JPH04314819A - Method for controlling decarbonization in circulating flow type vacuum degassing apparatus - Google Patents

Method for controlling decarbonization in circulating flow type vacuum degassing apparatus

Info

Publication number
JPH04314819A
JPH04314819A JP7990291A JP7990291A JPH04314819A JP H04314819 A JPH04314819 A JP H04314819A JP 7990291 A JP7990291 A JP 7990291A JP 7990291 A JP7990291 A JP 7990291A JP H04314819 A JPH04314819 A JP H04314819A
Authority
JP
Japan
Prior art keywords
molten steel
inert gas
flow rate
vacuum
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7990291A
Other languages
Japanese (ja)
Inventor
Kazuhiko Narita
和彦 成田
Hidefumi Tachibana
橘 秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7990291A priority Critical patent/JPH04314819A/en
Publication of JPH04314819A publication Critical patent/JPH04314819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide the method, which can sufficiently cope with variations of various conditions in the actual operation. CONSTITUTION:Circulating flow rate of molten steel is obtd. from blowing rate of inert gas measured with an inert gas flowmeter 7, pressure in an RH vacuum vessel 1 measured with a vacuum pressure gage 8, molten steel temp. measured by a thermometer 9 and inner diameters of submerged tubes 4 and 5 through an operation processor (Ca1), and on the other hand, carbon concn. in the molten steel is obtd. from an exhaust gas analyzer 11, and by controlling the blowing rate of inert gas through an inert gas blowing nozzle 6 based on the circulating rate from start of reducing pressure to return-back pressure in the vacuum vessel 1 and the carbon concn. in the molten steel, the carbon concn. in the molten steel 3 is controlled in the narrow range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、環流式真空脱ガス装置
の脱炭制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decarburization control method for a recirculation vacuum degassing apparatus.

【0002】0002

【従来の技術】近年、鋼の高級化ならびにその需要の増
加に伴い、精錬技術の一つである真空脱ガス精錬法、特
にRH式真空脱ガス精錬法が多く実施されている。この
RH方法は、真空槽の底部に垂下して設けた2本の上昇
管および下降管を取鍋内の溶鋼中に浸漬し、真空ポンプ
を作動させて溶鋼を真空槽内に吸い上げ、上昇管から不
活性ガス(たとえばAr)を吹き込むことにより溶鋼の
循環流を発生させ、下降管から取鍋内に戻る間に、真空
槽内で脱ガスを行うものである。このRH法においては
、溶鋼の環流を円滑に行うことが必要条件であり、操業
上、溶鋼の均一混合時間や攪拌状態を知るために、溶鋼
の環流量を正確に把握することが重要である。
BACKGROUND OF THE INVENTION In recent years, with the increasing quality of steel and the increasing demand for it, the vacuum degassing refining method, which is one of the refining techniques, particularly the RH vacuum degassing refining method, has been widely practiced. This RH method involves immersing two rising pipes and a downcomer pipe hanging down at the bottom of a vacuum chamber into molten steel in a ladle, operating a vacuum pump to suck up the molten steel into the vacuum tank, and then A circulating flow of molten steel is generated by blowing an inert gas (for example, Ar) into the molten steel, and degassing is performed in a vacuum chamber while the molten steel returns from the downcomer pipe to the ladle. In this RH method, smooth reflux of molten steel is a necessary condition, and in order to know the uniform mixing time and stirring state of molten steel during operation, it is important to accurately grasp the molten steel reflux flow rate. .

