JPH04313273A - Micro crystal silicon thin-film semiconductor device and liquid display device using the same - Google Patents

Micro crystal silicon thin-film semiconductor device and liquid display device using the same

Info

Publication number
JPH04313273A
JPH04313273A JP3104815A JP10481591A JPH04313273A JP H04313273 A JPH04313273 A JP H04313273A JP 3104815 A JP3104815 A JP 3104815A JP 10481591 A JP10481591 A JP 10481591A JP H04313273 A JPH04313273 A JP H04313273A
Authority
JP
Japan
Prior art keywords
film
muc
tft
display device
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104815A
Other languages
Japanese (ja)
Inventor
Koji Mori
孝二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3104815A priority Critical patent/JPH04313273A/en
Publication of JPH04313273A publication Critical patent/JPH04313273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a liquid crystal surface device which enables a high-speed switching to be made by forming a micro crystal silicon layer (muC-Si) on a plastic substrate. CONSTITUTION:A gate electrode 2 is formed on a plastic film substrate 1, a gate insulation film 3 is formed, and then an undoped muC-Si 4 is formed. Then, n(+)-muC-Si 5 for ohmic contact is formed continuously and is machined to a specific shape. thus enabling a muC-Si layer 6 to be formed. Therefore, a film of a TFT(thin film transistor) can be formed at a low temperature, the obtained muC-Si film has no photocon property, it shows a high conductivity and a high mobility and is suited for a high-speed drive, and further a threshold value can be controlled by activation according to ion-implantation + excimer laser at the time of its manufacture. Also, a liquid crystal display device with the TFT achieves a high-speed switching.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、マイクロクリスタルシリコン(
以下μC−Siと表示する。)薄膜を具備した半導体装
置及び該半導体装置を有する表示装置、ディスプレイ、
さらには空間変調素子、ハイビジョン等に関する。
[Technical field] The present invention relates to microcrystalline silicon (
Hereinafter, it will be expressed as μC-Si. ) A semiconductor device equipped with a thin film and a display device having the semiconductor device, a display,
Furthermore, it relates to spatial modulation elements, high-definition vision, and the like.

【0002】0002

【従来技術】アモルファスシリコン(a−Si)や多結
晶シリコン(poly−Si)を用いたTFT(thi
n  film  transistor)は、ファク
シミリ、液晶表示装置等、各種OA機器に汎用されてい
る。 たとえば、液晶ディスプレイ用で使われているアクティ
ブマトリックス素子には、母材としてa−Siを用いた
TFTが主に使われていることが「IDRC  ’88
  PP56〜58,Oct.1988」に、またpo
ly−Si  TFTを一体化したものについては、「
SID  ’89  Digest    PP238
〜241,May,1989」に記載がある。この種、
液晶表示装置においては、a−Si TFTを用いたア
クティブマトリックスは成膜温度が250℃前後という
温度プロセスで、主に安価なガラス上に形成されていた
が、モビリティが低いため、(0.1〜1cm2/v・
sec)、高品質ディスプレイ用の周辺駆動回路への適
用には困難であった。一方、モビリティが高いpoly
−Si TFT(〜100cm2/v・sec)の場合
、プロセス温度が1000℃と高いため、安価なガラス
あるいはプラスチックスは使用不可能であり、低コスト
化に難があった。 したがって、表示装置にTFTを使った場合、次のよう
な組合せとなっている。
[Prior art] TFTs (thi
N film transistors are widely used in various office automation equipment such as facsimile machines and liquid crystal display devices. For example, in the IDRC '88
PP56-58, Oct. 1988”, also po
Regarding the integrated ly-Si TFT, please refer to "
SID '89 Digest PP238
~241, May, 1989. This species,
In liquid crystal display devices, active matrices using a-Si TFTs have been formed mainly on inexpensive glass using a film-forming process with a film-forming temperature of around 250°C. ~1cm2/v・
sec), it has been difficult to apply it to peripheral drive circuits for high-quality displays. On the other hand, poly with high mobility
In the case of -Si TFTs (~100 cm 2 /v·sec), the process temperature is as high as 1000° C., so cheap glass or plastics cannot be used, making it difficult to reduce costs. Therefore, when TFTs are used in a display device, the following combinations are used.

【表1】 そのため、プラスチック基板上に低温で形成でき、かつ
a−Siよりもモビリティ(mobility)が高く
、poly−Siに近いモビリティをもつTFTの出現
が強く望まれている。
[Table 1] Therefore, there is a strong desire for the emergence of a TFT that can be formed on a plastic substrate at low temperatures, has higher mobility than a-Si, and has mobility close to that of poly-Si.

