JPH04313695A - Temperature control method for cooling water on outlet of cooling tower - Google Patents

Temperature control method for cooling water on outlet of cooling tower

Info

Publication number
JPH04313695A
JPH04313695A JP10484291A JP10484291A JPH04313695A JP H04313695 A JPH04313695 A JP H04313695A JP 10484291 A JP10484291 A JP 10484291A JP 10484291 A JP10484291 A JP 10484291A JP H04313695 A JPH04313695 A JP H04313695A
Authority
JP
Japan
Prior art keywords
cooling
fan
cooling water
cooling tower
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10484291A
Other languages
Japanese (ja)
Other versions
JP2565803B2 (en
Inventor
Akihiko Ogawa
彰彦 小川
Yujiro Fujisaki
悠二郎 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP3104842A priority Critical patent/JP2565803B2/en
Publication of JPH04313695A publication Critical patent/JPH04313695A/en
Application granted granted Critical
Publication of JP2565803B2 publication Critical patent/JP2565803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to save energy, reduce noise, extend service life and carry out unmanned control with enhanced response in controlling the operating conditions of a plurality of cooling towers in response with load fluctuations. CONSTITUTION:Out of the squares of a lattice-shaped region diagram where the number of cooling tower is taken as an abscissa, while a fan mode in a plurality of stages which has as an element the rotary speed of a cooling fan is taken as an ordinate, portions under an operating status is defined as a block. A total cooling capacity is controlled by increasing and decreasing the number of blocks.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、地域冷暖房熱源プラ
ントなどのように、複数の冷凍機(以下、RFと称す)
と冷却ファンを有する冷却塔(以下、CTと称す)を備
えたプラント等に適用されるもので、冷却塔の出口側冷
却水温度を負荷変動にかかわらず一定に制御する冷却塔
の出口側冷却水温度制御方法に関するものである。
[Industrial Application Field] This invention is applicable to a plurality of refrigerators (hereinafter referred to as RF), such as a district heating and cooling heat source plant.
This is applied to plants equipped with a cooling tower (hereinafter referred to as CT) that has a cooling fan and a cooling fan. This invention relates to a water temperature control method.

【0002】0002

【従来の技術】地域冷暖房熱源プラント等においては、
年間、日間の負荷変動が大きく、CT総能力に対して部
分負荷運転される時間が長いため、部分負荷時において
省エネルギーの面などを考慮した適切な運転が重要であ
る。このようなプラントにおけるRFとCTとの間の配
管方式には、個別方式と共通方式とが知られているが、
省エネルギー性や冷却水温度のキメ細かい制御性などの
点からみて、CTの台数制御が可能な後者の共通方式の
方が優れていることは周知である。
[Prior art] In district heating and cooling heat source plants, etc.
Annual and daily load fluctuations are large, and the time for partial load operation is long relative to the CT's total capacity, so it is important to operate appropriately in consideration of energy conservation during partial load. There are two known piping systems between RF and CT in such plants: individual systems and common systems.
It is well known that the latter common method, which allows control of the number of CTs, is superior in terms of energy savings and fine controllability of cooling water temperature.

【0003】ところで、CTの出口側冷却水温度の自動
制御法として良く使用されるものには、(1)冷却ファ
ン能力の変更、具体的には、■冷却ファンのオン・オフ
制御、■冷却ファンの回転数制御(ポールチェンジ式、
インバータ式など)、■冷却ファンのオン・オフ時間の
可変制御、■冷却ファンの運転台数の制御、(2)CT
の入口側冷却水のバイパス流量の変更、(3)CTの運
転台数の変更、などがあり、従来から実際に採用されて
いる冷却水温度の制御事例の多くは、上記(1)の■と
(2)との組合わせや、特開昭58−37497号公報
などに開示されているように上記(1)の■と(2)と
の組合わせといったように、(1)の冷却ファン能力の
変更と(2)のCTの入口側冷却水のバイパス流量の変
更とを組合わせたものである。また、一部に上記(3)
のCT運転台数の変更により冷却能力を制御するように
なしたものも知られている。
[0003] By the way, methods often used to automatically control the cooling water temperature on the exit side of CT include (1) changing the cooling fan capacity, specifically, ■ cooling fan on/off control, ■ cooling Fan rotation speed control (pole change type,
(inverter type, etc.), ■Variable control of cooling fan on/off time, ■Control of number of operating cooling fans, (2) CT
(3) Changing the number of CTs in operation, etc. Most of the cooling water temperature control cases that have been actually adopted in the past are based on (1) above. The cooling fan capacity of (1), such as the combination with (2), or the combination of (1) (1) and (2) as disclosed in Japanese Patent Application Laid-open No. 58-37497, etc. This is a combination of the change in (2) and the change in the bypass flow rate of the cooling water on the inlet side of the CT (2). In addition, some of the above (3)
It is also known that the cooling capacity is controlled by changing the number of CTs in operation.

