JP2009222441A - Retroreflective intensity measuring device - Google Patents

Retroreflective intensity measuring device Download PDF

Info

Publication number
JP2009222441A
JP2009222441A JP2008064925A JP2008064925A JP2009222441A JP 2009222441 A JP2009222441 A JP 2009222441A JP 2008064925 A JP2008064925 A JP 2008064925A JP 2008064925 A JP2008064925 A JP 2008064925A JP 2009222441 A JP2009222441 A JP 2009222441A
Authority
JP
Japan
Prior art keywords
light
optical fiber
retroreflective
sample
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008064925A
Other languages
Japanese (ja)
Inventor
Hiroshi Iyoda
浩志 伊與田
Hideki Sakai
英樹 酒井
Kazuo Nagamura
一雄 永村
Norio Igawa
憲男 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008064925A priority Critical patent/JP2009222441A/en
Publication of JP2009222441A publication Critical patent/JP2009222441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retroreflective intensity measuring device for simply measuring reflection properties, reflection distribution of reflected light, wavelength distribution of reflected light, etc. without cutting out a sample, when an incident direction changes. <P>SOLUTION: The retroreflective intensity measuring device includes a light source, a light receiving part, optical fiber, and a turning part for turning the head of the optical fiber. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、塗料やシートなどの材料表面の再帰反射性能の評価に用いられる再帰反射性強度測定装置、より詳細には、塗料やシートなどの材料表面の角度依存性、分布、波長依存性などの再帰反射性能の特性を評価するために用いられる再帰反射性強度測定装置に関する。   The present invention relates to a retroreflective intensity measuring device used for evaluating the retroreflective performance of a material surface such as a paint or a sheet, and more specifically, the angle dependency, distribution, wavelength dependency, etc. of the material surface such as a paint or sheet. The present invention relates to a retroreflective intensity measuring device used for evaluating the characteristics of retroreflective performance.

再帰反射材料は、光源から発せられる光を光源に向けて反射する性質を有する材料である。再帰反射材料は、例えば、道路標識や看板などに広く用いられている。再帰反射材料は、その用途の性質上十分な反射性質を有している必要がある。再帰反射材料の反射性能は、例えば、JIS Z8714(1995)「再帰性反射体−光学的測定−測定方法」およびJIS Z9117(1984)「保安用反射シート及びテープ」に定められている。   The retroreflective material is a material having a property of reflecting light emitted from the light source toward the light source. Retroreflective materials are widely used for road signs and signboards, for example. The retroreflective material must have sufficient reflective properties due to the nature of its application. The reflection performance of the retroreflective material is defined in, for example, JIS Z8714 (1995) “Retroreflector-Optical Measurement-Measurement Method” and JIS Z9117 (1984) “Security Reflective Sheet and Tape”.

近年、建築物や自動車表面に再帰反射タイルや再帰反射塗料などの再帰反射材を用いることが試みられている。建築物や自動車表面に再帰反射材を用いることで、鏡面反射による場合に問題となる周辺への影響を軽減することができる。表面形状が複雑な建築物の施工現場において、再帰反射材を施工する際に、再帰反射材の反射性能を測定しながら施工することで、より効果的な施工が可能となる。また、このような目的で再帰反射材の反射性能を測定する場合は、再帰反射材の表面にほぼ垂直な方向から入射した光の反射性能を測定するだけでは足りない。例えば、太陽光は、入射方向が、日動、年動する。このような場合に、より実情に沿った再帰反射材の反射性能を測定するためには、簡易に入射方向が変化した場合の反射性能、反射光の反射分布、反射光の波長分布などを測定する必要がある。   In recent years, attempts have been made to use retroreflective materials such as retroreflective tiles and retroreflective coatings on buildings and automobile surfaces. By using a retroreflective material on the surface of a building or automobile, it is possible to reduce the influence on the surroundings that becomes a problem in the case of specular reflection. When constructing a retroreflective material at a construction site where the surface shape is complex, more effective construction is possible by constructing the retroreflective material while measuring the reflection performance of the retroreflective material. Further, when measuring the reflection performance of the retroreflective material for such a purpose, it is not sufficient to measure the reflection performance of light incident from a direction substantially perpendicular to the surface of the retroreflective material. For example, the incident direction of sunlight is daily and annual. In such a case, in order to measure the reflection performance of the retroreflective material according to the actual situation, simply measure the reflection performance when the incident direction changes, the reflection distribution of reflected light, the wavelength distribution of reflected light, etc. There is a need to.