【0003】0003

【目的】本発明の目的は、低コスト基板であり、フレキ
シブルなプラスチック基板上に低温で形成でき、かつa
−Siよりもモビリティが高く、poly−Siに近い
またはそれ以上のモビリティをもつμC−Si薄膜半導
体装置(μC−Si  TFT)および該半導体装置を
具備した高速スイッチングが可能な液晶表示装置、換言
すれば高品質ディスプレイ装置の提供にある。
[Objective] The object of the present invention is to provide a low-cost substrate, which can be formed on a flexible plastic substrate at low temperature, and which has a
- A μC-Si thin film semiconductor device (μC-Si TFT) which has higher mobility than Si and has mobility close to or higher than poly-Si, and a liquid crystal display device equipped with the semiconductor device and capable of high-speed switching, in other words. The key is to provide high-quality display devices.

【0004】0004

【構成】本発明の第1は、プラスチック基板上に、μC
−Siを具備したことを特徴とする薄膜半導体装置に関
する。本発明の第2は前記μC−Si  TFTを具備
したことを特徴とする液晶表示装置に関する。
[Structure] The first aspect of the present invention is to provide μC on a plastic substrate.
- It relates to a thin film semiconductor device characterized by comprising Si. A second aspect of the present invention relates to a liquid crystal display device comprising the μC-Si TFT.

【0005】前記μC−Si薄膜を形成するには、(1
) ECR法(電子サイクロトロン共鳴法)において水
素希釈度を高くする、(2) ECR法とエキシマレー
ザを併用する、(3) エキシマレーザ単独の場合、後
で表面アニールをほどこす、などの方法が例示できる。 プラスチックフィルム基板としては、ポリエチレンテレ
フタレート、ポリメチルメタクリレート、ポリカーボネ
ート、ポリエーテルサルフォン、ポリアリレートなどの
ようなポリマー基板が挙げられる。
[0005] To form the μC-Si thin film, (1
) Increasing the degree of hydrogen dilution in the ECR method (electron cyclotron resonance method), (2) Using the ECR method and excimer laser in combination, (3) When using excimer laser alone, applying surface annealing afterwards. I can give an example. Plastic film substrates include polymer substrates such as polyethylene terephthalate, polymethyl methacrylate, polycarbonate, polyether sulfone, polyarylate, and the like.