【0004】0004

【発明が解決しようとする課題】ところが、上記した制
御事例のうち、(1)と(2)の組合わせのものは、C
Tの運転台数の変更がなく、大きな負荷変動に対する応
答性に欠けるばかりでなく、省エネルギー性などの運転
経済の面で好ましくない。また、(3)のものでは、冷
却水流量の許容範囲との関係を考慮しながら、通水台数
を決定しなければならないが、その具体的な決め方につ
いては何ら開示されておらず、冷却水の制御性能および
省エネルギー性のいずれの面においても十分な結果が得
られないものであった。
[Problem to be solved by the invention] However, among the control cases described above, the combination of (1) and (2) is
There is no change in the number of Ts in operation, which not only lacks responsiveness to large load fluctuations, but is also unfavorable in terms of operational economy such as energy conservation. In addition, in (3), the number of units through which water flows must be determined while considering the relationship with the permissible range of cooling water flow rate, but there is no disclosure of the specific method for determining this, and the number of cooling water However, satisfactory results were not obtained in terms of both control performance and energy saving.

【0005】この発明は上記実情に鑑みてなされたもの
で、自動化が容易でありながら、省エネルギー化、低騒
音化および機械的要素の耐用寿命の延長化を図れ、しか
も負荷変動に対して適確かつ応答性のよい制御性能を発
揮できる冷却塔の出口側冷却水温度制御方法を提供する
ことを目的とする。
[0005] This invention was made in view of the above-mentioned circumstances, and it is easy to automate, save energy, reduce noise, and extend the service life of mechanical elements. An object of the present invention is to provide a method for controlling the temperature of cooling water on the outlet side of a cooling tower, which can exhibit control performance with good responsiveness.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明に係る冷却塔の出口側冷却水
温度制御方法は、起動優先順位が予め設定されている複
数の冷却塔の運転台数を横軸とし、上記複数の冷却塔そ
れぞれが備えている冷却ファンの回転数を要素として予
め段階的に設定されているファンモードを縦軸とする格
子状の領域図のマス目のうち、稼働状態にある部分の数
を、上記冷却塔の出口側冷却水温度の変動に応じて増減
制御することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, a cooling tower outlet side cooling water temperature control method according to the invention as set forth in claim 1 provides a method for controlling a cooling water temperature on the outlet side of a cooling tower according to the invention. Squares of a grid-like area diagram in which the horizontal axis is the number of operating towers and the vertical axis is the fan mode, which is set in stages in advance using the rotational speed of the cooling fan provided in each of the plurality of cooling towers. Among them, the number of parts in operation is controlled to increase or decrease in accordance with fluctuations in the temperature of cooling water on the outlet side of the cooling tower.

【0007】また、請求項2に記載の発明に係る冷却塔
の出口側冷却水温度制御方法は、上記稼働状態にあるマ
ス目部分の数を増減制御するにあたって、冷却水総量と
各冷却塔の許容冷却水量範囲から使用可能な冷却塔の運
転台数の最大値および最小値を決定し、出口側冷却水温
度の上昇時には、その時点での最高のファンモードをも
つ稼働状態のマス目部分のうち、起動優先順位が最下位
のものの次の起動優先順位の冷却塔の冷却ファンのファ
ンモードを1つ上げ、起動優先順位が最下位のマス目部
分の冷却塔が上記の最大値になっているときは起動優先
順位が第1位の冷却塔の冷却ファンのファンモードを1
つ上げるように制御し、また、出口側冷却水温度の低下
時には、その時点の起動優先順位が最下位のマス目部分
の冷却塔の冷却ファンのファンモードを1つ下げ、起動
優先順位が最下位のマス目部分の冷却ファンのファンモ
ードが停止で、かつ、冷却塔の運転台数が上記の最小値
である場合はファンモードの変更を行なわず、冷却塔の
入口側冷却水のバイパス流量を変化させるように制御す
ることを特徴とするものである。
[0007] Furthermore, the method for controlling the temperature of cooling water at the exit side of a cooling tower according to the invention described in claim 2 is based on the total amount of cooling water and the temperature of each cooling tower when increasing or decreasing the number of square sections in the operating state. Determine the maximum and minimum number of operating cooling towers that can be used from the allowable cooling water flow range, and when the outlet side cooling water temperature rises, select one of the squares in operation that has the highest fan mode at that time. , the fan mode of the cooling fan of the cooling tower with the next startup priority after the one with the lowest startup priority is raised by one, and the cooling tower in the square with the lowest startup priority has the maximum value above. When the fan mode of the cooling fan of the cooling tower with the first startup priority is set to 1.
In addition, when the outlet side cooling water temperature decreases, the fan mode of the cooling tower cooling fan in the square with the lowest startup priority at that time is lowered by one, If the fan mode of the cooling fan in the lower grid is stopped and the number of operating cooling towers is the minimum value above, do not change the fan mode and change the bypass flow rate of cooling water on the inlet side of the cooling tower. It is characterized by being controlled so as to change.