上記した従来の再帰反射材料の反射性能の測定方法は、標識や看板などを対象とする。このため、反射性能の測定には、大きな空間を必要とする。したがって、施工現場において簡便に反射性能を測定するためには適さない。また、サンプルを切り出して測定する必要があり、再帰反射材の反射性能を測定しながら施工することはできない。   The method for measuring the reflection performance of the conventional retroreflective material described above targets signs and signs. For this reason, the measurement of reflection performance requires a large space. Therefore, it is not suitable for simply measuring the reflection performance at the construction site. Moreover, it is necessary to cut out and measure a sample, and it cannot be applied while measuring the reflection performance of the retroreflective material.

再帰反射性能測定装置としては例えば以下の装置が提案されている(例えば、特許文献1〜3参照)。   For example, the following devices have been proposed as retroreflective performance measuring devices (see, for example, Patent Documents 1 to 3).

特許文献1に記載の装置では、サンプルを切り出すことなく、省スペースで再帰反射材料の反射性能を測定できる再帰性反射性能測定装置が提案されている。この再帰性反射性能測定装置は、光源からの光を反射部材で反射して測定試料に照射し、反射部材を透過した反射光の光度を測定する。すなわち、この再帰性反射性能測定装置では、光源と、反射部材と、受光素子とが一定の位置関係を有する必要がある。このため、入射方向が変化した場合の反射性能、反射光の反射分布などを測定するためには、位置関係の調整が容易ではないという問題がある。   In the apparatus described in Patent Document 1, a retroreflective performance measuring apparatus capable of measuring the reflective performance of a retroreflective material in a space-saving manner without cutting out a sample has been proposed. This retroreflective performance measuring apparatus reflects light from a light source by a reflecting member, irradiates the measurement sample, and measures the luminous intensity of the reflected light transmitted through the reflecting member. That is, in this retroreflection performance measuring apparatus, the light source, the reflecting member, and the light receiving element need to have a certain positional relationship. For this reason, in order to measure the reflection performance when the incident direction changes, the reflection distribution of reflected light, etc., there is a problem that the positional relationship is not easily adjusted.

特許文献2に記載の装置では、照射光の光束径が大きくなることを防止するために光源にLEDを用い、投光、受光部に光ファイバを用い、受光ファイバの周りに同心円状に投光ファイバを配置して、装置を小型化し、測定精度を向上させたものが開示されている。しかし、この装置では、サンプルを切り出して測定する必要がある。また、ほぼ垂直に入射した光の反射性能を測定することを想定した構造となっているので、簡易に入射方向が変化した場合の反射性能、反射光の反射分布、反射光の波長分布などを測定するには適さない。   In the apparatus described in Patent Document 2, an LED is used as the light source to prevent the light beam diameter of the irradiated light from becoming large, an optical fiber is used as the light projecting / receiving part, and light is projected concentrically around the light receiving fiber. A fiber is arranged to reduce the size of the apparatus and improve the measurement accuracy. However, with this apparatus, it is necessary to cut out and measure a sample. In addition, since it is designed to measure the reflection performance of light that is incident almost vertically, the reflection performance when the incident direction changes easily, the reflection distribution of reflected light, the wavelength distribution of reflected light, etc. Not suitable for measurement.

