JPH0431530Y2 - - Google Patents

Info

Publication number
JPH0431530Y2
JPH0431530Y2 JP16771184U JP16771184U JPH0431530Y2 JP H0431530 Y2 JPH0431530 Y2 JP H0431530Y2 JP 16771184 U JP16771184 U JP 16771184U JP 16771184 U JP16771184 U JP 16771184U JP H0431530 Y2 JPH0431530 Y2 JP H0431530Y2
Authority
JP
Japan
Prior art keywords
crack
gauge
slit
gauges
rosette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16771184U
Other languages
Japanese (ja)
Other versions
JPS6182205U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16771184U priority Critical patent/JPH0431530Y2/ja
Publication of JPS6182205U publication Critical patent/JPS6182205U/ja
Application granted granted Critical
Publication of JPH0431530Y2 publication Critical patent/JPH0431530Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 複雑な構造物に亀裂が発生した場合にその進行
を監視し事前にその対策をとる為の資料を提供す
る亀裂監視用ひずみゲージに係る。 (従来の技術) 境界条件が不明で複雑な構造物に亀裂が発生し
た亀裂の応力を実験的に見出す方法として、第4
図に示す如く亀裂の先端を中心とする円周上に多
数の3軸ロゼツトゲージを精度よく貼り付けて応
力を実験的に求め、この数値を境界条件として与
え境界内の応力を求める方法が既に発表されてい
る(文献1参照)。 第4図aに傾斜内部亀裂片の外観形状を示し、
第4図bに亀裂の一端を中心とした円周上に配置
された3軸ロゼツトゲージの配列情況を示す(文
献2参照)。 (考案が解決しようとする問題点) 前記の方法は第4図を一覧して明かなように、
亀裂の先端を中心とする円周上に多数の3軸ロゼ
ツトゲージを精度よく貼り付けなければならない
ので、多くの時間と手間を要し、非能率的であつ
た。 (問題点を解決するための手段) 其故、中央部にスリツトを有する薄膜状基盤
に、スリツトの一端を中心とする円周上に等間隔
(不等間隔でもよい)に分散して複数枚の3軸ロ
ゼツトゲージを貼り付ける。その他、同一薄膜状
基盤上に前記中心に接し、スリツトの反対側に1
枚のクラツクゲージを貼り付けることによつてひ
ずみゲージの取付方法を改善する手段とした。 (実施例) 第1図に本考案による亀裂監視用ひずみゲージ
の構成を説明する。薄膜状基盤1はひずみゲージ
中心点4を中心とする円形の薄膜で、スリツト5
が中心より半径方向に外方に切つてある。適当な
半径Rの円周上に3軸ロゼツトゲージ2a〜2m
が配置されている。第1図では等間隔で12等分し
た場合を例示したが、3軸ロゼツトゲージの数は
任意でよい。3はクラツクゲージで中心点4に接
してスリツト5の反対側に配置してある。 個々の3軸ロゼツトゲージを一度にセツトする
にはフオトレジスト法を用いれば、更に一層効果
的である。 このひずみゲージを構造物にセツトするには次
の如くすればよい。 即ち第3図に示すように試験しようとする対象
物に発生した亀裂の先端と、ひずみゲージの中心
点4とを合せながら、対象物の亀裂の他端および
ひずみゲージのスリツトの開口側を同一方向に向
けて、瞬間接着剤等によりひずみゲージと対象物
とを接着する。 第2図には本考案のひずみゲージ(ロゼツトゲ
ージとクラツクゲージ)を対象物に取付た所を示
す。 (作用) 3軸ロゼツトゲージをスリツトの一端を中心と
した円の周上に配置して求められた応力からスリ
ツト部付近の応力を求めるには次の如くする。 第5図aにおいて、対象物にPiおよびUiの力
がかかり図の如く亀裂が生じたとする。亀裂の一
端をSの如く円または正方形で囲み周上に3軸ロ
ゼツトゲージを配置する。円周S上の3軸ロゼツ
トゲージの配置要領を第5図bにて説明する。 rは半径Rの円の境界で円周上にn個の3軸ロ
ゼツトゲージを配置する。その中p番目からp+
1番目の測定点が原点Oに対してなす角、および
p番目から、p+2番目までの測定点が原点Oに
対してなす角度を夫夫γ,γ0とし、xyを境
界に作用する表面力のx,y成分とすると、測定
点pでの表面力は {Tp}={Tx/Typlxσ+ly τxy lx τxy+ly τyp (1) ただし(1x,1y)はSの境界Γ上で外向きに引
いた法線の方向余弦である。Γ上のn個の測定点
間の任意の点での表面力Tは二次式で近似すると {i}={}={xy}=[M]{Q}……(
2) となる。ここに [M]=a1 0 a2 0 a3 0 0 a4 0 a5 0 a6 (3) {Q}T=[Txp T yp T x p+1 T y p+1 t x p+2
T y p+2] (4) a1=(1−γ/γ)0(1−2γ/γ)0 a2=4(γ/γ0)(1−γ/γ0) a3=(γ/γ0)(2γ/γ0−1) a4=(1−γ/γ0)(1−2γ/γ0) a5=4(γ/γ0)(1−γ/γ0) a6=(γ/γ0)(2γ/γ0−1) 式(4)の{Q}Tの添字Tは転置行列を示す。以上
の各測定点pの応力成分σx,σy,σxyはひずみゲ
ージにより測定される。 次に亀裂部分の応力は応力拡大係数K(モード
をK、モードをKとする。)は K K√2[Hα]{Q} ……(5) より求められるから亀裂部の応力も求められる。
ここに [Hα] は形状固有の常数を行列で表
したもので円周の上の12等分点上にひずみゲージ
を配置した場合は次の如くなる。
(Industrial Application Field) This relates to strain gauges for crack monitoring that monitor the progress of cracks in complex structures and provide materials for taking countermeasures in advance. (Prior art) As a method for experimentally finding the stress of a crack that occurs in a complex structure with unknown boundary conditions, the fourth
As shown in the figure, a method has already been published in which the stress is determined experimentally by attaching a large number of 3-axis rosette gauges with high accuracy on the circumference centered on the tip of the crack, and this value is used as a boundary condition to determine the stress within the boundary. (See Reference 1). Figure 4a shows the external shape of the inclined internal crack piece,
FIG. 4b shows the arrangement of three-axis rosette gauges arranged on the circumference around one end of the crack (see Document 2). (Problem to be solved by the invention) As is clear from the above method as shown in Figure 4,