【0006】以下、添付図面を参照しながら説明する。 図1は、本発明のμC−Si  TFTの作製法の一例
を示すフロー図、図2は、TFT駆動液晶パネルの概略
図、図3は、図2のTFTパネル部及び周辺駆動部TF
Tの断面図である。本発明のμC−Si  TFTの作
製法の一例を図1のフローに沿って説明する。 (a)プラスチックフィルム基板1上にCr等のゲート
電極2を形成する。この場合、下地層として必要に応じ
てSiO2層を形成しておいてもよい。 (b)ゲート絶縁膜3を形成する。 (c)アンドープμC−Si4をまず形成し、次にオー
ミックコンタクト用n(+)−μC−Si5を連続形成
する。 (d)所定形状に加工し、μC−Si層6を形成する。 (e)メタル配線7,8を形成する。このときソース・
ドレイン間のn(+)層も同時にエッチングする。最後
にパッシベーション層9を形成して完成する。 なお、図中10はゲート・ドライバー、11はドレイン
・ドライバー、12はTFTパネル(1920×480
画素)、13は画素電極である。前記(a)〜(e)の
工程は、全て室温で行っており、プラスチックフィルム
でも従来a−Si膜でしか形成できなかったTFTが可
能となるばかりか、得られたTFTの特性はTFTにμ
C−Siを用いているため、a−Siよりは高い移動度
を有し、poly−Si並みの高速なTFTが実現でき
ている。これは、ECR法および/またはエキシマレー
ザー法を用いた製法による特有の効果のために、実現可
能となる。モビリティでいうとa−Siで0.01〜1
cm2/v・sec、poly−Siで100〜であり
、μC−Siで1〜100cm2/v・secと広く、
製膜条件によってはpoly−Siを上まわるものも実
現できる。ECR法は、サイクロトン共鳴を用いている
ため、低温(100℃以下)でa−Siを形成できるが
、ECR法を用いる前記(c)工程時、水素希釈量をふ
やし、マイクロ並パワーを高くしてやることでアンドー
プ〜ドープ層まで自在に製膜でき、このとき結晶をとも
なったμC−Siが実現できる。さらにエキシマレーザ
(波長193〜350nm)を用いることで、ECR中
のラジカルの励起が促がされ、より高効率な製膜が可能
となる。又、エキシマレーザー単独でもSi2H6,S
i3H8ガスを分解、製膜できるため、同じようなμC
−Siの形成が可能となる。エキシマレーザーはArF
にかぎらず、ECRと併用する場合には193nm(A
rF)〜351nm(XeF)まで使用可能である。エ
キシマレーザー単独の場合には、a−Si膜形成では、
193(ArF)〜241nm(KrF)の波長で形成
可能である。なお、エキシマレーザー単独の場合、後で
表面アニールをほどこすとよい。作成したμC−Si膜
はρD=1/107(1/Ω・cm)、ρP=1/10
4(1/Ω・cm)(at  550nm)となり、ド
ーピング膜ではρP≒ρD=1/102〜1/100(
1/Ω・cm)となり、高い導電性を示している。この
膜の特徴は第1に、フォトコン性がなく、都合が良く、
たとえば表示装置としてのTFTは煩雑に光があたるが
、光によるTFTのしきい値電圧、on電流値、off
電流値の変化を抑えることができる。第2に高い導電率
、高い移動度を示し、高速駆動に適する。第3に、イオ
ン注入+エキシマレーザーによる活性化によって、しき
い値制御が可能である。
[0006] Hereinafter, a description will be given with reference to the accompanying drawings. FIG. 1 is a flow diagram showing an example of the method for manufacturing μC-Si TFT of the present invention, FIG. 2 is a schematic diagram of a TFT driving liquid crystal panel, and FIG.
It is a sectional view of T. An example of the method for manufacturing the μC-Si TFT of the present invention will be explained along the flowchart of FIG. (a) A gate electrode 2 made of Cr or the like is formed on a plastic film substrate 1. In this case, a SiO2 layer may be formed as a base layer if necessary. (b) Form a gate insulating film 3. (c) Undoped μC-Si4 is first formed, and then n(+)-μC-Si5 for ohmic contact is successively formed. (d) Processing into a predetermined shape to form a μC-Si layer 6. (e) Form metal wirings 7 and 8. At this time, the source
The n(+) layer between the drains is also etched at the same time. Finally, a passivation layer 9 is formed to complete the process. In the figure, 10 is a gate driver, 11 is a drain driver, and 12 is a TFT panel (1920 x 480
pixel), 13 is a pixel electrode. The steps (a) to (e) above are all performed at room temperature, which not only makes it possible to form TFTs using plastic films, which could previously only be formed using a-Si films, but also allows the resulting TFTs to have characteristics that are similar to those of TFTs. μ
Since C-Si is used, it has higher mobility than a-Si, and a TFT as fast as poly-Si can be realized. This is possible due to the unique effects of the manufacturing method using the ECR method and/or the excimer laser method. In terms of mobility, a-Si is 0.01 to 1
cm2/v・sec, poly-Si has a value of 100~, and μC-Si has a wide range of 1~100 cm2/v・sec,
Depending on the film forming conditions, it is possible to realize a film that is superior to poly-Si. Since the ECR method uses cycloton resonance, it is possible to form a-Si at low temperatures (below 100°C), but in the step (c) using the ECR method, the amount of hydrogen dilution is increased and the micro-level power is increased. By doing so, it is possible to freely form layers ranging from undoped to doped, and at this time, μC-Si with crystals can be realized. Furthermore, by using an excimer laser (wavelength: 193 to 350 nm), excitation of radicals during ECR is promoted, allowing more efficient film formation. In addition, even with excimer laser alone, Si2H6,S
Since it is possible to decompose i3H8 gas and form a film, similar μC
- Formation of Si becomes possible. Excimer laser is ArF
However, when used in conjunction with ECR, 193 nm (A
rF) to 351 nm (XeF). In the case of excimer laser alone, in a-Si film formation,
It can be formed at a wavelength of 193 (ArF) to 241 nm (KrF). Note that in the case of using excimer laser alone, surface annealing may be performed afterwards. The created μC-Si film has ρD=1/107 (1/Ω・cm), ρP=1/10
4 (1/Ω・cm) (at 550 nm), and in the doped film, ρP≒ρD=1/102 to 1/100 (
1/Ω·cm), indicating high conductivity. The first feature of this film is that it has no photoconductivity, which is convenient.
For example, TFTs used as display devices are exposed to light in a complicated manner, but the threshold voltage, on-current value, and off-sensitivity of TFTs due to light are
Changes in current value can be suppressed. Second, it exhibits high conductivity and high mobility, making it suitable for high-speed driving. Thirdly, the threshold value can be controlled by ion implantation and activation by excimer laser.