特許文献3に記載の装置では、光ファイバとミラーと凸レンズとを組み合わせて光路を折り曲げ、さらに遮光器を用いてノイズとなる散乱光の量を減らしたものが開示されている。しかし、この装置では、光ファイバとミラーと凸レンズとを組み合わせて光路を折り曲げるため、入射方向が変化した場合の反射性能、反射光の反射分布などを測定するためには、位置関係の調整が容易ではないという問題がある。
特開2002−206989号公報 特開平10−115549号公報 特表2000−503395号公報
In the apparatus described in Patent Document 3, an optical fiber, a mirror, and a convex lens are combined to bend an optical path, and a light shield is used to reduce the amount of scattered light that becomes noise. However, with this device, the optical path is bent by combining an optical fiber, a mirror, and a convex lens, so the positional relationship can be easily adjusted to measure the reflection performance when the incident direction changes, the reflection distribution of reflected light, etc. There is a problem that is not.
JP 2002-206989 A Japanese Patent Laid-Open No. 10-115549 JP 2000-503395 gazette

すなわち、本発明は、上記問題に鑑みなされたものであり、その目的は、サンプルを切り出すことなく、入射方向が変化した場合の反射性能、反射光の反射分布、反射光の波長分布などを簡易に測定する再帰反射性強度測定装置を提供することにある。   That is, the present invention has been made in view of the above problems, and its purpose is to simplify reflection performance, reflection distribution of reflected light, wavelength distribution of reflected light, and the like when the incident direction changes without cutting out a sample. It is an object of the present invention to provide a retroreflective intensity measuring device for measuring in the first place.

本発明者らは、上記課題を解決するために鋭意検討をした結果、以下の発明を完成した。すなわち、本発明は、以下のとおりである。   As a result of intensive studies to solve the above problems, the present inventors have completed the following invention. That is, the present invention is as follows.

本発明の再帰反射性強度測定装置は、光源と、受光部と、光ファイバと、前記光ファイバの頭部を、回動させる回動部とを備える。   The retroreflective intensity measuring device of the present invention includes a light source, a light receiving unit, an optical fiber, and a rotating unit that rotates the head of the optical fiber.

すなわち、本発明では、回動部を用いて、光ファイバ頭部を回動させる。具体的には、光ファイバ頭部の先端部(光を投受光する部分)の延長線と試料表面とがなす角(投光角度)を変えるように、光ファイバ頭部を回動する。これにより、光ファイバを、試料表面への投光角度を変化させることができる。この結果、角度依存性の再帰反射強度を測定することができる。   In other words, in the present invention, the optical fiber head is rotated using the rotating portion. Specifically, the optical fiber head is rotated so as to change the angle (light projection angle) formed by the extension line of the tip of the optical fiber head (portion for projecting and receiving light) and the sample surface. Thereby, the light projection angle to the sample surface of the optical fiber can be changed. As a result, the angle-dependent retroreflection intensity can be measured.

上記再帰反射性強度測定装置は、上記光ファイバの頭部または試料を移動させる移動手段を備える。これにより、投光角度および距離を維持したままで、試料表面の再帰反射強度の表面分布を測定することができる。   The retroreflective intensity measuring device includes moving means for moving the head of the optical fiber or the sample. Thereby, the surface distribution of the retroreflection intensity on the sample surface can be measured while maintaining the projection angle and the distance.

上記受光部は、フォトダイオード、フォトトランジスタ、または分光器である。この構成により、試料表面における再帰反射性の波長分布あるいは特定の波長域での値を測定できる。   The light receiving unit is a photodiode, a phototransistor, or a spectroscope. With this configuration, the retroreflective wavelength distribution on the sample surface or the value in a specific wavelength range can be measured.

本発明の再帰反射性強度測定装置では、回動部を用いて、光ファイバからの投光角度を変えるように、光ファイバ頭部を回動する。光ファイバを上記のように回動させることで、サンプルを切り出すことなく、簡易な構成で、入射方向が変化した場合の反射性能を測定できる。
また、投受光一体型の光ファイバの頭部または試料を移動させる移動手段を備える。この結果、表面特性の変化に応じた反射光の反射分布を測定できる。
さらに、本発明では、受光部を容易に代えることができる。この結果、測定条件を変えて反射光の波長分布や特定の波長域での値を測定することができる。
In the retroreflective intensity measuring device of the present invention, the optical fiber head is rotated using the rotating unit so as to change the projection angle from the optical fiber. By rotating the optical fiber as described above, the reflection performance when the incident direction is changed can be measured with a simple configuration without cutting out the sample.
In addition, a moving means for moving the head or sample of the optical fiber integrated with the light projecting and receiving unit is provided. As a result, it is possible to measure the reflection distribution of the reflected light according to the change in surface characteristics.
Furthermore, in the present invention, the light receiving part can be easily replaced. As a result, it is possible to measure the wavelength distribution of the reflected light and the value in a specific wavelength range by changing the measurement conditions.