Since a large number of 3-axis rosette gauges must be accurately pasted on the circumference around the tip of the crack, it takes a lot of time and effort, and is inefficient. (Means for solving the problem) Therefore, on a thin film base having a slit in the center, a plurality of sheets are distributed at equal intervals (irregular intervals are also acceptable) on the circumference centered at one end of the slit. Attach the 3-axis rosette gauge. In addition, on the same thin film substrate, in contact with the center and on the opposite side of the slit, there is a
By pasting two crack gauges together, the method of installing strain gauges was improved. (Example) FIG. 1 illustrates the structure of a strain gauge for crack monitoring according to the present invention. The thin film base 1 is a circular thin film centered on the strain gauge center point 4, and has a slit 5.
is cut radially outward from the center. 3-axis rosette gauge 2a to 2m on the circumference of a suitable radius R
is located. Although FIG. 1 shows an example in which the gauge is divided into 12 equal parts, the number of 3-axis rosette gauges may be arbitrary. 3 is a crack gauge, which is placed in contact with the center point 4 and on the opposite side of the slit 5. It is even more effective to use a photoresist method to set the individual three-axis rosette gauges at once. This strain gauge can be set in a structure as follows. That is, as shown in Figure 3, while aligning the tip of the crack that has occurred in the object to be tested with the center point 4 of the strain gauge, align the other end of the crack in the object and the opening side of the slit of the strain gauge. The strain gauge and the object are adhered with instant adhesive or the like in the direction of the strain gauge. Figure 2 shows where the strain gauges (rosette gauge and crack gauge) of the present invention are attached to an object. (Function) The stress near the slit portion can be determined from the stress determined by arranging a 3-axis rosette gauge on the circumference of a circle centered on one end of the slit as follows. In Fig. 5a, it is assumed that forces Pi and Ui are applied to the object and a crack occurs as shown in the figure. One end of the crack is surrounded by a circle or square like S, and a 3-axis rosette gauge is placed around the circumference. The arrangement of the three-axis rosette gauge on the circumference S will be explained with reference to FIG. 5b. r is the boundary of a circle with radius R, and n three-axis rosette gauges are arranged on the circumference. p+ among them
The angle that the first measurement point makes with the origin O, and the angles that the pth to p+2th measurement points make with the origin O are γ, γ 0 , and x and y act on the boundary. If the x and y components of the surface force are is the direction cosine of the normal drawn outward on the boundary Γ of . The surface force T at any point between n measurement points on Γ is approximated by a quadratic formula: { i }={}={ x / y }=[M] {Q}...(
2) becomes. Here, [M] = a 1 0 a 2 0 a 3 0 0 a 4 0 a 5 0 a 6 (3) {Q} T = [Txp T yp T x p+1 T y p+1 t x p+ 2
T y p+2 ] (4) a 1 = (1-γ/γ) 0 (1-2γ/γ) 0 a 2 =4 (γ/γ 0 ) (1-γ/γ 0 ) a 3 = ( γ/γ 0 ) (2γ/γ 0 −1) a 4 = (1−γ/γ 0 )(1−2γ/γ 0 ) a 5 =4(γ/γ 0 )(1−γ/γ 0 ) a 6 =(γ/γ 0 )(2γ/γ 0 −1) The subscript T of {Q} T in equation (4) indicates a transposed matrix. The stress components σ x , σ y , and σ xy at each measurement point p described above are measured by strain gauges. Next, the stress in the crack part can be found from the stress intensity factor K (where the mode is K and the mode is K) as K K√2[Hα] {Q} ...(5), so the stress in the crack part can also be found. .
Here, [Hα] is a constant constant specific to the shape expressed as a matrix, and when strain gauges are placed on 12 equally divided points on the circumference, it becomes as follows.