【0008】[0008]

【作用】請求項1の発明によれば、起動優先順位が予め
設定されている複数のCTの運転台数を横軸とし、冷却
ファンの回転数を要素として予め段階的に設定されてい
るファンモードを縦軸とする格子状の領域図のマス目の
うち、稼働状態にある部分(以下、ブロックと称す)の
数を増減して、全冷却能力を制御することにより、ファ
ンモードはできるだけ低く抑えつつ、CTの運転台数を
増加させて負荷変動に対応させることが可能となり、こ
れにより省エネルギー性を大きくできるとともに、ファ
ンやファンモータ、動力伝達装置などの機械的要素の発
停等の作動回数を少なくして、それらの損耗度を抑え寿
命の延長化が図れる。
[Operation] According to the invention of claim 1, the horizontal axis represents the number of operating CTs whose starting priorities are set in advance, and the fan modes are set in stages in advance using the rotational speed of the cooling fan as an element. The fan mode is kept as low as possible by controlling the total cooling capacity by increasing or decreasing the number of sections (hereinafter referred to as blocks) that are in operation among the squares of a grid-like area diagram with the vertical axis being At the same time, it is possible to increase the number of CTs in operation to respond to load fluctuations, thereby increasing energy savings and reducing the number of times mechanical elements such as fans, fan motors, and power transmission devices start and stop. By reducing the number of parts, the degree of wear and tear on them can be suppressed and the life span can be extended.

【0009】特に、請求項2の発明によれば、ブロック
数の増減にあたり、許容冷却水量範囲からCTの運転台
数の最大値および最小値を決定し、その決定されたCT
の運転台数の最大値と最小値との範囲においてブロック
数を増減することにより、水温の変動が少ない制御性能
を発揮しながら、省エネルギー性などに優れた制御を実
行できる。
In particular, according to the invention of claim 2, when increasing or decreasing the number of blocks, the maximum and minimum values of the number of operating CTs are determined from the allowable cooling water flow range, and the determined CT
By increasing or decreasing the number of blocks within the range between the maximum and minimum number of operating units, it is possible to perform control with excellent energy saving performance while exhibiting control performance with little fluctuation in water temperature.

【0010】0010

【実施例】以下、この発明の一実施例を図面にもとづい
て説明する。図1は、この発明方法を実施するための制
御装置の系統図であり、同図において、1A,1B,…
1NはそれぞれCTで、これらCT1A,1B,…1N
はそれぞれ冷却ファン2A,2B,…2Nおよびその回
転数制御装置(以下、VRと称す)3A,3B,…3N
を備えている。4A,4B,…4NはそれぞれRFで、
これらRF4A,4B,…4Nと上記CT1A,1B,
…1Nとは共通の入口側冷却水配管5および出口側冷却
水配管6を介して冷却水を循環流動可能な状態に接続さ
れており、各CT1A,1B,…1Nの入口部には開閉
弁7A,7B,…7Nが、出口部には冷却水ポンプ8A
,8B,…8Nがそれぞれ設けられているとともに、上
記入口側冷却水配管5と出口側冷却水配管6との途中間
を接続するバイパス管9にバイパス流量調整弁10が設
けられている。11は出口側冷却水温度を検出するセン
サである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a control device for carrying out the method of this invention, and in the figure, 1A, 1B,...
1N is each CT, these CT1A, 1B,...1N
are cooling fans 2A, 2B, ... 2N and their rotation speed control devices (hereinafter referred to as VR) 3A, 3B, ... 3N, respectively.
It is equipped with 4A, 4B,...4N are each RF,
These RF4A, 4B,...4N and the above CT1A, 1B,
...1N are connected to the common inlet side cooling water pipe 5 and outlet side cooling water pipe 6 so that cooling water can be circulated, and each CT1A, 1B, ...1N has an on-off valve at its inlet. 7A, 7B,...7N, cooling water pump 8A is installed at the outlet.
, 8B, . 11 is a sensor that detects the temperature of the cooling water on the outlet side.