以下に、本発明を図面により詳細に説明する。
図1は、本発明の再帰反射性強度測定装置の概略を説明する図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining the outline of the retroreflective intensity measuring apparatus of the present invention.

図1に示すように、本発明の再帰反射性強度測定装置は、光源1と、受光部2と、光ファイバ3と、回動部5とを備える。この回動部5は、投受光一体型の同軸光ファイバ頭部4の先端部を中心側に、頭部他端部を周縁側にして、投受光一体型の同軸光ファイバの頭部を回動させる。   As shown in FIG. 1, the retroreflective intensity measuring device of the present invention includes a light source 1, a light receiving unit 2, an optical fiber 3, and a rotating unit 5. The rotating unit 5 rotates the head of the coaxial optical fiber integrated with the light projecting / receiving unit with the tip of the coaxial optical fiber head 4 integrated with the light projecting / receiving unit being at the center and the other end of the head being the peripheral side. Move.

本発明で使用することができる光ファイバは、投受光を行えるものであれば、特に制限はなく、同軸型、平行型、分割型など、公知の光ファイバを用いることができる。これらの光ファイバは、使用する目的に応じて適宜使用すればよい。例えば、精密な測定を行う場合には、同軸型の光ファイバを用い、簡易な測定を行う場合は、平行型、分割型の光ファイバを用いるなどである。   The optical fiber that can be used in the present invention is not particularly limited as long as it can project and receive light, and known optical fibers such as a coaxial type, a parallel type, and a split type can be used. These optical fibers may be used as appropriate according to the purpose of use. For example, a coaxial type optical fiber is used for precise measurement, and a parallel type or split type optical fiber is used for simple measurement.

図2は、本発明で投受光一体型の同軸光ファイバを用いた場合の投受光一体型の同軸光ファイバ頭部の断面図である。図2に示すように、光ファイバの頭部4は、複数の投光用の光ファイバ9を同心円上に備え、受光用の光ファイバ8を同心円の中心に備える。投受光一体型の同軸光ファイバは、同心円の半径の異なるものを用いてもよい。従来の再帰反射性強度測定装置では、レンズ等を用いて、再帰反射の角度などを調整していた。しかし、投受光一体型の同軸光ファイバを用いると、同心円の半径の大きさと、光ファイバの頭部の最先端と試料表面との距離を調整することで、再帰反射の角度の調整を容易に行える。利用できる投受光一体型の同軸光ファイバとしては、この構成に限られず、同心円が2以上のものであってもよい。このように投受光一体型の同軸光ファイバを用いることにより、簡易な構成で再帰反射光度を測定できる。同軸光ファイバの頭部4の外径は、1〜6mm程度である。   FIG. 2 is a cross-sectional view of a head portion of a coaxial optical fiber integrated with a light emitting / receiving unit when a coaxial optical fiber integrated with a light projecting / receiving unit is used in the present invention. As shown in FIG. 2, the optical fiber head 4 includes a plurality of light projecting optical fibers 9 on a concentric circle and a light receiving optical fiber 8 at the center of the concentric circle. As the coaxial optical fiber integrated with light emitting and receiving, fibers having different concentric radii may be used. In a conventional retroreflective intensity measuring device, the angle of retroreflection or the like is adjusted using a lens or the like. However, when using a coaxial optical fiber integrated with light emitting and receiving, it is easy to adjust the angle of the retroreflection by adjusting the radius of the concentric circle and the distance between the tip of the optical fiber head and the sample surface. Yes. The light projecting / receiving integrated coaxial optical fiber that can be used is not limited to this configuration, and may have two or more concentric circles. In this way, by using the coaxial optical fiber integrated with light emitting and receiving, the retroreflected light intensity can be measured with a simple configuration. The outer diameter of the head 4 of the coaxial optical fiber is about 1 to 6 mm.