【表】 [Q]T=[Tx1Ty1……TxpTyp……Tx13Ty13
……(7) ただし、[Hα]Tは[Hα]の転置行列を示す12
等分されたひずみゲージの測定値を[Q]に与え
れば、(5)式によりK、Kが求められ亀裂部分
の応力拡大係数が求められる。また、クラツクゲ
ージ3は亀裂が成長するにつれて順次グリツドが
切断されて信号が出力されるため、これを計測す
れば、経年的な亀裂を計測できる。 3 考案の効果 (1) ひずみゲージの中心と対象物の亀裂の先端と
を合せながら、開口方向を合せて接着するだけ
で、個々の3軸ロゼツトゲージを定位置に精度
よく、簡単に貼り付可能である。 クラツクゲージの出力を監視所に配線すれば
亀裂の成長を監視できる。また、ロゼツトゲー
ジから得られる亀裂成長予測と、クラツクゲー
ジから得られる現実の亀裂成長の対比により計
算値の確認が出来る。 (2) 基盤上にフオトレジスト方式により、ロゼツ
トゲージおよびクラツクゲージを形成すれば一
層効果的な生産性が得られ、ひずみゲージがひ
ずみに追随し易い優れたひずみゲージが得られ
る。 (3) 開口亀裂の直上、直下に3軸ロゼツトゲージ
を設けた。ひずみゲージの開口亀裂と対象物の
亀裂と位置が完全に一致せずに、ひずみゲージ
開口亀裂部のゲージが対象物の単軸応力部から
ずれた位置にセツトされても3軸の応力が測定
できる。
[Table] [Q] T = [T x1 T y1 ...T xp T yp ...T x13 T y13 ]
...(7) However, [Hα] T indicates the transposed matrix of [Hα]12
If the measured values of the equally divided strain gauges are given to [Q], K and K are determined by equation (5), and the stress intensity factor of the cracked portion is determined. Further, since the crack gauge 3 outputs a signal by sequentially cutting the grids as the crack grows, by measuring this, it is possible to measure cracks over time. 3. Effects of the invention (1) Individual 3-axis rosette gauges can be easily and accurately placed in the same position by simply aligning the center of the strain gauge with the tip of the crack in the object, aligning the opening direction, and gluing. It is. The growth of cracks can be monitored by wiring the crack gauge output to a monitoring station. In addition, the calculated values can be confirmed by comparing the predicted crack growth obtained from the rosette gauge with the actual crack growth obtained from the crack gauge. (2) If rosette gauges and crack gauges are formed on a substrate using a photoresist method, more effective productivity can be obtained, and an excellent strain gauge that can easily follow strain can be obtained. (3) Three-axis rosette gauges were installed directly above and below the opening crack. Triaxial stress can be measured even if the opening crack of the strain gauge and the crack of the object do not completely match, and the gauge of the opening crack of the strain gauge is set at a position shifted from the uniaxial stress part of the object. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のひずみゲージ図、第2図は本
考案のひずみゲージ(ロゼツトゲートとクラツク
ゲージ)を対象物に取付た図、第3図は本考案の
ひずみゲージを(ロゼツトゲージのみ)対象物に
取付た図、第4図は従来の試験片とひずみゲージ
の配置図、第5図は亀裂パネルと符号の説明図で
ある。 符号の説明、1……薄膜状基盤、2a,2b,
2c……2m,……3軸ロゼツトゲージ、3……
クラツクゲージ、4……ゲージ中心点、5……ス
リツト。(1)北川英夫、石川晴雄:日本機械学会論
文集44巻383号p.2209、(2)服部敏夫著:工業計測
器p.420。
Figure 1 is a diagram of the strain gauge of the present invention, Figure 2 is a diagram of the strain gauge of the present invention (rosette gate and crack gauge) attached to an object, and Figure 3 is a diagram of the strain gauge of the present invention (rosette gauge only) attached to an object. The installed view, Figure 4 is a layout diagram of conventional test pieces and strain gauges, and Figure 5 is an explanatory diagram of crack panels and symbols. Explanation of symbols, 1...Thin film base, 2a, 2b,
2c...2m,...3-axis rosette gauge, 3...
Crack gauge, 4... Gauge center point, 5... Slit. (1) Hideo Kitagawa, Haruo Ishikawa: Transactions of the Japan Society of Mechanical Engineers Vol. 44, No. 383, p. 2209, (2) Toshio Hattori: Industrial Measuring Instruments, p. 420.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心にスリツト端を有する薄膜状円盤と、該ス
リツトの末端を中心とする薄膜状円盤の円周上に
分散して貼り付けられた複数枚の3軸ロゼツトゲ
ージと中心に接してスリツトの反対側に設置した
クラツクゲージとより構成されることを特徴とす
る亀裂監視用ひずみゲージ。
A thin film disk with a slit end in the center, and a plurality of triaxial rosette gauges distributed and attached on the circumference of the thin film disk with the end of the slit as the center, in contact with the center and on the opposite side of the slit. A strain gauge for crack monitoring characterized by being composed of an installed crack gauge.
JP16771184U 1984-11-02 1984-11-02 Expired JPH0431530Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16771184U JPH0431530Y2 (en) 1984-11-02 1984-11-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16771184U JPH0431530Y2 (en) 1984-11-02 1984-11-02