【0007】[0007]

【実施例】実施例1 プラスチックフィルム(PET:ポリエチレンテレフタ
レートまたはPES:ポリエーテルスルホン)上にEC
R法でSiH4/O2=0.3,1mtorr,r.t
で1000ÅSiO2形成後、真空蒸着法によりCrを
1000Å蒸着する。その後、CCl4/O2=1,1
0torr,100WでCrを所定形状にエッチングす
る。 その後、Crのエッチング前に形成していたレジスト(
OFPR)をO2プラズマ70SCCM,300Wで除
去する。その後、SiH4/N2=0.6,0.3mt
orr,300Wで2000Å堆積して、SiNxをゲ
ート絶縁膜とする。同じくレジストパターンにより、S
iNxを所定形状にエッチング後、レジスト除去を行う
。次にECR法でSiH4  10SCCM,1mto
rr,r.tで1μmのa−Siを形成し、つづいてP
H3/SiH4=0.1%で他は同一条件でn(+)層
を100Å形成する。その後、ソース・ドレイン間のn
(+)層をSF6+O2ガス系でエッチングして除去後
、ゲート絶縁膜と同一形成条件でパッシベーション層を
厚さ1μm形成して完成する。 実施例2 PMMA(ポリメチルメタクリレート)上にECR法に
よりSiO2を形成する(条件は、前述の実施例1と同
じ)。さらにEB蒸着によりCrを1000Å形成し、
所定形状にエッチングする。その後SiH4/N2=0
.6,0.3mtorr  300Wで2000Å堆積
してSiNxを形成する。次にエキシマレーザー(Ar
F、波長193nm)を用いて、H2:100SCCM
  Si2H6  1SCCM、圧力10torr、1
00mJ/cm2、ショット数、10〜102shot
にて、a−Si膜を約1000Å形成する。ここで更に
、ガスを流さず1/105torrの高真空下で表面に
エキシマレーザー光(条件100mJ/cm2,10s
hot)を照射し、μc化をはかる。さらにPH3(1
%,Heベース)ガスを導入してSi2H6は同じ条件
でn(+)層を形成する。それ以降は実施例1と同一条
件にて形成する。実施例3〔図1の(c)の工程に限定
する。他のプロセスは実施例1と同じ〕ECR装置にお
いて、H2:10SCCM,SiH4  1SCCM,
圧力0.1mtorrで放電を立てると同時にArF(
193nm)300mJ/cm2のエキシマレーザーを
基板に平行に近接して照射することでSiラジカルの生
成効率をupした。n(+)はH2:10SCCM,S
iH4:1SCCM,PH3(1%,Heベース):1
SCCMで形成し、以降は実施例1と同一条件で形成し
た。
[Example] Example 1 EC on plastic film (PET: polyethylene terephthalate or PES: polyether sulfone)
By the R method, SiH4/O2=0.3, 1 mtorr, r. t
After forming SiO2 with a thickness of 1000 Å, Cr is deposited with a thickness of 1000 Å using a vacuum evaporation method. After that, CCl4/O2=1,1
Etch Cr into a predetermined shape at 0 torr and 100 W. After that, the resist (
OFPR) is removed with O2 plasma 70SCCM, 300W. After that, SiH4/N2=0.6,0.3mt
orr, deposited to a thickness of 2000 Å at 300 W to form a gate insulating film of SiNx. Similarly, due to the resist pattern, S
After etching the iNx into a predetermined shape, the resist is removed. Next, by ECR method, SiH4 10SCCM, 1mto
rr, r. t to form a-Si of 1 μm, followed by P
An n(+) layer of 100 Å is formed under the same conditions except that H3/SiH4=0.1%. After that, n between the source and drain
After removing the (+) layer by etching with SF6+O2 gas system, a passivation layer is formed to a thickness of 1 μm under the same formation conditions as the gate insulating film. Example 2 SiO2 is formed on PMMA (polymethyl methacrylate) by the ECR method (conditions are the same as in Example 1 described above). Furthermore, 1000 Å of Cr was formed by EB evaporation,
Etch into a predetermined shape. Then SiH4/N2=0
.. 6. Deposit 2000 Å at 300 W at 0.3 mtorr to form SiNx. Next, excimer laser (Ar
F, wavelength 193 nm), H2:100SCCM
Si2H6 1SCCM, pressure 10torr, 1
00mJ/cm2, number of shots, 10-102shot
An a-Si film is formed to a thickness of about 1000 Å. Here, excimer laser light (conditions 100 mJ/cm2, 10 s) was applied to the surface under high vacuum of 1/105 torr without flowing gas.
irradiate (hot) to convert into μc. Furthermore, PH3(1
%, He base) gas is introduced to form an n(+) layer of Si2H6 under the same conditions. The subsequent steps are formed under the same conditions as in Example 1. Example 3 [Limited to the process shown in FIG. 1(c). Other processes are the same as in Example 1] In the ECR device, H2: 10SCCM, SiH4 1SCCM,
ArF (
The generation efficiency of Si radicals was increased by irradiating the substrate with an excimer laser of 300 mJ/cm2 (193 nm) in parallel and close to the substrate. n(+) is H2:10SCCM,S
iH4: 1 SCCM, PH3 (1%, He base): 1
It was formed using SCCM, and the subsequent steps were formed under the same conditions as in Example 1.

