JPH04315926A - Radiative property measuring device of laser diode - Google Patents

Radiative property measuring device of laser diode

Info

Publication number
JPH04315926A
JPH04315926A JP10817891A JP10817891A JPH04315926A JP H04315926 A JPH04315926 A JP H04315926A JP 10817891 A JP10817891 A JP 10817891A JP 10817891 A JP10817891 A JP 10817891A JP H04315926 A JPH04315926 A JP H04315926A
Authority
JP
Japan
Prior art keywords
arm
normal
point
laser diode
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10817891A
Other languages
Japanese (ja)
Inventor
Tomohide Takatsuka
高塚 知秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP10817891A priority Critical patent/JPH04315926A/en
Publication of JPH04315926A publication Critical patent/JPH04315926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a radiative property measuring device of a laser diode of a high accuracy of measuring position even though its optical path is made longer. CONSTITUTION:A reflecting mirror 2 to reflect the radiating light of a laser diode 1 is attached to an arm 4, the arm 4 is rotated around a rotation axis 5, and the reflected light of the reflecting mirror 2 is received by a receiving element 3. The extension 11 of the rotation axis 5 and a normal 12 passing through the center 3A of the luminous surface of the receiving element 3 are made coincident, while a normal 13 passing through the center 1A of the luminous surface of the laser diode 1 and the extension 11 of the rotation axis 5 are crossed square, the arm 4 is provided parallel to the normal 13, the normal 13 is reflected at the reflection point 2A of the reflecting mirror 2, it is crossed with the normal 12 by a normal 14 passing through the reflection point 2A, and the angle alpha composed by the point 3A-the point 2A-the point 1A is divided into two equal angles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、レーザダイオード(
以下、LDという。)の放射特性測定装置についてのも
のである。
[Industrial Application Field] This invention relates to a laser diode (
Hereinafter referred to as LD. ) concerning the radiation characteristic measuring device.

【0002】0002

【従来の技術】次に、従来技術によるLDの放射特性測
定装置の構成を図4により説明する。図4の1は試験さ
れるLD、3は受光素子(以下、PDという。)、4は
アーム、5は回転軸、6は駆動装置である。LD1の放
射特性は、FFPといわれ、LD1の発光面の法線を含
む平面上にあって発光面の中心を中心とする同心円上の
光強度で表わすことができる。FFPは通常、垂直軸F
FPと水平軸FFPの2つのパラメ−タで評価される。
2. Description of the Related Art Next, the configuration of a conventional LD radiation characteristic measuring apparatus will be explained with reference to FIG. In FIG. 4, 1 is an LD to be tested, 3 is a light receiving element (hereinafter referred to as PD), 4 is an arm, 5 is a rotating shaft, and 6 is a drive device. The radiation characteristic of the LD 1 is called FFP, and can be expressed by the light intensity on a concentric circle centered on the center of the light emitting surface on a plane including the normal to the light emitting surface of the LD 1. FFP is usually the vertical axis F
It is evaluated using two parameters: FP and horizontal axis FFP.

【0003】図4では、PD3をア−ム4に取り付け、
ア−ム4を駆動装置6で回転させ、LD1を中心とする
同心円上の光強度を測定する。垂直軸FFP測定と水平
軸FFP測定の切換えについては、例えば実公平 2−
49556号公報に記載されている。
In FIG. 4, the PD 3 is attached to the arm 4,
The arm 4 is rotated by the drive device 6, and the light intensity on a concentric circle centered on the LD1 is measured. For switching between vertical axis FFP measurement and horizontal axis FFP measurement, for example, actual fairness 2-
It is described in No. 49556.

【0004】0004

【発明が解決しようとする課題】図4には、次のような
問題がある。 ア  アーム4の位置精度が測定精度となるので、アー
ム4の回転機構に高い精度と安定性が要求される。 イ  特に大出力でLD1の発光面積が大きい場合、光
路長を長くして、PD3を回転させ、同心円の半径を長
くして測定する必要がある。 ウ  形状の大きいアーム4を回転・停止させながら測
定するので、測定に時間がかかる。 エ  回転するアーム4上にPD3が取り付けられるの
で、PD3と測定部の接続が困難になる。
[Problems to be Solved by the Invention] FIG. 4 has the following problems. A. Since the positional accuracy of the arm 4 is the measurement accuracy, the rotation mechanism of the arm 4 is required to have high accuracy and stability. (a) Especially when the light emitting area of LD1 is large due to high output, it is necessary to lengthen the optical path length, rotate PD3, and lengthen the radius of the concentric circles for measurement. C. Measurement takes time because the arm 4, which has a large shape, is rotated and stopped while being measured. D. Since the PD3 is mounted on the rotating arm 4, it becomes difficult to connect the PD3 and the measuring section.