【0003】環流量を表す式としては、従来より種々の
提案がなされており、たとえば「鉄と鋼」誌第73巻第
4号S176ページには、(1)式が実験より求められ
ている。   W=11.4{G0 Du 4 ln(P2 /P
1 )}0.33  ……(1)ただし、 W:環流量(t/min )        G0 :
環流Arガス流量(Nl/min) Du :上昇管内径(m)        P1 :真
空槽内圧力(torr) P2 :吹き込み点の圧力(torr)一方、溶鋼の環
流量測定方法として、たとえば特開昭58−16773
2号公報のように、環流する溶鋼中に非金属介在物を混
在させておき、溶鋼の表面の流れ方向の複数点における
放射光量を一定時間にわたって測定し、溶鋼速度を求め
それより環流量を計算する方法が提案されている。
[0003] Various proposals have been made to express the recirculation flow rate. For example, in "Tetsu to Hagane" magazine, Vol. 73, No. 4, page S176, formula (1) has been obtained from experiments. . W=11.4{G0 Du 4 ln(P2 /P
1)}0.33...(1) However, W: Circulation flow rate (t/min) G0:
Circulating Ar gas flow rate (Nl/min) Du: Rising pipe inner diameter (m) P1: Vacuum chamber pressure (torr) P2: Pressure at the injection point (torr) On the other hand, as a method for measuring the circulating flow rate of molten steel, for example, JP-A-58 -16773
As in Publication No. 2, nonmetallic inclusions are mixed in the circulating molten steel, and the amount of emitted light at multiple points on the surface of the molten steel in the flow direction is measured over a certain period of time, and the molten steel velocity is determined and the circulating amount is calculated from that. A calculation method has been proposed.

【0004】0004

【発明が解決しようとする課題】ところで、最近、深絞
り性・張り出し性等の加工性向上のため、炭素濃度を極
力低減した極低炭素鋼や加工性向上と処理時間等の短縮
を狙った中低炭素鋼の溶製比率が増大している。また、
成分に対する規格も年々厳しくなっており、溶鋼中の成
分を高精度で推定できる方法の確立が望まれている。
[Problem to be solved by the invention] Recently, in order to improve workability such as deep drawability and stretchability, ultra-low carbon steels with as low carbon concentration as possible and ultra-low carbon steels that aim to improve workability and shorten processing time, etc. have been developed. The proportion of medium- and low-carbon steel produced is increasing. Also,
The standards for ingredients are becoming stricter year by year, and it is desired to establish a method that can estimate the ingredients in molten steel with high accuracy.

【0005】溶鋼成分の均一化は環流量と強い相関があ
り、溶鋼成分の狭幅推定を実施するには全ての状態での
攪拌状態(環流量)を把握する必要がある。特に中低炭
素鋼においては、環流が定常状態到達前にすなわちまだ
充分に攪拌されていない状態で、炭素濃度が規格に到達
してしまう。
[0005] The uniformity of the molten steel composition has a strong correlation with the recirculation flow rate, and in order to narrowly estimate the molten steel composition, it is necessary to grasp the stirring state (recirculation flow rate) in all states. Particularly in the case of medium-low carbon steel, the carbon concentration reaches the standard before the reflux reaches a steady state, that is, before it is sufficiently stirred.

【0006】しかしながら、上記(1)式や特開昭58
−167732号公報による推定法においては、定常状
態あるいは相当時間遅れのある環流量しか把握できない
。また、実際の操業では、長時間の操業につれて耐火物
の侵食による浸漬管内径の拡大や変形、付着物などによ
る狭小化などの様々な要因により環流量を正確に把握す
ることは困難である。
However, the above formula (1) and the
In the estimation method according to Publication No. 167732, only the recirculation amount can be determined in a steady state or with a considerable time delay. Furthermore, in actual operation, it is difficult to accurately determine the recirculation flow rate due to various factors such as expansion and deformation of the inner diameter of the immersion pipe due to erosion of the refractory material and narrowing due to deposits as the operation continues for a long time.

【0007】したがって本発明の主たる目的は、上記欠
点を解消し、実操業での諸条件の変化に対して十分に対
応できる環流式真空脱ガス装置の脱炭制御方法を提供す
ることにある。
[0007] Therefore, the main object of the present invention is to provide a decarburization control method for a recirculation type vacuum degassing apparatus which eliminates the above-mentioned drawbacks and can sufficiently cope with changes in various conditions during actual operation.

【0008】[0008]

