for adjusting the X-ray conversion layer to a predetermined temperature is provided. Radiation detector.
【請求項2】X線を電荷信号に変換する半導体からなる
フラットなX線変換層がCdTe単結晶またはCdZn
Te単結晶からなり、そのX線変換層の温度を30℃以
上に温度調整することを特徴とする請求項1記載の放射
線検出器。
2. A flat X-ray conversion layer comprising a semiconductor for converting X-rays into a charge signal is formed of a single crystal of CdTe or CdZn.
The radiation detector according to claim 1, wherein the radiation detector is made of a Te single crystal, and the temperature of the X-ray conversion layer is adjusted to 30 ° C or higher.
JP2001000705A 2001-01-05 2001-01-05 Radiation detector Pending JP2002202377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000705A JP2002202377A (en) 2001-01-05 2001-01-05 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000705A JP2002202377A (en) 2001-01-05 2001-01-05 Radiation detector

Publications (1)

Publication Number Publication Date
JP2002202377A true JP2002202377A (en) 2002-07-19

Family

ID=18869443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000705A Pending JP2002202377A (en) 2001-01-05 2001-01-05 Radiation detector

Country Status (1)

Country Link
JP (1) JP2002202377A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000626A (en) * 2005-06-22 2007-01-11 Ge Medical Systems Israel Ltd Method and device for reducing polarization in imaging device
WO2008012897A1 (en) * 2006-07-27 2008-01-31 Shimadzu Corporation Optical or radiation imaging device
JP2008039777A (en) * 2006-08-03 2008-02-21 Ge Medical Systems Israel Ltd Method and apparatus for reducing polarization in imaging device
JP2008126064A (en) * 2006-11-17 2008-06-05 General Electric Co <Ge> Interface assembly thermally connecting data acquisition system to sensor array
JP2008227117A (en) * 2007-03-13 2008-09-25 Hitachi Ltd Semiconductor radiation detector and industrial x-ray ct equipment using the same
JP2009074988A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Radiograph processor
JP2011223088A (en) * 2010-04-05 2011-11-04 Shimadzu Corp Imaging apparatus
CN102283668A (en) * 2010-06-21 2011-12-21 株式会社东芝 X-ray computed tomography apparatus
CN102342846A (en) * 2010-07-22 2012-02-08 株式会社东芝 X-ray ct apparatus
JP2013158448A (en) * 2012-02-03 2013-08-19 Toshiba Corp X-ray ct apparatus
US8648889B2 (en) 2005-11-30 2014-02-11 Sharp Kabushiki Kaisha Display device and method for driving display member

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144487U (en) * 1985-02-27 1986-09-06
JPS62226082A (en) * 1986-03-28 1987-10-05 Yokogawa Electric Corp Beta ray detecting device
JPS63101788A (en) * 1986-10-17 1988-05-06 Matsushita Electric Ind Co Ltd Multichannel type semiconductive radiation detector
JPH0395479A (en) * 1989-09-08 1991-04-19 Hitachi Medical Corp Radiation detector and radiation ct apparatus
JPH04110691A (en) * 1990-08-30 1992-04-13 Shimadzu Corp Radiation detector
JPH04315985A (en) * 1991-04-15 1992-11-06 Hitachi Medical Corp Measuring device for radiation
JPH04367654A (en) * 1991-06-13 1992-12-18 Toshiba Corp Radiation detector for x-ray ct
JPH08248139A (en) * 1995-03-15 1996-09-27 Toshiba Corp Radiation detector
JPH1123722A (en) * 1997-07-01 1999-01-29 Shimadzu Corp Radiation detector
JPH11218857A (en) * 1998-01-30 1999-08-10 Konica Corp X-ray image pickup device
JPH11271456A (en) * 1998-03-23 1999-10-08 Toshiba Corp Plane detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144487U (en) * 1985-02-27 1986-09-06
JPS62226082A (en) * 1986-03-28 1987-10-05 Yokogawa Electric Corp Beta ray detecting device
JPS63101788A (en) * 1986-10-17 1988-05-06 Matsushita Electric Ind Co Ltd Multichannel type semiconductive radiation detector
JPH0395479A (en) * 1989-09-08 1991-04-19 Hitachi Medical Corp Radiation detector and radiation ct apparatus
JPH04110691A (en) * 1990-08-30 1992-04-13 Shimadzu Corp Radiation detector
JPH04315985A (en) * 1991-04-15 1992-11-06 Hitachi Medical Corp Measuring device for radiation
JPH04367654A (en) * 1991-06-13 1992-12-18 Toshiba Corp Radiation detector for x-ray ct
JPH08248139A (en) * 1995-03-15 1996-09-27 Toshiba Corp Radiation detector
JPH1123722A (en) * 1997-07-01 1999-01-29 Shimadzu Corp Radiation detector
JPH11218857A (en) * 1998-01-30 1999-08-10 Konica Corp X-ray image pickup device
JPH11271456A (en) * 1998-03-23 1999-10-08 Toshiba Corp Plane detector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000626A (en) * 2005-06-22 2007-01-11 Ge Medical Systems Israel Ltd Method and device for reducing polarization in imaging device
US8648889B2 (en) 2005-11-30 2014-02-11 Sharp Kabushiki Kaisha Display device and method for driving display member
US7659518B2 (en) 2006-07-27 2010-02-09 Shimadzu Corporation Light or radiation image pickup apparatus
WO2008012897A1 (en) * 2006-07-27 2008-01-31 Shimadzu Corporation Optical or radiation imaging device
JP2008039777A (en) * 2006-08-03 2008-02-21 Ge Medical Systems Israel Ltd Method and apparatus for reducing polarization in imaging device
JP2008126064A (en) * 2006-11-17 2008-06-05 General Electric Co <Ge> Interface assembly thermally connecting data acquisition system to sensor array
JP2008227117A (en) * 2007-03-13 2008-09-25 Hitachi Ltd Semiconductor radiation detector and industrial x-ray ct equipment using the same
JP2009074988A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Radiograph processor
JP2011223088A (en) * 2010-04-05 2011-11-04 Shimadzu Corp Imaging apparatus
CN102283668A (en) * 2010-06-21 2011-12-21 株式会社东芝 X-ray computed tomography apparatus
JP2012000386A (en) * 2010-06-21 2012-01-05 Toshiba Corp X-ray ct apparatus
CN102342846A (en) * 2010-07-22 2012-02-08 株式会社东芝 X-ray ct apparatus
US8774352B2 (en) 2010-07-22 2014-07-08 Kabushiki Kaisha Toshiba X-ray CT apparatus
JP2013158448A (en) * 2012-02-03 2013-08-19 Toshiba Corp X-ray ct apparatus

Similar Documents

Publication Publication Date Title
US7310404B2 (en) Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
KR102282684B1 (en) Digital radiography detector image readout process
US9146326B2 (en) Radiographic image detector and control method therefor
RU2381747C2 (en) Image forming apparatus, image forming system, method of controling thereof and data carrier containing program thereof
JP5283718B2 (en) Radiation image detection apparatus and gain setting method used for radiation image detection apparatus
US10039516B2 (en) Digital radiography detector image readout system and process
US7514692B2 (en) Method and apparatus for reducing polarization within an imaging device
US8637832B2 (en) Radiographic image detector and control method therefor
JP2002165142A (en) Image photographing apparatus and method of controlling the image photographing apparatus
US20110147596A1 (en) Photoelectric conversion device and radiation detection device
WO2010038877A1 (en) Radiation detection device and radiation photographing apparatus
KR20130004130A (en) Radiographic detector including trap occupancy change monitor and feedback, imaging apparatus and methods using the same
JP2012075099A (en) Digital x-ray detector with increased dynamic range
US6243440B1 (en) Radiographic apparatus
CN110022771B (en) Synchronization for dynamic imaging
JPH10339778A (en) X-ray computer tomograph
JP2002202377A (en) Radiation detector
US9910172B2 (en) Temperature compensation for thin film transistors in digital X-ray detectors
JP4150906B2 (en) Method for monitoring changes in quantum detection efficiency of an X-ray detector
Colbeth et al. Characterization of an amorphous-silicon fluoroscopic imager
JP2013094454A (en) Radiographic apparatus, radiographic system and radiographic method
EP3469789B1 (en) High frame capture rate synchronization with streaming mode
Bruijns et al. Image quality of a large-area dynamic flat detector: comparison with a state-of-the-art II/TV system
JP3578378B2 (en) X-ray equipment
JPH0866388A (en) Radiation image pick-up device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629