【0008】[0008]

【効果】本発明のμC−Si  TFTは、低温成膜が
可能であり、得られたμC−Si膜はフォトコン性がな
く、また高い導電率、高い移動度を示し、高速駆動に適
しており、さらにその作製時、イオン注入+エキシマレ
ーザーによる活性化によってしきい値を制御することが
可能である。また、前記μC−Si  TFTを具備し
た液晶表示装置は、該μC−Si  TFTがフォトコ
ン性がないため、表示装置としてのTFTは煩繁に光が
あたるが、光によるTFTのしきい値電圧、on電流値
、off電流値の変化を抑えることができ、さらに高導
電率、高移動度を示すので、高速switchingを
可能にする。
[Effects] The μC-Si TFT of the present invention can be formed at a low temperature, and the resulting μC-Si film has no photoconductivity, exhibits high conductivity and high mobility, and is suitable for high-speed driving. Furthermore, during fabrication, it is possible to control the threshold value by ion implantation and activation using an excimer laser. In addition, in a liquid crystal display device equipped with the μC-Si TFT, since the μC-Si TFT does not have photoconductivity, the TFT used as a display device is frequently exposed to light, but the threshold voltage of the TFT due to light is , on-current value, and off-current value can be suppressed, and furthermore, it exhibits high conductivity and high mobility, thus enabling high-speed switching.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のμC−Si薄膜半導体装置の作製法の
一例を示すフロー図である。
FIG. 1 is a flow diagram showing an example of a method for manufacturing a μC-Si thin film semiconductor device of the present invention.

【図2】本発明のμC−Si薄膜半導体装置を具備した
TFT駆動液晶パネルの概略図である。
FIG. 2 is a schematic diagram of a TFT-driven liquid crystal panel equipped with the μC-Si thin film semiconductor device of the present invention.

【図3】図2に示す概略図のTFTパネル部及び周辺駆
動部TFTの断面である。
FIG. 3 is a cross section of the TFT panel section and peripheral drive section TFT of the schematic diagram shown in FIG. 2;

【符号の説明】[Explanation of symbols]

1  プラスチックフィルム基板 2  ゲート電極 3  ゲート絶縁膜 4  アンドープμC−Si膜 5  n(+)−μC−Si膜 6  μC−Si膜 7  メタル配線 8  メタル配線 9  パッシベーション膜 10  ゲート・ドライバー 11  ドレイン・ドライバー 12  TFTパネル(1920×480画素)13 
 画素電極
1 Plastic film substrate 2 Gate electrode 3 Gate insulating film 4 Undoped μC-Si film 5 n(+)-μC-Si film 6 μC-Si film 7 Metal wiring 8 Metal wiring 9 Passivation film 10 Gate driver 11 Drain driver 12 TFT panel (1920 x 480 pixels) 13
pixel electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  プラスチック基板上に、マイクロクリ
スタルシリコン層を具備したことを特徴とする薄膜半導
体装置。
1. A thin film semiconductor device comprising a microcrystalline silicon layer on a plastic substrate.
【請求項2】  請求項1記載のマイクロクリスタルシ
リコン薄膜半導体装置を具備したことを特徴とする液晶
表示装置。
2. A liquid crystal display device comprising the microcrystal silicon thin film semiconductor device according to claim 1.
JP3104815A 1991-04-10 1991-04-10 Micro crystal silicon thin-film semiconductor device and liquid display device using the same Pending JPH04313273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104815A JPH04313273A (en) 1991-04-10 1991-04-10 Micro crystal silicon thin-film semiconductor device and liquid display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104815A JPH04313273A (en) 1991-04-10 1991-04-10 Micro crystal silicon thin-film semiconductor device and liquid display device using the same