【課題を解決するための手段】上記課題は、溶鋼を不活
性ガスの吹き込みにより上昇管を通して真空槽内に導入
し下降管から戻すことにより環流させ、その間に真空条
件下において脱ガスを行う環流式真空脱ガスに際し、不
活性ガスの吹き込み量と真空条件と溶鋼温度と浸漬管内
径とに基づき溶鋼金属の環流量を求め、一方、排ガス分
析装置より溶鋼中の炭素濃度を求め、真空槽減圧開始か
ら復圧に至るまでの環流量と溶鋼中炭素濃度を基に、不
活性ガスの吹き込み量を制御することで解決できる。
[Means for Solving the Problems] The above object is a reflux method in which molten steel is introduced into a vacuum chamber through a riser pipe by blowing inert gas and returned from a downcomer pipe to reflux, and degassing is performed under vacuum conditions during this time. When performing vacuum degassing, the amount of molten metal recirculated is determined based on the amount of inert gas blown in, the vacuum conditions, the molten steel temperature, and the inner diameter of the immersion tube.On the other hand, the carbon concentration in the molten steel is determined using an exhaust gas analyzer, and the vacuum chamber is depressurized. This problem can be solved by controlling the amount of inert gas blown based on the recirculation flow rate from the start to the return pressure and the carbon concentration in the molten steel.

【0009】[0009]

【作用】本発明によれば、処理前に測定された浸漬管内
径とオンラインにて測定された環流用不活性ガスの流量
、真空槽内部の圧力および溶鋼温度を用いて溶鋼の環流
量を測定し、一方、排ガス分析装置にてオンラインにて
測定された値を用いて溶鋼の炭素濃度を推定し、過渡状
態から定常状態に至るまで全ての状態において環流量を
制御することにより、溶鋼中の成分を狭幅で推定可能に
するものである。
[Operation] According to the present invention, the reflux flow rate of molten steel is measured using the inner diameter of the immersion pipe measured before treatment, the flow rate of the reflux inert gas measured online, the pressure inside the vacuum chamber, and the molten steel temperature. On the other hand, by estimating the carbon concentration of molten steel using the value measured online by an exhaust gas analyzer and controlling the recirculation flow rate in all states from transient to steady state, the carbon concentration in molten steel can be estimated. This allows the components to be estimated within a narrow range.

【0010】0010

【実施例】以下、本発明を図面に示す実施例によりさら
に具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in more detail below with reference to embodiments shown in the drawings.

【0011】図1は本発明法を実施するための装置構成
例を示す図で、1はRH真空槽、2は取鍋、3は溶鋼、
4は上昇管、5は下降管、6は不活性ガス吹き込みノズ
ル、7は不活性ガス流量計、8は真空圧力計、9は温度
計、10は排気管、11は排ガス分析装置、Calは演
算処理装置、Arは不活性ガス源をそれぞれ示す。この
構造は公知であるので、詳述しない。
FIG. 1 is a diagram showing an example of the configuration of an apparatus for carrying out the method of the present invention, in which 1 is an RH vacuum chamber, 2 is a ladle, 3 is a molten steel,
4 is a rising pipe, 5 is a descending pipe, 6 is an inert gas blowing nozzle, 7 is an inert gas flow meter, 8 is a vacuum pressure gauge, 9 is a thermometer, 10 is an exhaust pipe, 11 is an exhaust gas analyzer, Cal is The arithmetic processing unit and Ar indicate an inert gas source, respectively. This structure is well known and will not be described in detail.

【0012】上記の装置により、まず溶鋼環流量推定方
法を説明すると、不活性ガス源から吹き込まれた不活性
ガス(この場合Arとする)の速度は、(2)式により
算出できる。
First, a method for estimating the circulating flow rate of molten steel using the above-mentioned apparatus will be explained.The velocity of the inert gas (argon in this case) blown from the inert gas source can be calculated using equation (2).

【0013】[0013]

【数1】[Math 1]

【0014】ただし、 ug :気泡速度(m/sec)          
  ust:溶鋼速度(m/sec) ρg :気泡密度(kg/m3)          
  ρst:溶鋼密度(kg/m3) g:重力加速度(m/sec2)          
  C:抗力係数s:断面積(m2)        
            vg :気泡体積(m3) ただし、気泡体積vg はオンラインにて測定される溶
鋼温度Tと真空槽内圧力P2 を用いて(3)式のよう
に表され、断面積sは気泡体積を用いて(4)式のごと
く表すことができる。 vg =f1 (T,P2 )  ……(3)s  =
f2 (vg )  ……(4)(2)式で算出した気
泡速度ug とオンラインにて測定される不活性ガス流
量G0 (Nm3/min)より、上昇管内に占める気
泡の体積Vg (m3)および上昇管内の溶鋼体積Vs
t(m3)が(5), (6)式より算出できる。 Vg =f3 (ug ,vg ,G0)  ……(5
[0014] However, ug: bubble velocity (m/sec)
ust: Molten steel speed (m/sec) ρg: Bubble density (kg/m3)
ρst: Molten steel density (kg/m3) g: Gravitational acceleration (m/sec2)
C: drag coefficient s: cross-sectional area (m2)
vg: Bubble volume (m3) However, the bubble volume vg is expressed as in equation (3) using the molten steel temperature T measured online and the pressure inside the vacuum chamber P2, and the cross-sectional area s is expressed using the bubble volume. It can be expressed as in equation (4). vg = f1 (T, P2) ... (3) s =
f2 (vg) ... (4) From the bubble velocity ug calculated by equation (2) and the inert gas flow rate G0 (Nm3/min) measured online, the volume of the bubbles occupying the riser pipe Vg (m3) and Molten steel volume in the riser pipe Vs
t(m3) can be calculated from equations (5) and (6). Vg = f3 (ug, vg, G0) ... (5
)