投光用の光ファイバ9は、その一端は試料に面し、他端は光源1に接続されている。受光用の光ファイバ8は、受光素子2に接続されている。図1の例では、装置の簡便のため、光源・受光素子一体型のものを用いている。この構成に限られず、光源と受光素子とが分離したものを用いてもよい。   The projecting optical fiber 9 has one end facing the sample and the other end connected to the light source 1. The light receiving optical fiber 8 is connected to the light receiving element 2. In the example of FIG. 1, a light source / light receiving element integrated type is used for the simplicity of the apparatus. The configuration is not limited to this, and a light source and a light receiving element separated may be used.

光源1としては、LED(発光ダイオード)、LD(レーザダイオード)、ハロゲンランプなど、公知の光源が使用できる。本発明では、投光用の光ファイバ9に接続する光源1を代えることで、測定の目的に応じた光源による再帰反射強度を容易に測定できる。   As the light source 1, a known light source such as an LED (light emitting diode), an LD (laser diode), or a halogen lamp can be used. In the present invention, by replacing the light source 1 connected to the optical fiber 9 for light projection, the retroreflection intensity by the light source according to the purpose of measurement can be easily measured.

受光用の光ファイバ8は、その一端は試料に面し、他端は、受光部2に接続している。受光部2としては、測定する目的に応じて、フォトダイオード、フォトトランジスタ、分光器などの受光素子が使用できる。本発明では、受光用の光ファイバに接続する受光素子を容易に代えることができる。これにより、可視光域、近赤外域など波長に依存する再帰反射強度の測定を容易に行える。   The light receiving optical fiber 8 has one end facing the sample and the other end connected to the light receiving unit 2. As the light receiving unit 2, a light receiving element such as a photodiode, a phototransistor, or a spectroscope can be used according to the purpose of measurement. In the present invention, the light receiving element connected to the light receiving optical fiber can be easily replaced. Thereby, it is possible to easily measure the retroreflection intensity depending on the wavelength such as the visible light region and the near infrared region.

光源1、受光部2には、電圧計6が接続されている。これにより、光源から投光する光の強さなどの条件を調整することができる。また、光源1や受光素子2と、電圧計6との間には、ゲイン調整回路を設けてもよい。電圧を調整して、出射光度を調整した光を光源1から投光される。この光が投光用の光ファイバ9を通り、試料7面に照射される。試料表面から反射される反射光は、受光用の光ファイバ8から受光部2に伝わる。受光部2を構成する受光素子の特性に応じた波長の光が受光素子で受光される。この受光した光の強度を電圧計6で測定することにより、再帰反射強度を測定することができる。なお、この図の例では、電圧計6を用いたが、出射光度の調整や受光した光の強度を他の信号に変えて測定できるものであれば、電圧計に限られない。   A voltmeter 6 is connected to the light source 1 and the light receiving unit 2. Thereby, conditions, such as the intensity of the light projected from a light source, can be adjusted. Further, a gain adjustment circuit may be provided between the light source 1 or the light receiving element 2 and the voltmeter 6. Light whose light intensity is adjusted by adjusting the voltage is projected from the light source 1. This light passes through the light projecting optical fiber 9 and is irradiated onto the surface of the sample 7. The reflected light reflected from the sample surface is transmitted from the light receiving optical fiber 8 to the light receiving unit 2. Light having a wavelength corresponding to the characteristics of the light receiving element constituting the light receiving unit 2 is received by the light receiving element. By measuring the intensity of the received light with the voltmeter 6, the retroreflection intensity can be measured. In the example of this figure, the voltmeter 6 is used. However, the voltmeter 6 is not limited to the voltmeter as long as the adjustment of the emitted light intensity and the intensity of the received light can be changed to other signals.