Publications (1)

Publication Number Publication Date
JPH04313273A true JPH04313273A (en) 1992-11-05

Family

ID=14390908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104815A Pending JPH04313273A (en) 1991-04-10 1991-04-10 Micro crystal silicon thin-film semiconductor device and liquid display device using the same

Country Status (1)

Country Link
JP (1) JPH04313273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610737A (en) * 1994-03-07 1997-03-11 Kabushiki Kaisha Toshiba Thin film transistor with source and drain regions having two semiconductor layers, one being fine crystalline silicon
WO1997022141A1 (en) * 1995-12-14 1997-06-19 Seiko Epson Corporation Method of manufacturing thin film semiconductor device, and thin film semiconductor device
KR100286464B1 (en) * 1997-03-25 2001-05-02 포만 제프리 엘 Thin Film Transistors Fabricated on Plastic Substrates
US6391690B2 (en) 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
WO2010119689A1 (en) * 2009-04-17 2010-10-21 シャープ株式会社 Semiconductor device and manufacturing method therefor
US8466469B2 (en) * 1994-12-27 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having pair of flexible substrates

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610737A (en) * 1994-03-07 1997-03-11 Kabushiki Kaisha Toshiba Thin film transistor with source and drain regions having two semiconductor layers, one being fine crystalline silicon
US8466469B2 (en) * 1994-12-27 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having pair of flexible substrates
WO1997022141A1 (en) * 1995-12-14 1997-06-19 Seiko Epson Corporation Method of manufacturing thin film semiconductor device, and thin film semiconductor device
US6391690B2 (en) 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US6660572B2 (en) 1995-12-14 2003-12-09 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
KR100286464B1 (en) * 1997-03-25 2001-05-02 포만 제프리 엘 Thin Film Transistors Fabricated on Plastic Substrates
WO2010119689A1 (en) * 2009-04-17 2010-10-21 シャープ株式会社 Semiconductor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6627487B2 (en) Semiconductor device and manufacturing method thereof
US6794673B2 (en) Plastic substrate for a semiconductor thin film
US5834071A (en) Method for forming a thin film transistor
JP4667523B2 (en) Semiconductor device and manufacturing method thereof
CN110867458B (en) Metal oxide semiconductor thin film transistor array substrate and manufacturing method thereof
KR20020092255A (en) Semiconductor film, semiconductor device and method of their production
KR20030061423A (en) Method for doping semiconductor layer, method for producing thin film semiconductor element and thin film semiconductor element
US20070254399A1 (en) Low temperature direct deposited polycrystalline silicon thin film transistor structure and method for manufacturing the same
JP2700277B2 (en) Method for manufacturing thin film transistor
JPH04313273A (en) Micro crystal silicon thin-film semiconductor device and liquid display device using the same
JP4450900B2 (en) Method for manufacturing semiconductor device
JP2000077665A (en) Thin-film transistor device and its manufacture
US20040175870A1 (en) Method for manufacturing a thin film transistor
JP4610080B2 (en) Method for manufacturing semiconductor device
JPH0738110A (en) Manufacture of semiconductor device
US20060051905A1 (en) Method of fabricating planarized poly-silicon thin film transistors
US20040038441A1 (en) Thin film transistor and method of manufacturing the same
JP3266861B2 (en) Active matrix device
CN1265428C (en) Method of manufacturing film transistor
JP4304374B2 (en) Top gate type thin film transistor
JP2692914B2 (en) Method for manufacturing thin film transistor
Yang et al. Self-aligned gate and source drain contacts in inverted-staggered a-Si: H thin-film transistors fabricated using selective area silicon PECVD
JP3361670B2 (en) Semiconductor device and manufacturing method thereof
JP3613221B2 (en) Thin film transistor manufacturing method
JP2005285830A (en) Method for forming gate insulating film, process for fabricating thin-film transistor, and the thin-film transistor