【0015】[0015]

【数2】[Math 2]

【0016】ただし、 Du :上昇管内径(m)            h
:上昇管高さ(m) 溶鋼体積、気泡の抗力に対する反作用、圧力差等より溶
鋼の速度ustは、
[0016] However, Du: Inner diameter of rising pipe (m) h
: Height of riser pipe (m) From the molten steel volume, reaction to bubble drag, pressure difference, etc., the molten steel velocity ust is:

【0017】[0017]

【数3】[Math 3]

【0018】ただし、 S:上昇管断面積(m2)             
   p:圧力(Pa) x:不活性ガス吹き込み点からの距離(m)Dw :上
昇管壁面との摩擦力(N) (7)式より算出できる。また、摩擦力Dw は、Dw
 =f4 (ust,Du ,ρst,ν)  ……(
8)ただし、 ν:動粘性係数(m2/sec) (8)式より導出される。
[0018] However, S: riser pipe cross-sectional area (m2)
p: Pressure (Pa) x: Distance from the inert gas injection point (m) Dw: Frictional force with the riser pipe wall (N) It can be calculated from equation (7). Also, the frictional force Dw is Dw
= f4 (ust, Du, ρst, ν) ... (
8) However, ν: Kinematic viscosity coefficient (m2/sec) Derived from equation (8).

【0019】そして、(2),(7)式より、気泡速度
および溶鋼速度を求め、
Then, the bubble velocity and molten steel velocity are determined from equations (2) and (7),

【0020】[0020]

【数4】[Math 4]

【0021】他方、(9)式より環流量Q(m3/se
c)を算出する。
On the other hand, from equation (9), the recirculation amount Q (m3/se
c) Calculate.

【0022】以上、(2),(7)式の2本の微分方程
式とこれに付随する7本の式を解くことにより、RH式
真空脱ガスの処理開始から終了まで全ての状態で溶鋼の
環流量を求めることができる。
As described above, by solving the two differential equations (2) and (7) and the seven accompanying equations, the molten steel can be determined in all conditions from the start to the end of the RH vacuum degassing process. The amount of reflux can be determined.

【0023】一方、排ガス分析装置より、排ガス中のC
O濃度、CO2 濃度と排ガス流量FGAS (kg/
sec)をオンラインにて測定することにより脱炭量と
現在の炭素濃度を(10),(11)式より求める。
On the other hand, the exhaust gas analyzer shows that C in the exhaust gas is
O concentration, CO2 concentration and exhaust gas flow rate FGAS (kg/
sec) on-line, and the decarburization amount and current carbon concentration are determined from equations (10) and (11).

【0024】[0024]

【数5】[Math 5]

【0025】 CL =CL 0 −ΔCOUT /VρST  ……
(11)一般に脱炭反応は一次反応の形式で進行し、取
鍋内と真空槽内の鋼中炭素に関する物質収支を求め、初
期条件を与えると(12),(13)式の関係が得られ
る。 CL =CL 0 exp(−Kt)  ……(12)
CL=CL0−ΔCOUT/VρST...
(11) In general, the decarburization reaction proceeds in the form of a first-order reaction, and if the mass balance of carbon in the steel in the ladle and vacuum chamber is determined and the initial conditions are given, the relationships in equations (12) and (13) can be obtained. It will be done. CL = CL 0 exp (-Kt) ... (12)