【0011】12はマイクロコンピュータからなる制御
装置で、この制御装置12には、CT起動優先順位設定
用信号S1、CT出口温度および許容幅設定用(CT運
転台数モード設定用)信号S2、CT出口温度設定用(
バイパス流量制御用)信号S3およびCT最大流量、最
小流量設定用信号S4がそれぞれ手動入力されるととも
に、上記センサ11より検出されるCT出口側冷却水温
度信号M4および上記各RF4A,4B,…4NのON
/OFF信号M5が入力され、かつ、制御信号として、
CT通水号機指令信号M1、CTファン回転数指令信号
M2およびバイパス流動指令信号M3がそれぞれ出力さ
れる。
Reference numeral 12 denotes a control device consisting of a microcomputer, and this control device 12 includes a signal S1 for setting the CT starting priority, a signal S2 for setting the CT exit temperature and allowable width (for setting the mode for the number of CT operating units), and a signal S2 for setting the CT exit temperature and allowable width. For temperature setting (
Bypass flow rate control) signal S3 and CT maximum flow rate, minimum flow rate setting signal S4 are manually input, respectively, and CT outlet side cooling water temperature signal M4 detected by the sensor 11 and each of the above RF4A, 4B,...4N ON
/OFF signal M5 is input, and as a control signal,
A CT water flow unit command signal M1, a CT fan rotation speed command signal M2, and a bypass flow command signal M3 are output, respectively.

【0012】つぎに、上記のような制御装置によるCT
出口側冷却水温度の制御方法について説明する。なお、
ここでは、CT1A,1B,…1Nそれぞれの冷却ファ
ン2A,2B,…2Nとして、そのモータ極数を4P,
6P,OFFの3段階に切り換えることで3つの回転モ
ードに変更できるようになされているポールチェンジ式
のものを使用する場合について述べる。
[0012] Next, CT using the above-mentioned control device
A method of controlling the outlet side cooling water temperature will be explained. In addition,
Here, the cooling fans 2A, 2B, ...2N of CT1A, 1B, ...1N are respectively set, and the number of motor poles is 4P,
A case will be described in which a pole change type motor is used, which can be changed to three rotation modes by switching to three stages: 6P and OFF.

【0013】上記制御装置12への信号S1の入力によ
り起動優先順位が予め設定されているCT1A,1B,
…1Nの運転台数を横軸とし、冷却ファン2A,2B,
…2Nのモータ極数を4P,6P,OFFにより予め3
段階に設定されているファンモードを縦軸とする図2に
示すような領域図のマス目のうちの斜線を挿入したブロ
ック数を指標とし、そのブロック数を、冷却水総量と各
CTの許容冷却水量範囲とから決定されるCT運転台数
の最大値(CT  MAX)および最小値(CTMIN
)の範囲において、図2の点線矢印の順に増加させ、そ
の逆の順に減少させることにより、出口側冷却水温度を
一定に制御する。つまり、制御プログラムとしては、ブ
ロック数=ΣCTN(i)×CTM(i)ここで、CT
N(i)=0:非通水、1:通水CTM(i)=1:フ
ァンOFF、1:ファン6P、2:ファン4P と表わせる。
The CTs 1A, 1B, 1B, whose starting priorities are set in advance by inputting the signal S1 to the control device 12,
...The horizontal axis is the number of operating units of 1N, cooling fans 2A, 2B,
...The number of poles of a 2N motor is set to 3 in advance by setting 4P, 6P, and OFF.
The number of blocks inserted with diagonal lines in the squares of the area diagram shown in Figure 2 with the fan mode set in each stage as the vertical axis is used as an index, and the number of blocks is calculated based on the total amount of cooling water and the allowable amount of each CT. The maximum value (CT MAX) and minimum value (CTMIN) of the number of CTs in operation determined from the cooling water amount range.
), the outlet side cooling water temperature is controlled to be constant by increasing it in the order of the dotted line arrow in FIG. 2 and decreasing it in the opposite order. In other words, as a control program, the number of blocks = ΣCTN (i) × CTM (i), where CT
It can be expressed as N(i)=0: No water flow, 1: Water flow CTM(i)=1: Fan OFF, 1: Fan 6P, 2: Fan 4P.

【0014】図3は上述したCT運転制御の実際的な内
容を示す全体フローチャートであり、ブロック数を増減
するメインプログラムに並行して、状態チェックプログ
ラムが常時動作している。同図において、ブロック数の
増減は上述の起動優先順位にしたがって行なわれるが、
CT台数の制限などにより増減が許容されないときは何
もしない。また、図3において、TはRF入り冷却水温
度、TminはRF保護上の最低温度、Ttolは制御
上の余裕温度幅である。
FIG. 3 is an overall flowchart showing the practical content of the above-mentioned CT operation control, in which a status check program is constantly running in parallel with the main program for increasing and decreasing the number of blocks. In the figure, the number of blocks is increased or decreased according to the activation priority order described above.
If the increase or decrease is not allowed due to limitations on the number of CTs, nothing is done. Further, in FIG. 3, T is the RF cooling water temperature, Tmin is the minimum temperature for RF protection, and Ttol is the margin temperature range for control.

【0015】図4はブロック数の増加(+1)手順を示
すフローチャート、図5はブロック数の減少(−1)手
順を示すフローチャートであり、これらブロック数は図
6において左下隅から埋まっていくものであり、最先端
のブロックの位置をRNO,CNOで表わしている。
FIG. 4 is a flowchart showing the procedure for increasing the number of blocks (+1), and FIG. 5 is a flowchart showing the procedure for decreasing the number of blocks (-1). These block numbers are filled from the lower left corner in FIG. The position of the most advanced block is expressed by RNO and CNO.