Publications (2)

Publication Number Publication Date
JPS6182205U JPS6182205U (en) 1986-05-31
JPH0431530Y2 true JPH0431530Y2 (en) 1992-07-29

Family

ID=30725500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16771184U Expired JPH0431530Y2 (en) 1984-11-02 1984-11-02

Country Status (1)

Country Link
JP (1) JPH0431530Y2 (en)

Also Published As

Publication number Publication date
JPS6182205U (en) 1986-05-31

Similar Documents

Publication Publication Date Title
US4472883A (en) Structural movement measuring device
CN107300628A (en) It is a kind of to test the method that equipment tests many specification accelerometers with special accelerometer
US4164874A (en) Flaw growth correlator
CN111238711A (en) Rotor axial force testing device and testing method
CN109781328B (en) Six-dimensional force sensor with eight-beam structure
JPH07117470B2 (en) Force detector
JPH0431530Y2 (en)
CN103091170B (en) Method for testing biaxial strength of thermal barrier coating
JPH0469745B2 (en)
JP3435834B2 (en) Target jig for structural measurement
JPS6324103A (en) Extremely small strain gauge for measuring coefficient of stress expansion
CN114136556B (en) Spacecraft composite structure leakage positioning method based on wave velocity correction
JPS6388417A (en) Force measuring apparatus
WO2023216353A1 (en) Bolt shear force circumferential distribution measurement method based on array film rotation calibration
JP3433209B2 (en) Method and apparatus for measuring stress in painted structures
CN220525553U (en) Fatigue test device for large-size wing root connection structure of civil aircraft
JPH0622192Y2 (en) Triaxial stress detector
JPS62289710A (en) Measuring method for two-dimensional freely curved surface
JP2777329B2 (en) Viscoelasticity measurement method
JPS598182Y2 (en) load cell
Yu Free flexural vibration of rectangular plates having single cracks
SU586319A1 (en) Method of manufacturing foil-type resistance strain-gauge
JPS6312940Y2 (en)
JPS6375533A (en) Force detector
CN113720922A (en) Ultrasonic detection method and system for bending stress of post porcelain insulator