【0026】[0026]

【数6】[Math 6]

【0027】ただし、 CL 0 :初期炭素濃度(%) K:脱炭反応速度定数(l/sec) Q’:溶鋼環流量(m3/sec) ak:脱炭反応の容量係数(m3/sec)(11),
(12),(13)式より見掛け上の脱炭反応速度定数
が求まる。また、容量係数は鋼中炭素濃度の応じて変化
することが判っており、(14)式の形式で表現できる
。 ak=f(CL )  ……(14) 以上より、見掛け上の溶鋼環流量Q’と推定溶鋼環流量
Qより吹き込み不活性ガスを調整することにより、処理
開始から終了まで全ての状態において最適な溶鋼環流量
を得ることが可能となる。
[0027] However, CL0: Initial carbon concentration (%) K: Decarburization reaction rate constant (l/sec) Q': Molten steel circulation flow rate (m3/sec) ak: Capacity coefficient of decarburization reaction (m3/sec) (11),
The apparent decarburization reaction rate constant can be found from equations (12) and (13). It is also known that the capacity coefficient changes depending on the carbon concentration in steel, and can be expressed in the form of equation (14). ak=f(CL)...(14) From the above, by adjusting the blown inert gas based on the apparent molten steel circulation flow rate Q' and the estimated molten steel circulation flow rate Q, the optimum value can be achieved in all conditions from the start of processing to the end. It becomes possible to obtain the molten steel circulation flow rate.

【0028】〔実施例〕図2は298(ton)の取鍋
内溶鋼をRH式真空脱ガス装置(浸漬管内径が75(c
m))で30分間処理したときの、環流量と吹き込み不
活性ガス流量および真空槽内圧力の関係を示している。 また、表1では実機の操業条件において(1)式と(9
)式で求めた環流量および実測値を比較したものである
。 ただし、(1)式が定常状態のみしか算出できないため
本発明における環流量も定常状態の値を記してある。
[Example] Figure 2 shows 298 (ton) of molten steel in a ladle in an RH type vacuum degassing device (with an inner diameter of immersion tube of 75 (c)).
It shows the relationship between the reflux flow rate, the flow rate of the blown inert gas, and the pressure inside the vacuum chamber when treated for 30 minutes under m)). Table 1 also shows equation (1) and (9) under the operating conditions of the actual machine.
) is a comparison of the reflux amount calculated using the formula and the actual measured value. However, since equation (1) can only calculate the steady state, the recirculation amount in the present invention is also shown as the steady state value.

【0029】[0029]

【表1】[Table 1]

【0030】表1に示すように、本発明によれば、定常
状態における環流量値は実測値とほぼ等しく精度よく推
定できた。また、本発明においては、定常状態到達前に
おいても調整可能であり従来法と比較して制御性の高い
ことが判る。
[0030] As shown in Table 1, according to the present invention, the recirculation flow rate value in a steady state could be estimated with high accuracy and almost equal to the actually measured value. Furthermore, in the present invention, adjustment is possible even before the steady state is reached, and it can be seen that the controllability is higher than that of the conventional method.

【0031】[0031]

【発明の効果】以上のように本発明によれば、RH処理
開始から終了まで全ての状態において環流量を把握し制
御することができるので、溶鋼成分の高精度推定化に寄
与するとともに、成分推定の向上に伴い真空処理時間の
短縮、各種処理剤(昇熱材、冷材)の適正化等の効果を
得られる。
As described above, according to the present invention, it is possible to grasp and control the recirculation amount in all conditions from the start to the end of RH treatment, which contributes to highly accurate estimation of molten steel components and improves composition. With improved estimation, effects such as shortening vacuum processing time and optimizing various processing agents (heating materials, cooling materials) can be obtained.

【0032】また、環流量の極度の上昇や低下より、真
空槽を補修すべき時間を的確に知ることができる。
[0032] Furthermore, it is possible to accurately determine the time at which the vacuum chamber should be repaired from an extreme increase or decrease in the recirculation amount.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明法の実施態様を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention.

【図2】不活性ガス流量と環流量の関係を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing the relationship between the inert gas flow rate and the recirculation amount.