【0016】以上のように、ファンモードを低く抑えた
ままCTの運転台数を増やし、CTの運転台数が許容最
大値になって、はじめてファンモードを1つ上げるよう
な制御をおこなうことにより、所定の冷却能力を得るに
あたっての消費動力を単純なファンモードの制御の場合
にくらべて減少し、大きな省エネルギー性が得られる。
As described above, by increasing the number of operating CTs while keeping the fan mode low, and performing control such that the fan mode is raised by one only when the number of operating CTs reaches the maximum allowable value, the predetermined level can be increased. The power consumption required to obtain this cooling capacity is reduced compared to simple fan mode control, resulting in significant energy savings.

【0017】因みに、本発明者が行なつたファンモード
変更と動力増加の関係についての実験例について述べる
と、次の通りであった。現在の先頭ブロック(起動優先
順位が最下位のもの)が図7(a)のH.B.の位置に
あり、ここから冷却能力を増大させるためにブロック数
を増加させる場合において、同図のA方向に増加させる
場合と、B方向に増加させる場合との冷却能力および消
費動力の増加について比較してみたところ、冷却能力は
、OFF→6Pを増やすと、図7(a)のAの面積(≒
35%×1台)、6P→4Pを増やすと、図7(a)の
Bの面積(≒20%×1台)となり、ファン動力は、6
Pの動力をPo(KW)とすれば、4Pの動力は、Po
×(6/4)3 =3.38Po(KW)となり、図7
(b)に示すような結果が得られた。この結果から明ら
かなように、6P→4PなるB方向のブロック数の増加
は、OFF→6PなるA方向のブロック数の増加に比べ
て、冷却能力の増加分が同等もしくはそれ以下で、消費
動力の増加分が大きいことが解る。
Incidentally, an example of an experiment conducted by the present inventor regarding the relationship between fan mode change and power increase is as follows. The current first block (the one with the lowest startup priority) is the H. B. , and when increasing the number of blocks to increase the cooling capacity from here, compare the increase in cooling capacity and power consumption between increasing the number in the A direction and B direction in the same figure. As a result, the area of A in Figure 7(a) (≒
35% x 1 unit), and when increasing 6P → 4P, the area of B in Figure 7(a) becomes (≒20% x 1 unit), and the fan power is 6
If the power of P is Po (KW), the power of 4P is Po
×(6/4)3 = 3.38Po(KW), Figure 7
The results shown in (b) were obtained. As is clear from this result, the increase in the number of blocks in the B direction from 6P to 4P increases the cooling capacity the same or less than the increase in the number of blocks in the A direction from OFF to 6P, and the power consumption It can be seen that the increase in is large.

【0018】なお、上記実施例では、ポールチェンジ式
の冷却ファンを備えたCTの最適運転に関する制御方法
について説明してきたが、インバータ式の冷却ファンを
備えたCTの最適運転制御に実施しても、同様な効果を
奏するものであり、以下、そのインバータ式の場合につ
いて詳述する。
In the above embodiment, a control method for optimal operation of a CT equipped with a pole-change type cooling fan has been explained. , which has similar effects, and the inverter type will be described in detail below.

【0019】インバータ式の場合もポールチェンジ式の
場合と同様に、最初は冷却ファンを停止したままCTの
運転台数を順次増加して行く。CTの設定台数およびR
Fの要求冷却水量から決定されるCT  MAXまでの
通水が完了したのち、ファン回転モードとその運転台数
との設定動作について以下に述べる。一般に、ファン風
量Fと冷却量Cは図8に示すような関係にあり、通水状
態からの冷却量の増加幅は同図中のGで示すように、フ
ァン風量Fと比例関係にある。一方、ファン動力Pとフ
ァン風量Fとの関係は、理想的には図9の実線で示すよ
うに、P=aF2 で表わされるごとく、ファン動力P
がファン風量Fの2乗比例であるが、インバータ効率な
どによって実際の性能曲線は、図9の点線で示すように
、P=aF2 +bで表わされるごとく、切辺b(定格
の約10%程度)をもつ2乗曲率に近似する。従って、
冷却量Cとファン動力Pとの関係は、図10のようにな
る。
In the case of the inverter type, as in the case of the pole change type, the number of operating CTs is gradually increased while the cooling fan is initially stopped. Set number of CTs and R
After completion of water flow up to CT MAX determined from the required cooling water amount of F, the operation of setting the fan rotation mode and the number of operating units will be described below. Generally, the fan air volume F and the cooling amount C have a relationship as shown in FIG. 8, and the amount of increase in the cooling amount from the water flow state is proportional to the fan air volume F, as shown by G in the figure. On the other hand, ideally, the relationship between the fan power P and the fan air volume F is expressed as P=aF2, as shown by the solid line in FIG.
is proportional to the square of the fan airflow F, but depending on inverter efficiency etc., the actual performance curve is expressed by P = aF2 + b, as shown by the dotted line in Figure 9. ) is approximated to the squared curvature. Therefore,
The relationship between the cooling amount C and the fan power P is as shown in FIG.