本発明では、上記投光用の同軸光ファイバに、回動部5を設けることを特徴の一つとする。図3に示すように、この回動部5は、試料7表面に対して、光ファイバからの投光角度を変えるように、光ファイバ頭部を回動する。このように投受光一体型の同軸光ファイバ頭部4は、回動する。照射距離は、垂直方向に投下した場合の投受光一体型の同軸光ファイバ頭部5の先端部と、試料7表面との距離hが、斜め方向垂直方向に投下した場合の投受光一体型の同軸光ファイバ頭部5の先端部と、試料7表面との距離h’となる。しかし、この距離hとh’との相違は、数学的に測定結果を補正することにより解消される。例えば、太陽光のように、入射方向が変化する光の反射性能を容易に測定することができる。   In the present invention, one feature is that the rotating unit 5 is provided in the coaxial optical fiber for light projection. As shown in FIG. 3, the rotating unit 5 rotates the optical fiber head so as to change the projection angle from the optical fiber with respect to the surface of the sample 7. In this way, the coaxial optical fiber head 4 integrated with the light projecting / receiving unit rotates. The irradiation distance is such that the distance h between the front end portion of the coaxial optical fiber head 5 integrated with the light projecting / receiving unit and the surface of the sample 7 when dropped in the vertical direction is that of the integrated light projecting / receiving unit when dropped vertically. This is the distance h ′ between the tip of the coaxial optical fiber head 5 and the surface of the sample 7. However, the difference between the distances h and h 'is eliminated by mathematically correcting the measurement result. For example, the reflection performance of light whose incident direction changes, such as sunlight, can be easily measured.

回動部5は、特に制限はなく、基体と可動部と前記基体と可動部とを連結する軸とを有する構造のものであればよい。この可動部に光ファイバ頭部5を固定する。可動部を、軸を中心に動かすことで、光ファイバ頭部を回動できる。また、この回動部5には、例えば角度計や回転型の可変抵抗器と連動させておけばよい。この構成によれば、可動部を動かすことにより、回動の角度を容易に測定することができる。また、可動部を動かすのは、手動でもよく、駆動装置を用いてもよい。   The rotating part 5 is not particularly limited, and may be any structure having a base, a movable part, and a shaft connecting the base and the movable part. The optical fiber head 5 is fixed to this movable part. The optical fiber head can be rotated by moving the movable part about the axis. Moreover, what is necessary is just to make this rotation part 5 interlock | cooperate with an angle meter or a rotary variable resistor, for example. According to this configuration, the angle of rotation can be easily measured by moving the movable part. Further, the movable part may be moved manually or a drive device may be used.

本発明の再帰反射性強度測定装置は、前記投受光一体型の光ファイバの頭部または試料を移動させる移動手段10を備えていてもよい。この構成とすることで、試料が広い面積であっても、光ファイバの頭部を試料上で二次元に移動させることができる、あるいは試料を二次元に移動させることができる。このように移動手段10により移動させることで、広範囲にわたる再帰反射強度を容易に測定することができる。この結果、再帰反射強度の試料表面の分布を測定できる。   The retroreflective intensity measuring apparatus of the present invention may include a moving means 10 for moving the head or the sample of the light projecting / receiving integrated optical fiber. With this configuration, even if the sample has a large area, the head of the optical fiber can be moved two-dimensionally on the sample, or the sample can be moved two-dimensionally. By moving the moving means 10 in this way, the retroreflection intensity over a wide range can be easily measured. As a result, the distribution of the retroreflective intensity on the sample surface can be measured.

移動手段10は、図4に示すように、投受光一体型の光ファイバの頭部5を移動させるものであっても、図5に示すように、試料を移動させるものであってもよい。   The moving means 10 may move the head 5 of the light projecting / receiving integrated optical fiber as shown in FIG. 4, or may move the sample as shown in FIG.