【符号の説明】[Explanation of symbols]

1      RH真空槽 2      取鍋 3      溶鋼 4      上昇管 5      下降管 6      不活性ガス吹き込みノズル7     
 不活性ガス流量計 8      真空圧力計 9      温度計 10    排気管 11    排ガス分析装置 Cal  演算処理装置 Ar    不活性ガス源
1 RH vacuum tank 2 ladle 3 molten steel 4 rising pipe 5 descending pipe 6 inert gas blowing nozzle 7
Inert gas flow meter 8 Vacuum pressure gauge 9 Thermometer 10 Exhaust pipe 11 Exhaust gas analyzer Cal Arithmetic processing unit Ar Inert gas source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  溶鋼を不活性ガスの吹き込みにより上
昇管を通して真空槽内に導入し下降管から戻すことによ
り環流させ、その間に真空条件下において脱ガスを行う
環流式真空脱ガスに際し、不活性ガスの吹き込み量と真
空条件と溶鋼温度と浸漬管内径とに基づき溶鋼の環流量
を求め、一方、排ガス分析装置より溶鋼中の炭素濃度を
求め、真空槽の減圧開始から復圧に至るまでの環流量と
溶鋼中の炭素濃度を基に、不活性ガスの吹き込み量を制
御することを特徴とする環流式真空脱ガス装置の脱炭制
御方法。
Claim 1: In reflux type vacuum degassing, in which molten steel is introduced into a vacuum chamber through a riser pipe by blowing inert gas and returned from a downcomer pipe, and degassed under vacuum conditions during the reflux type vacuum degassing, the molten steel is The recirculation flow rate of molten steel is determined based on the gas injection amount, vacuum conditions, molten steel temperature, and immersion tube inner diameter.On the other hand, the carbon concentration in the molten steel is determined using an exhaust gas analyzer, and the flow rate from the start of depressurization in the vacuum chamber to the return to pressure is calculated using an exhaust gas analyzer. A decarburization control method for a recirculation type vacuum degassing apparatus, characterized by controlling the amount of inert gas blown based on the recirculation flow rate and the carbon concentration in molten steel.
JP7990291A 1991-04-12 1991-04-12 Method for controlling decarbonization in circulating flow type vacuum degassing apparatus Pending JPH04314819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7990291A JPH04314819A (en) 1991-04-12 1991-04-12 Method for controlling decarbonization in circulating flow type vacuum degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7990291A JPH04314819A (en) 1991-04-12 1991-04-12 Method for controlling decarbonization in circulating flow type vacuum degassing apparatus

Publications (1)

Publication Number Publication Date
JPH04314819A true JPH04314819A (en) 1992-11-06

Family

ID=13703217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7990291A Pending JPH04314819A (en) 1991-04-12 1991-04-12 Method for controlling decarbonization in circulating flow type vacuum degassing apparatus

Country Status (1)

Country Link
JP (1) JPH04314819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645318A (en) * 2012-04-25 2012-08-22 东北大学 RH-MFB (Rockwell Hardness-Medial Forebrain Bundle) metallurgy reaction simulation test device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645318A (en) * 2012-04-25 2012-08-22 东北大学 RH-MFB (Rockwell Hardness-Medial Forebrain Bundle) metallurgy reaction simulation test device

Similar Documents

Publication Publication Date Title
Irons et al. Bubble formation at nozzles in pig iron
JP5300860B2 (en) Method for producing ultra-low carbon ferritic stainless steel
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JPH04314819A (en) Method for controlling decarbonization in circulating flow type vacuum degassing apparatus
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JP2009144244A (en) Refining method of high-chromium ferritic stainless steel for reducing carbon
JP2004156119A (en) Process for controlling decarbonizing treatment time in vacuum decarbonization method of molten steel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JPH01242711A (en) Method for controlling converter blowing
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
TWI764778B (en) The refining method of molten steel
JP2001158911A (en) Method for decarburizing molten steel under vacuum
JP6379933B2 (en) Alloy manufacturing method
RU2583216C1 (en) Procedure for melting steel in converter
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
JP3126374B2 (en) Vacuum decarburization control method for molten steel
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
JP3987149B2 (en) Method and apparatus for refining chromium-containing steel
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
US4619694A (en) Method of refining steel and apparatus
JP2010174320A (en) Method for controlling carbon content in molten steel in rh-degassing refining
JPH06306443A (en) Method for melting extra low carbon steel by vacuum refining