【0020】以下は、CT単基についての説明であるが
、n台のCTが同じ回転数で運転しているときの総動力
ΣPと総冷却増幅幅ΣGとの関係は、図11に示すよう
になる。同図において、実線は理想的ファンの場合、点
線は現実ファンの場合である。したがって、いま必要冷
却量ΣG0が与えられたとき、理想的ファンの場合、n
が大きいほどΣPは小さくなるが、現実ファンの場合、
ΣG0の領域に応じてΣPが最も小さくてすむ最適なn
が決まる。すなわち、ΣG0が0〜ΣG1まではn=1
、ΣG1〜ΣG2まではn=2、ΣG2〜ΣG3までは
n=3、ΣG4〜  はn=4となる。なお、ここで、
必要冷却量ΣG1,ΣG2,…の値は上述の切辺bなど
インバータの性能曲線に応じて決定されるものである。
The following is an explanation for a single CT unit, but the relationship between the total power ΣP and the total cooling amplification width ΣG when n CTs are operating at the same rotation speed is as shown in FIG. become. In the figure, the solid line is for an ideal fan, and the dotted line is for an actual fan. Therefore, given the required cooling amount ΣG0, in the case of an ideal fan, n
The larger ΣP becomes, but in the case of reality fans,
Optimal n that minimizes ΣP depending on the region of ΣG0
is decided. In other words, n=1 when ΣG0 is 0 to ΣG1
, ΣG1 to ΣG2, n=2, ΣG2 to ΣG3, n=3, and ΣG4 to n=4. Furthermore, here,
The values of the required cooling amounts ΣG1, ΣG2, . . . are determined according to the performance curve of the inverter, such as the cut edge b described above.

【0021】以上の結果、インバータ式の場合、ポール
チェンジ式の場合の最適運転制御図である図2に対応す
る図は図12のようになり、同図の長方形S1,S2,
S3…の面積が図11のΣG1,ΣG2,ΣG3,…に
相当し、いったん、CT  MAXまでが起動されたの
ちは、全CTの回転モードを揃って上げて行くのが良い
As a result of the above, a diagram corresponding to FIG. 2, which is an optimal operation control diagram for the inverter type and pole change type, is as shown in FIG. 12, and the rectangles S1, S2,
The area of S3... corresponds to ΣG1, ΣG2, ΣG3,... in FIG. 11, and once up to CT MAX has been activated, it is better to increase the rotation modes of all CTs at the same time.

【0022】なお、上記の説明は、インバータ式を例と
しているが、連続可変風量の冷却ファンをもつCTに適
用しても、同様の効果を奏するものである。
Although the above explanation uses an inverter type as an example, the same effect can be obtained even if it is applied to a CT having a cooling fan with a continuously variable air volume.

【0023】[0023]

【発明の効果】以上のように、この発明によれば、複数
のCTの運転状態をブロック数という指標で管理するも
のであるから、制御内容のプログラム化が容易で、複雑
なCT運転の自動化、無人化を図り得る。しかも、ファ
ンモードをできるだけ低く抑えたままで、CTの運転台
数を増減して負荷変動に対応させることができるので、
ファンによる消費動力を最大限に抑え、大なる省エネル
ギー化を実現できるとともに、低騒音化も図れる。また
、冷却ファンのON/OFFや回転数変更の回数を少な
くすることができるので、ファン、モータ、動力伝達装
置などの機械的要素の損耗が少なく、装置全体の寿命の
延長化を図り得る。
[Effects of the Invention] As described above, according to the present invention, since the operating status of multiple CTs is managed using an index called the number of blocks, it is easy to program the control contents, and automation of complex CT operations is possible. , it is possible to achieve unmanned operation. Moreover, it is possible to respond to load fluctuations by increasing or decreasing the number of CTs operated while keeping the fan mode as low as possible.
By minimizing the power consumed by the fan, it is possible to achieve significant energy savings and reduce noise. Furthermore, since the number of times the cooling fan is turned on and off or the number of revolutions is changed can be reduced, there is less wear and tear on mechanical elements such as the fan, motor, power transmission device, etc., and the life of the entire device can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明方法を実施するための制御装置の系統
図である。
FIG. 1 is a system diagram of a control device for implementing the method of the present invention.

【図2】この発明の一実施例であるポールチェンジ式C
Tの場合の運転制御図である。
[Fig. 2] Pole change type C which is an embodiment of this invention
It is an operation control diagram in case of T.