移動手段10は、車輪が取り付けられた可動台、試料との距離を一定保ちながら試料壁面と水平に移動するトラバース装置などの移動手段を用いて、回動部ごと光ファイバの頭部や、試料を移動できるものであればよい。これらの移動手段には、スライド式ボリウムなどを接続しておけばよい。これにより、移動量、移動方向を容易に調整できる。この構成により、再帰反射強度の角度移動性と、表面分布とを同時に測定することができる。   The moving means 10 uses a moving means such as a movable table with wheels attached thereto, a traverse device that moves horizontally with the sample wall surface while maintaining a constant distance from the sample, and the head of the optical fiber together with the rotating part, the sample As long as it can move. A sliding volume or the like may be connected to these moving means. Thereby, a movement amount and a moving direction can be adjusted easily. With this configuration, the angular mobility of the retroreflection intensity and the surface distribution can be measured simultaneously.

このように、本発明の再帰反射性強度測定装置は、簡単な構成で、様々な条件下における再帰反射強度の測定が行える。この結果、入射方向が変化した場合の反射性能、反射光の反射分布、反射光の波長分布などを簡易に測定することができる。また、これらの構成に加え、より正確な測定を行うための補正手段などの構成を任意に付加して使用してもよい。   Thus, the retroreflective intensity measuring apparatus of the present invention can measure the retroreflective intensity under various conditions with a simple configuration. As a result, it is possible to easily measure the reflection performance when the incident direction changes, the reflection distribution of reflected light, the wavelength distribution of reflected light, and the like. In addition to these configurations, a configuration such as a correction unit for performing more accurate measurement may be arbitrarily added and used.

図1は、本発明の再帰反射性強度測定装置の概略を説明する図である。FIG. 1 is a diagram for explaining the outline of the retroreflective intensity measuring apparatus of the present invention. 図2は、本発明で用いる投受光一体型の同軸光ファイバ頭部の断面図である。FIG. 2 is a cross-sectional view of a head portion of a coaxial optical fiber integrated with light emitting / receiving used in the present invention. 図3は、本発明の再帰反射性強度測定装置において、光ファイバの頭部を回動させる状態を説明する図である。FIG. 3 is a diagram for explaining a state in which the head of the optical fiber is rotated in the retroreflective intensity measuring device of the present invention. 図4は、本発明の再帰反射性強度測定装置において、投受光一体型の光ファイバの頭部を水平に移動させる状態を説明する図である。FIG. 4 is a diagram for explaining a state in which the head of an optical fiber integrated with light emitting and receiving is moved horizontally in the retroreflective intensity measuring device of the present invention. 図5は、本発明の再帰反射性強度測定装置において、試料を水平に移動させる状態を説明する図である。FIG. 5 is a diagram for explaining a state in which the sample is moved horizontally in the retroreflective intensity measuring device of the present invention.

符号の説明Explanation of symbols

1 光源
2 受光部
3 投受光一体型の光ファイバ
4 光ファイバの頭部
5 回動部
6 電圧計
7 試料
8 投光用の光ファイバ
9 受光用の光ファイバ
10 移動手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Light-receiving part 3 Optical fiber of light projection / reception integral type 4 Head of optical fiber 5 Rotating part 6 Voltmeter 7 Sample 8 Optical fiber for light projection 9 Optical fiber for light reception 10 Moving means

Claims (3)

光源と、
受光部と、
光ファイバと、
前記光ファイバの頭部を回動させる回動部と
を備える、再帰反射性強度測定装置。
A light source;
A light receiver;
Optical fiber,
A retroreflective intensity measuring device comprising: a rotating unit that rotates the head of the optical fiber.
前記再帰反射性強度測定装置は、
前記光ファイバの頭部または試料を移動させる移動手段を備える、請求項1に記載の再帰反射性強度測定装置。
The retroreflective intensity measuring device is
The retroreflective intensity measuring apparatus according to claim 1, further comprising moving means for moving the head or sample of the optical fiber.
前記受光部は、フォトダイオード、フォトトランジスタ、または分光器である、請求項1または2に記載の再帰反射性強度測定装置。

The retroreflective intensity measuring apparatus according to claim 1, wherein the light receiving unit is a photodiode, a phototransistor, or a spectroscope.