【0005】この発明は、PD3を回転軸の延長線上に
配置し、回転軸の回転で回転するアーム4に反射鏡を取
り付け、LD1の出力光を反射鏡で反射させ、反射鏡の
反射光をPD3で受光させるようにし、光路長が長くな
っても、測定の位置精度が高いLDの放射特性測定装置
の提供を目的とする。
[0005] This invention places the PD 3 on an extension of the rotation axis, attaches a reflector to the arm 4 that rotates with the rotation of the rotation axis, reflects the output light of the LD 1 on the reflector, and converts the reflected light from the reflector. It is an object of the present invention to provide an LD radiation characteristic measuring device in which light is received by a PD 3 and the measurement position accuracy is high even if the optical path length becomes long.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
、この発明では、レーザダイオード1の発光を反射する
反射鏡2をアーム4に取り付け、回転軸5を中心にアー
ム4を回転させ、反射鏡2の反射光を受光素子3で受光
させ、回転軸5の延長線11と受光素子3の受光面の中
心点3Aを通る法線12を一致させ、レーザダイオード
1の発光面の中心1Aを通る法線13と回転軸5の延長
線11を直交させ、アーム4を法線13と平行に配置し
、法線13が反射鏡2の反射点2Aで反射し、反射点2
Aを通る法線14で法線12と交差して点3A−2A−
1Aで構成される角αを2等分させる。
[Means for Solving the Problems] In order to achieve this object, in the present invention, a reflector 2 that reflects light emitted from a laser diode 1 is attached to an arm 4, and the arm 4 is rotated about a rotation axis 5 to reflect the light emitted from the laser diode 1. The reflected light of the mirror 2 is received by the light receiving element 3, and the extension line 11 of the rotation axis 5 and the normal line 12 passing through the center point 3A of the light receiving surface of the light receiving element 3 are aligned, and the center 1A of the light emitting surface of the laser diode 1 is aligned. The normal line 13 passing through and the extension line 11 of the rotation axis 5 are made orthogonal, and the arm 4 is arranged parallel to the normal line 13. The normal line 13 is reflected at the reflection point 2A of the reflecting mirror 2, and the
Normal line 14 passing through A intersects normal line 12 to point 3A-2A-
Divide the angle α composed of 1A into two equal parts.

【0007】次に、この発明によるLDの放射特性測定
装置の構成を図1により説明する。図1の2は反射鏡で
あり、その他は図4と同じものである。すなわち、図1
は図4のアーム4に取り付けられたPD3をアーム4か
ら外して回転軸5の延長線11上に配置し、アーム4に
は反射鏡2を取り付け、LD1の出力光を反射鏡2で反
射させ、反射鏡2の反射光をPD3で受光させるように
したものである。
Next, the configuration of an LD radiation characteristic measuring apparatus according to the present invention will be explained with reference to FIG. Reference numeral 2 in FIG. 1 is a reflecting mirror, and the other parts are the same as in FIG. 4. That is, Figure 1
The PD3 attached to the arm 4 in FIG. 4 is removed from the arm 4 and placed on the extension line 11 of the rotation axis 5, the reflector 2 is attached to the arm 4, and the output light of the LD1 is reflected by the reflector 2. , the reflected light from the reflecting mirror 2 is received by the PD 3.

【0008】次に、図1の正面図を図2により説明する
。図2では、LD1、反射鏡2、PD3及びアーム4を
次の関係で配置する。図3は図1の側面図である。 ア  回転軸5の延長線11と、PD3の受光面の中心
3Aを通る法線12を一致させる。 イ  回転軸5の延長線11がLD1の発光面の中心1
Aを通り、中心1Aを通る法線13と延長線11を直交
させる。 ウ  アーム4を法線13と平行にし、法線13が反射
鏡2の反射点2Bで反射し、反射点2Bを通る法線14
で法線12と交差して角3A−2A−1Aで構成される
角αを2等分させる。
Next, the front view of FIG. 1 will be explained with reference to FIG. 2. In FIG. 2, the LD1, reflecting mirror 2, PD3, and arm 4 are arranged in the following relationship. FIG. 3 is a side view of FIG. 1. A. Align the extension line 11 of the rotation axis 5 with the normal line 12 passing through the center 3A of the light receiving surface of the PD 3. B The extension line 11 of the rotation axis 5 is the center 1 of the light emitting surface of the LD 1
A and the normal line 13 passing through the center 1A and the extension line 11 are made perpendicular to each other. C. The arm 4 is made parallel to the normal line 13, the normal line 13 is reflected at the reflection point 2B of the reflecting mirror 2, and the normal line 14 passing through the reflection point 2B
intersects the normal line 12 and bisects the angle α formed by angles 3A-2A-1A.

【0009】[0009]

【作用】LD1の発光面の中心点1Aからみると、PD
3の受光面の中心点3Aは法線13と光路15を延長し
た点に反射鏡2の虚像として見える。このため反射鏡2
を取り付けたアーム4を回転させると、LD1から各方
向に放射された光が反射鏡2の位置で選択的に反射され
、PD3の受光面に到達する。LD1からPD3までの
光路長は法線13と光路15を加算したものであり、必
要な光路長15に対して小型のアーム4を使用すること
ができる。また、アーム4には反射鏡2だけを取り付け
ているので、アーム4を精度よく、高速に回転または停
止させることができる。光路長15は原理的にはアーム
4の長さの2倍以上であればアーム4の長さに関係なく
設定することができる。このため、光路長15を長く設
定したLD1の放射特性測定装置を容易に実現すること
ができる。
[Operation] When viewed from the center point 1A of the light emitting surface of LD1, PD
A center point 3A of the light-receiving surface of No. 3 appears as a virtual image of the reflecting mirror 2 at a point where the normal line 13 and the optical path 15 are extended. Therefore, the reflector 2
When the arm 4 to which the PD 3 is attached is rotated, the light emitted from the LD 1 in each direction is selectively reflected at the position of the reflecting mirror 2 and reaches the light receiving surface of the PD 3. The optical path length from LD1 to PD3 is the sum of the normal line 13 and the optical path 15, and a small arm 4 can be used for the required optical path length 15. Furthermore, since only the reflector 2 is attached to the arm 4, the arm 4 can be rotated or stopped with high precision and high speed. In principle, the optical path length 15 can be set regardless of the length of the arm 4 as long as it is twice or more the length of the arm 4. Therefore, it is possible to easily realize an apparatus for measuring radiation characteristics of the LD 1 in which the optical path length 15 is set to be long.

【0010】図2ではアーム4を延長線11と直交させ
、LD1の発光面の中心1Aを通る法線13を含む平面
上の放射特性を測定する。LD1から法線13方向に放
射される光は反射鏡2でPD3の中心3Aの方向に反射
し、PD3の受光面に到達する。このときの光路は点1
A−点2A−点3Aとなり、アーム4の角度(すなわち
反射鏡2の位置)に関係なく一定の長さとなる。
In FIG. 2, the arm 4 is made perpendicular to the extension line 11, and the radiation characteristics on a plane including the normal line 13 passing through the center 1A of the light emitting surface of the LD 1 are measured. The light emitted from the LD 1 in the normal direction 13 is reflected by the reflecting mirror 2 in the direction of the center 3A of the PD 3 and reaches the light receiving surface of the PD 3. At this time, the optical path is point 1
A-point 2A-point 3A, and the length is constant regardless of the angle of the arm 4 (that is, the position of the reflecting mirror 2).

【0011】次に、点1Aと点2Aの間の線をP、点2
Aと点3Aの間の線をQ、点1Aと点3Aの間の線をR
としたとき、P+Q=一定になることを説明する。線P
の長さは回転軸5から反射鏡2までのアーム4の長さな
ので、アーム4が変形しないかぎり一定である。線Rは
PD3の位置が変わらない限り常に一定である。アーム
4は回転軸5と直交する平面上を回転するので、線Pと
線Rは直角で常に一定である。2辺とその狭角が一定な
ので、三角形PQRはアーム4の角度に関係なく常に合
同を保つ。故に、P+Q=一定になる。このようにLD
1からPD3までの光路長は常に一定なので、補正の必
要がなく、PD3で測定した光強度をそのままLD1の
放射特性値とすることができる。
Next, the line between point 1A and point 2A is P, point 2
The line between A and point 3A is Q, and the line between point 1A and point 3A is R.
It will be explained that when P+Q=constant. Line P
Since the length is the length of the arm 4 from the rotating shaft 5 to the reflecting mirror 2, it remains constant unless the arm 4 is deformed. Line R is always constant unless the position of PD3 changes. Since the arm 4 rotates on a plane perpendicular to the rotation axis 5, the lines P and R are perpendicular and always constant. Since the two sides and their narrow angles are constant, triangle PQR always remains congruent regardless of the angle of arm 4. Therefore, P+Q=constant. Like this LD
Since the optical path length from PD1 to PD3 is always constant, there is no need for correction, and the light intensity measured by PD3 can be directly used as the radiation characteristic value of LD1.

【0012】次に、アーム4の回転角度とLD1の光強
度の関係を説明する。延長線11と直交し、反射鏡2の
反射点2Aを通る直線と、法線13が平行な場合のアー
ム4の角度を0°とし、LD1の中心点1Aを通り、回
転軸5と直交する平面上にあり、法線13の方向をLD
1から放射される光の角度を0°とする。PD3側から
みて、時計回りを角度の正方向とする。アーム4が図3
の角θaの位置にあるとき、LD1から角θh=θaで
放射された光だけが反射鏡2で反射され、PD3に到達
する。アーム4を各角度に固定したとき、PD3で受光
した光強度がLD1の放射特性値になる。
Next, the relationship between the rotation angle of the arm 4 and the light intensity of the LD 1 will be explained. When the normal line 13 is parallel to a straight line that is orthogonal to the extension line 11 and passes through the reflection point 2A of the reflecting mirror 2, the angle of the arm 4 is 0°, passes through the center point 1A of the LD 1, and is orthogonal to the rotation axis 5. It is on a plane, and the direction of normal line 13 is LD
Let the angle of light emitted from 1 be 0°. When viewed from the PD3 side, the clockwise direction is the positive direction of the angle. Arm 4 is shown in Figure 3.
At the angle θa, only the light emitted from the LD1 at an angle θh=θa is reflected by the reflecting mirror 2 and reaches the PD3. When the arm 4 is fixed at each angle, the light intensity received by the PD 3 becomes the radiation characteristic value of the LD 1.

【0013】[0013]

【発明の効果】この発明によれば、PDを回転軸の延長
線上に配置し、回転軸の回転するアームに反射鏡を取り
付け、LDの出力光を反射鏡で反射させ、反射鏡の反射
光をPDで受光させているので、光路長を長くした場合
でも、測定の位置(角度)精度が高いLDの放射特性測
定装置が得られる。
Effects of the Invention According to the present invention, a PD is placed on an extension of a rotating shaft, a reflecting mirror is attached to an arm on which the rotating shaft rotates, the output light of the LD is reflected by the reflecting mirror, and the reflected light of the reflecting mirror is Since the light is received by the PD, it is possible to obtain an LD radiation characteristic measuring device with high measurement position (angle) accuracy even when the optical path length is increased.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明によるレーザダイオードの放射特性測
定装置の構成図である。
FIG. 1 is a configuration diagram of a laser diode radiation characteristic measuring device according to the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG. 1.

【図3】図1の側面図である。FIG. 3 is a side view of FIG. 1;

【図4】従来技術によるレーザダイオードの放射特性測
定装置の構成図である。
FIG. 4 is a configuration diagram of a laser diode radiation characteristic measuring device according to the prior art.

【符号の説明】[Explanation of symbols]

1  LD(レーザダイオード) 1A  LD1の発光面の中心点 2  反射鏡 2A  反射鏡2の反射点 3  PD(受光素子) 3A  PD3の受光面の中心点 4  アーム 5  アーム4の回転軸 6  駆動装置 7  基準角度センサ 11  回転軸5の延長線 12  PD3の中心3Aを通る法線 13  LD1の中心1Aを通る法線 14  反射鏡2の中心2Aを通る法線15  光路 1 LD (laser diode) 1A Center point of the light emitting surface of LD1 2 Reflector 2A Reflection point of reflecting mirror 2 3 PD (light receiving element) 3A Center point of PD3 light receiving surface 4 Arm 5 Rotation axis of arm 4 6 Drive device 7 Reference angle sensor 11 Extension line of rotating shaft 5 12 Normal line passing through center 3A of PD3 13 Normal line passing through center 1A of LD1 14 Normal line 15 Optical path passing through the center 2A of the reflecting mirror 2

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  レーザダイオード(1) の発光を反
射する反射鏡(2)をアーム(4) に取り付け、回転
軸(5) を中心にアーム(4) を回転させ、反射鏡
(2) の反射光を受光素子(3) で受光させ、回転
軸(5) の延長線(11)と受光素子(3) の受光
面の中心点(3A)を通る第1の法線(12)を一致さ
せ、レーザダイオード(1) の発光面の中心(1A)
を通る第2の法線(13)と回転軸(5) の延長線(
11)を直交させ、アーム(4) を第2の法線(13
)と平行に配置し、第2の法線(13)が反射鏡(2)
 の反射点(2A)で反射し、反射点(2A)を通る第
3の法線(14)で第1の法線(12)と交差して点(
3A)−点(2A)−点(1A)で構成される角αを2
等分させることを特徴とするレーザダイオードの放射特
性測定装置。
[Claim 1] A reflector (2) that reflects the light emitted from the laser diode (1) is attached to the arm (4), and the arm (4) is rotated about the rotation axis (5) to reflect the light emitted by the laser diode (1). The reflected light is received by the light receiving element (3), and the extension line (11) of the rotation axis (5) is aligned with the first normal line (12) passing through the center point (3A) of the light receiving surface of the light receiving element (3). Center of the light emitting surface (1A) of the laser diode (1)
The extension line of the second normal (13) passing through and the axis of rotation (5) (
11) are orthogonal to each other, and the arm (4) is orthogonal to the second normal (13
), and the second normal (13) is the reflector (2).
is reflected at the reflection point (2A), and the third normal (14) passing through the reflection point (2A) intersects the first normal (12) to form the point (
3A) - point (2A) - point (1A) is 2
A radiation characteristic measuring device for a laser diode, which is characterized by dividing the laser diode into equal parts.
JP10817891A 1991-04-15 1991-04-15 Radiative property measuring device of laser diode Pending JPH04315926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10817891A JPH04315926A (en) 1991-04-15 1991-04-15 Radiative property measuring device of laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10817891A JPH04315926A (en) 1991-04-15 1991-04-15 Radiative property measuring device of laser diode

Publications (1)

Publication Number Publication Date
JPH04315926A true JPH04315926A (en) 1992-11-06

Family

ID=14477974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10817891A Pending JPH04315926A (en) 1991-04-15 1991-04-15 Radiative property measuring device of laser diode

Country Status (1)

Country Link
JP (1) JPH04315926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097813A1 (en) * 2008-02-04 2009-08-13 Tongsheng Mou A distributed photometer
WO2014020660A1 (en) * 2012-07-30 2014-02-06 大塚電子株式会社 Optical measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097813A1 (en) * 2008-02-04 2009-08-13 Tongsheng Mou A distributed photometer
WO2014020660A1 (en) * 2012-07-30 2014-02-06 大塚電子株式会社 Optical measurement device
JPWO2014020660A1 (en) * 2012-07-30 2016-07-11 大塚電子株式会社 Optical measuring device
US9500520B2 (en) 2012-07-30 2016-11-22 Otsuka Electronics Co., Ltd. Optical measurement apparatus

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JPH05240645A (en) Apparatus for regulating laser leveling unit toward reference line
EP1248137B1 (en) Laser beam irradiation device with changeable spreading angle
JP2554026B2 (en) Michelson interferometer
JPH04315926A (en) Radiative property measuring device of laser diode
US6515294B1 (en) Device for precision alignment of shafts, rollers, axles, spindles or machine tools
JP3897322B2 (en) Laser irradiation device
JPS58106413A (en) Light reflecting sensor
KR970028643A (en) Photodetector
KR880014364A (en) Inorganic element concentration measuring device
JP2009222441A (en) Retroreflective intensity measuring device
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
JPS63100461A (en) Illuminating device
JPH03127191A (en) Optical scanner
CN217739615U (en) Optical extension line device for optical interference system and optical extension line system
JP2003161907A (en) Laser beam diameter varying device
WO2017065049A1 (en) Optical-scanning-type object detection device
US4624527A (en) Radiation-utilizing measurement system
JP2004125554A (en) Mirror angle detection device
JPH09189545A (en) Distance measuring device
KR19990039804A (en) Laser Vision Sensor
JPH04155225A (en) Radiation characteristic measuring apparatus for laser diode
JPH074927A (en) Measuring apparatus making use of laser
JP2024025976A (en) Laser irradiation equipment and measurement system
JP2022043007A (en) Distance measuring device