【図3】図2の運転制御の内容を示す全体フローチャー
トである。
FIG. 3 is an overall flowchart showing the details of the operation control in FIG. 2;

【図4】ブロック数の増加手順を示すフローチャートで
ある。
FIG. 4 is a flowchart showing a procedure for increasing the number of blocks.

【図5】ブロック数の減少手順を示すフローチャートで
ある。
FIG. 5 is a flowchart showing a procedure for reducing the number of blocks.

【図6】図4および図5で示すフローチャートにおける
ブロックの状態を説明する図である。
FIG. 6 is a diagram illustrating states of blocks in the flowcharts shown in FIGS. 4 and 5;

【図7】実験例におけるブロックの増加方向の説明およ
び異なる増加方向での結果の説明図である。
FIG. 7 is an explanatory diagram of the direction in which blocks increase in an experimental example and the results in different directions of increase.

【図8】インバータ式の場合の単基の冷却ファンによる
ファン風量と冷却量との関係を示す特性図である。
FIG. 8 is a characteristic diagram showing the relationship between fan air volume and cooling amount by a single cooling fan in the case of an inverter type.

【図9】同上、ファン動力とファン風量との関係を示す
特性図である。
FIG. 9 is a characteristic diagram showing the relationship between fan power and fan air volume.

【図10】同上、ファン動力と冷却量との関係を示す特
性図である。
FIG. 10 is a characteristic diagram showing the relationship between fan power and cooling amount in the same as above.

【図11】複数のインバータ式のCTの運転時における
ファン総動力と総冷却増幅幅との関係を説明する特性図
である。
FIG. 11 is a characteristic diagram illustrating the relationship between the total fan power and the total cooling amplification width during operation of a plurality of inverter-type CTs.

【図12】この発明の他の実施例であるインバータ式の
CTの場合の運転制御図である。
FIG. 12 is an operation control diagram for an inverter-type CT that is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A,1B,…1N  CT 2A,2B,…2N  冷却ファン 3A,3B,…3N  VR 9  バイパス管 10  バイパス流量調整弁 12  制御装置 1A, 1B,...1N CT 2A, 2B,...2N Cooling fan 3A, 3B,...3N VR 9 Bypass pipe 10 Bypass flow rate adjustment valve 12 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  起動優先順位が予め設定されている複
数の冷却塔の運転台数を横軸とし、上記複数の冷却塔そ
れぞれが備えている冷却ファンの回転数を要素として予
め段階的に設定されているファンモードを縦軸とする格
子状の領域図のマス目のうち、稼働状態にある部分の数
を、上記冷却塔の出口側冷却水温度の変動に応じて増減
制御することを特徴とする冷却塔の出口側冷却水温度制
御方法。
[Claim 1] The horizontal axis represents the number of operating cooling towers for which startup priorities are set in advance, and the number of rotations of cooling fans provided in each of the cooling towers is set in advance in stages. Among the squares of a grid-like area map whose vertical axis is the fan mode, the number of parts in an operating state is controlled to increase or decrease in accordance with fluctuations in the cooling water temperature on the outlet side of the cooling tower. A method for controlling the temperature of cooling water on the outlet side of a cooling tower.
【請求項2】  上記稼働状態にあるマス目部分の数を
増減制御するにあたって、冷却水総量と各冷却塔の許容
冷却水量範囲から使用可能な冷却塔の運転台数の最大値
および最小値を決定し、出口側冷却水温度の上昇時には
、その時点での最高のファンモードをもつ稼働状態のマ
ス目部分のうち、起動優先順位が最下位のものの次の起
動優先順位の冷却塔の冷却ファンのファンモードを1つ
上げ、起動優先順位が最下位のマス目部分の冷却塔が上
記の最大値になっているときは起動優先順位が第1位の
冷却塔の冷却ファンのファンモードを1つ上げるように
制御し、また、出口側冷却水温度の低下時には、その時
点の起動優先順位が最下位のマス目部分の冷却塔の冷却
ファンのファンモードを1つ下げ、起動優先順位が最下
位のマス目部分の冷却ファンのファンモードが停止で、
かつ、冷却塔の運転台数が上記の最小値である場合はフ
ァンモードの変更を行なわず、冷却塔の入口側冷却水の
バイパス流量を変化させるように制御することを特徴と
する請求項1の冷却塔の出口側冷却水温度制御方法。
[Claim 2] In controlling the increase/decrease of the number of square sections in operation, the maximum and minimum values of the number of operating cooling towers that can be used are determined from the total amount of cooling water and the allowable cooling water amount range of each cooling tower. However, when the temperature of the cooling water on the outlet side rises, the cooling fan of the cooling tower with the next startup priority after the one with the lowest startup priority among the squares in operation with the highest fan mode at that time is activated. Raise the fan mode by one, and if the cooling tower in the square with the lowest startup priority reaches the maximum value above, increase the fan mode of the cooling fan of the cooling tower with the first startup priority by one. Also, when the outlet side cooling water temperature decreases, the fan mode of the cooling tower cooling fan in the square with the lowest startup priority at that time is lowered by one level, and the fan mode of the cooling tower with the lowest startup priority is lowered by one. The fan mode of the cooling fan in the square part is stopped,
In addition, when the number of operating cooling towers is the above-mentioned minimum value, the fan mode is not changed and the bypass flow rate of the cooling water on the inlet side of the cooling tower is controlled to be changed. A method for controlling the temperature of cooling water on the outlet side of a cooling tower.
JP3104842A 1991-04-09 1991-04-09 Cooling water temperature control method on the outlet side of the cooling tower Expired - Fee Related JP2565803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104842A JP2565803B2 (en) 1991-04-09 1991-04-09 Cooling water temperature control method on the outlet side of the cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104842A JP2565803B2 (en) 1991-04-09 1991-04-09 Cooling water temperature control method on the outlet side of the cooling tower