JP2008064925A 2008-03-13 2008-03-13 Retroreflective intensity measuring device Pending JP2009222441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064925A JP2009222441A (en) 2008-03-13 2008-03-13 Retroreflective intensity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064925A JP2009222441A (en) 2008-03-13 2008-03-13 Retroreflective intensity measuring device

Publications (1)

Publication Number Publication Date
JP2009222441A true JP2009222441A (en) 2009-10-01

Family

ID=41239399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064925A Pending JP2009222441A (en) 2008-03-13 2008-03-13 Retroreflective intensity measuring device

Country Status (1)

Country Link
JP (1) JP2009222441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644950A (en) * 2016-12-30 2017-05-10 张帆 Detection device for retroreflection materials
CN108036806A (en) * 2017-12-28 2018-05-15 北京信息科技大学 A kind of angular displacement based on multi-core optical fiber and angular velocity measurement system
JP2018519523A (en) * 2015-07-01 2018-07-19 スリーエム イノベイティブ プロパティズ カンパニー Measuring device, system, method, and program
CN113916782A (en) * 2021-10-12 2022-01-11 东营广通科技有限公司 Marking contrary reverse abrasion tester

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172503A (en) * 1997-08-29 1999-03-16 Wako Denshi Kk Method and apparatus for sensing direction of rolling
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172503A (en) * 1997-08-29 1999-03-16 Wako Denshi Kk Method and apparatus for sensing direction of rolling
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013000202; 日本色彩学会誌 Vol.18  No.1, 19940501, p.82〜83, 日本色彩学会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519523A (en) * 2015-07-01 2018-07-19 スリーエム イノベイティブ プロパティズ カンパニー Measuring device, system, method, and program
CN106644950A (en) * 2016-12-30 2017-05-10 张帆 Detection device for retroreflection materials
CN108036806A (en) * 2017-12-28 2018-05-15 北京信息科技大学 A kind of angular displacement based on multi-core optical fiber and angular velocity measurement system
CN113916782A (en) * 2021-10-12 2022-01-11 东营广通科技有限公司 Marking contrary reverse abrasion tester
CN113916782B (en) * 2021-10-12 2023-10-24 东营广通科技有限公司 Reverse abrasion tester for marking

Similar Documents

Publication Publication Date Title
US10234265B2 (en) Distance measuring device and method for measuring distances
US8570502B2 (en) Scanning mirror device
CN100567892C (en) The measurement mechanism surveyor&#39;s beacon
US8520192B2 (en) Distance-measuring system
US8520198B2 (en) Goniophotometer for measuring 3D light intensity distribution of light source
JP2015212647A (en) Object detection device and sensing device
US11619491B2 (en) Retroreflectors
US10422861B2 (en) Electro-optical distance measuring instrument
WO2012036075A1 (en) Refractive index measuring device, and refractive index measuring method
JPWO2009031550A1 (en) Ranging device
JP2009222441A (en) Retroreflective intensity measuring device
JP2017110964A (en) Light wave distance-measuring device
EP2884302B1 (en) Photoelectric sensor
US20190212420A1 (en) LIDAR System Having a Movable Fiber
KR20190053747A (en) Measuring Instrument for Sizing Object at Long Distance
US11703591B2 (en) Measuring device with measurement beam homogenization
JP6839335B2 (en) Optical scanning device
US20170234674A1 (en) Multi-function spectroscopic device
WO2004029540A3 (en) Determination of the angular position of a laser beam
US10788581B2 (en) Device for optically measuring the distance from a reflective target object
KR101774782B1 (en) Displacement Sensor
KR20070015267A (en) Light displacement measuring apparatus
JP2019023650A (en) Light wave ranging device
US20100182595A1 (en) Three dimensional light measuring apparatus
JP7416647B2 (en) surveying equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A711 Notification of change in applicant

Effective date: 20120601

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20120529

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20120601

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20121214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Effective date: 20130318

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A02 Decision of refusal

Effective date: 20140610

Free format text: JAPANESE INTERMEDIATE CODE: A02