Publications (2)

Publication Number Publication Date
JPH04313695A true JPH04313695A (en) 1992-11-05
JP2565803B2 JP2565803B2 (en) 1996-12-18

Family

ID=14391598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104842A Expired - Fee Related JP2565803B2 (en) 1991-04-09 1991-04-09 Cooling water temperature control method on the outlet side of the cooling tower

Country Status (1)

Country Link
JP (1) JP2565803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210178A (en) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd Device and method for control of cooling tower, and heat source system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157495A (en) * 1983-02-24 1984-09-06 Ishikawajima Harima Heavy Ind Co Ltd Supply water temperature control method for cold water tower
JPS59225300A (en) * 1983-06-04 1984-12-18 Shinko Fuaudoraa Kk Method for controlling temperature in cooling water fed out of multi-cell cooling tower
JPS62218799A (en) * 1986-03-19 1987-09-26 Toshiba Corp Waste heat recovering device of electric apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157495A (en) * 1983-02-24 1984-09-06 Ishikawajima Harima Heavy Ind Co Ltd Supply water temperature control method for cold water tower
JPS59225300A (en) * 1983-06-04 1984-12-18 Shinko Fuaudoraa Kk Method for controlling temperature in cooling water fed out of multi-cell cooling tower
JPS62218799A (en) * 1986-03-19 1987-09-26 Toshiba Corp Waste heat recovering device of electric apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210178A (en) * 2012-02-29 2013-10-10 Mitsubishi Heavy Ind Ltd Device and method for control of cooling tower, and heat source system
WO2014077016A1 (en) * 2012-11-14 2014-05-22 三菱重工業株式会社 Cooling tower control device, cooling tower control method, and heat source system
CN104781629A (en) * 2012-11-14 2015-07-15 三菱重工业株式会社 Cooling tower control device, cooling tower control method, and heat source system
CN104781629B (en) * 2012-11-14 2017-03-08 三菱重工业株式会社 Cooling tower control device, cooling tower control method and heat source system
US9957970B2 (en) 2012-11-14 2018-05-01 Mitsubishi Heavy Industries Thermal Systems, Ltd. Device and method of controlling cooling towers, and heat source system

Also Published As

Publication number Publication date
JP2565803B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5915473A (en) Integrated humidity and temperature controller
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
US6996999B2 (en) Method and apparatus for controlling humidity with an air conditioner
KR0145021B1 (en) Outdoor fan rotating speed variable airconditioner
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP5264365B2 (en) Cooling tower and heat source system
US20200318849A1 (en) Air conditioning system and control method therof
CN114440409A (en) Self-adaptive energy-saving control method for central air-conditioning system
WO2019094483A1 (en) Control mechanism for climate control unit with multiple stages
US6508303B1 (en) Air supply control device
CN114576806A (en) Central air-conditioning cooling water system energy-saving optimization method based on variable frequency control
JP4647469B2 (en) Operation method of air conditioning equipment
JPH04313695A (en) Temperature control method for cooling water on outlet of cooling tower
JPS62288460A (en) Heat pump
Komareji et al. Optimal set-point synthesis in HVAC systems
JPS6256427B2 (en)
EP3824229B1 (en) Chiller system and a method for generating coordination maps for energy efficient chilled water temperature and condenser water temperature in a chiller plant system
JP2001272115A (en) Method for controlling flow rate of cooling water used in heat exchanger
KR100284194B1 (en) Fan Filter Error Detection Device and Method in Constant Temperature Control System Using Heat Exchanger
JPH0133741B2 (en)
JPS60233439A (en) Controlling method on multi-chamber separation type air conditioner
JPH0639981B2 (en) Air conditioner
JPS5811341A (en) Air-conditioning apparatus
JPH0359341B2 (en)
JPH0814630A (en) Air conditioning controlling method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees